CN112464479A - 一种基于gocad的三维成矿预测方法及系统 - Google Patents

一种基于gocad的三维成矿预测方法及系统 Download PDF

Info

Publication number
CN112464479A
CN112464479A CN202011375298.6A CN202011375298A CN112464479A CN 112464479 A CN112464479 A CN 112464479A CN 202011375298 A CN202011375298 A CN 202011375298A CN 112464479 A CN112464479 A CN 112464479A
Authority
CN
China
Prior art keywords
geological
sgrid
model
grid
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011375298.6A
Other languages
English (en)
Inventor
耿瑞瑞
范洪海
孙远强
陈东欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Uranium Geology
Original Assignee
Beijing Research Institute of Uranium Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Uranium Geology filed Critical Beijing Research Institute of Uranium Geology
Priority to CN202011375298.6A priority Critical patent/CN112464479A/zh
Publication of CN112464479A publication Critical patent/CN112464479A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种基于GOCAD的三维成矿预测方法及系统。该方法包括:根据待预测区域,获取地质数据;基于GOCAD软件,根据地质数据构建待预测区域的地质表面模型;利用地质表面模型与原始栅格模型交切,得到待预测区域的地质SGrid栅格模型;获取待预测区域各个勘探线剖面数据;基于GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型;利用矿体表面模型与原始栅格模型交切,得到待预测区域的矿体SGrid栅格模型;根据待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定地质SGrid栅格模型中每个网格对应区域的成矿概率。本发明可以提高矿产预测的通用性。

Description

一种基于GOCAD的三维成矿预测方法及系统
技术领域
本发明涉及矿产预测领域,特别是涉及一种基于GOCAD的三维成矿预测方法及系统。
背景技术
铀作为核原料具有极为特殊的战略地位。鉴于地表及近地表对于铀矿产开采殆尽,寻找深部隐伏矿产成为重中之重。近年来,随着三维地质建模技术的广泛应用,基于三维地质模型的定量预测方法也从二维应用到三维空间。
三维的定量预测是为了预测地下矿产的位置及资源量。现有技术中可以采用证据权法、信息量法、分形等方法对矿产进行预测,但是上述方法的应用是依附于专业开发的软件,不具备通用性。
发明内容
本发明的目的是提供一种基于GOCAD的三维成矿预测方法及系统,以提高矿产预测的通用性。
为实现上述目的,本发明提供了如下方案:
一种基于GOCAD的三维成矿预测方法,包括:
根据待预测区域,获取地质数据;
基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型;
利用所述地质表面模型与原始栅格模型交切,得到所述待预测区域的地质SGrid栅格模型;所述原始栅格模型为按照建模范围建立的栅格模型;
获取待预测区域各个勘探线剖面数据;
基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型;
利用所述矿体表面模型与所述原始栅格模型交切,得到所述待预测区域的矿体SGrid栅格模型;
根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率。
可选的,所述根据待预测区域,获取地质数据,具体包括:
根据所述待预测区域获取1:500~1:2000比例尺的地质资料;所述地质资料包括:地质图、勘探线剖面图以及中段平面图;
将所述地质资料进行影像校正和数字化处理,得到预处理后的地质资料;
将所述预处理后的地质资料通过三维软件3Dmine或者Surpac进行二维至三维的空间转换,并提取三维建模所需的空间数据,得到所述地质数据。
可选的,所述基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型,具体包括:
采用离散光滑插值法,基于所述地质数据进行空间拟合,构建开放的曲面;
基于所述开放的曲面,通过3d model模块构建封闭的曲面,得到所述地质表面模型。
可选的,所述基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型,具体包括:
采用剖面连接法,将所有勘探线剖面数据通过三角面的方式连接,形成封闭的表面,得到所述矿体表面模型。
可选的,所述根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率,具体包括:
基于证据权法,根据所述矿体SGrid栅格模型中的已知矿体,确定所述地质SGrid栅格模型中每个证据因子的先验概率和相关参数;所述证据因子为所述地质SGrid栅格模型中的成矿有利信息,所述成矿有利信息包括地层、岩体、断裂、地球物理异常和地球化学异常信息;所述相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性;
基于每个因子的先验概率和相关参数,确定所述地质SGrid栅格模型中每个网格的对数后验似然比;所述地质SGrid栅格模型中每个网格包括多个证据因子;
根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。
本发明还提供一种基于GOCAD的三维成矿预测系统,包括:
地质数据获取模块,用于根据待预测区域,获取地质数据;
地质表面模型构建模块,用于基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型;
地质SGrid栅格模型获取模块,用于利用所述地质表面模型与原始栅格模型交切,得到所述待预测区域的地质SGrid栅格模型;所述原始栅格模型为按照建模范围建立的栅格模型;
勘探线剖面数据获取模块,用于获取待预测区域各个勘探线剖面数据;
矿体表面模型构建模块,用于基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型;
矿体SGrid栅格模型获取模块,用于利用所述矿体表面模型与所述原始栅格模型交切,得到所述待预测区域的矿体SGrid栅格模型;
成矿概率确定模块,用于根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率。
可选的,所述地质数据获取模块,具体包括:
地质资料获取单元,用于根据所述待预测区域获取1:500~1:2000比例尺的地质资料;所述地质资料包括:地质图、勘探线剖面图以及中段平面图;
预处理单元,用于将所述地质资料进行影像校正和数字化处理,得到预处理后的地质资料;
空间转换单元,用于将所述预处理后的地质资料通过三维软件3Dmine或者Surpac进行二维至三维的空间转换,并提取三维建模所需的空间数据,得到所述地质数据。
可选的,所述地质表面模型构建模块,具体包括:
拟合单元,用于采用离散光滑插值法,基于所述地质数据进行空间拟合,构建开放的曲面;
3d模型构建单元,用于基于所述开放的曲面,通过3d模型构建封闭的曲面,得到所述地质表面模型。
可选的,所述矿体表面模型构建模块,具体包括:
剖面连接单元,用于采用剖面连接法,将所有勘探线剖面数据通过三角面的方式连接,形成封闭的表面,得到所述矿体表面模型。
可选的,所述成矿概率确定模块,具体包括:
先验概率和相关参数确定单元,用于基于证据权法,根据所述矿体SGrid栅格模型中的已知矿体,确定所述地质SGrid栅格模型中每个证据因子的先验概率和相关参数;所述证据因子为所述地质SGrid栅格模型中的成矿有利信息,所述成矿有利信息包括地层、岩体、断裂、地球物理异常和地球化学异常信息;所述相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性;
对数后验似然比确定单元,用于基于每个因子的先验概率和相关参数,确定所述地质SGrid栅格模型中每个网格的对数后验似然比;所述地质SGrid栅格模型中每个网格包括多个证据因子;
成矿概率确定单元,用于根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明能够利用GOCAD三维软件计算成矿概率(后验概率),开拓了软件的应用场景,并解决了因版权问题缺乏三维定量预测软件的问题,为三维成矿预测与靶区优选提供重要的技术支撑,提高矿产预测的通用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明基于GOCAD的三维成矿预测方法的流程示意图;
图2为本发明基于GOCAD的三维成矿预测系统的结构示意图;
图3为鹿井-沙坝子地区后验概率直方图;
图4为鹿井-沙坝子地区后验概率分布图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明基于GOCAD的三维成矿预测方法的流程示意图。如图1所示,本发明基于GOCAD的三维成矿预测方法包括以下步骤:
步骤100:根据待预测区域,获取地质数据。具体的,首先,根据所述待预测区域获取1:500~1:2000比例尺的地质资料,所述地质资料主要包括:地质图、勘探线剖面图以及中段平面图。然后,将所述地质资料进行影像校正、利用MapGis或者AutoCad软件进行数字化处理,得到数字化地质资料。最后,通过三维软件3Dmine或者Surpac将数字化地质资料进行二维至三维的空间转换,并在此基础上提取三维建模所需的点、线等空间数据,得到所述地质数据。地质数据以dxf格式存储。
步骤200:基于GOCAD软件,根据地质数据构建待预测区域的地质表面模型。本发明采用法国南希(Nancy)大学开发的GOCAD(Geological Object ComputerAided Design)三维建模软件构建三维的地质表面模型。三维地质表面模型的构建的采用离散光滑插值(Discrete SmoothInterpolation)方法,该方法主要是将地质数据作为线性约束进行空间拟合,构建开放的曲面;然后基于开放的曲面,通过建立3dmodel模块获得封闭的曲面,即得到地质表面模型。
步骤300:利用地质表面模型与原始栅格模型交切,得到待预测区域的地质SGrid栅格模型。根据待预测区域可以确定SGrid(原始栅格模型)的边界,按照建模范围建立栅格模型;通过地质表面模型(即封闭的曲面)对SGrid模型进行约束并交切,将地质体、断裂等划分成不同的面域,得到地质SGrid栅格模型。
步骤400:获取待预测区域各个勘探线剖面数据。
步骤500:基于GOCAD软件,根据所有已知矿体的勘探线剖面数据构建待预测区域的矿体表面模型。三维的矿体表面模型的构建主要使用剖面连接法,将所有勘探线剖面上的矿体解译线通过三角面的方式连接起来,形成封闭的表面,得到所述矿体表面模型。
步骤600:利用矿体表面模型与原始栅格模型交切,得到待预测区域的矿体SGrid栅格模型。根据矿体SGrid栅格模型可以统计已知矿体约束了多少个网格,可以得到已知矿体的网格参数。
步骤700:根据待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定地质SGrid栅格模型中每个网格对应区域的成矿概率。具体过程如下:
Step1:基于证据权法,确定地质SGrid栅格模型中每个证据因子的先验概率和相关参数。相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性。首先将提取出来的每一个成矿有利信息当做一个证据因子,根据矿体SGrid栅格模型中的已知矿体,计算证据因子的先验概率以及利于成矿的正权值W+、不利于成矿的负权值W-以及显著性C。C值越高,证明该证据因子与成矿关系越为密切。成矿有利信息包括地层、岩体、断裂、地球物理异常和地球化学异常信息,成矿有利信息在步骤300划分成不同的面域,得到地质SGrid栅格模型时可以直接得到。相关的计算公式如下:
设置待预测区域对应的地质SGrid栅格模型中网格总数为T,已知矿体的网格总数为D,则已知矿体d的先验概率为:P(d)=D/T,转化为先验有利度为:
Figure BDA0002807051490000071
设e1,e2,e3,e4…en为n个证据因子,用证据图层方式来表示,取第j个证据图层,ej表示证据出现,即出现成矿相关的地质要素及识别标志,如岩体、断裂、地球化学异常、地球物理异常等;
Figure BDA0002807051490000079
表示地质证据未出现;
Figure BDA00028070514900000710
表示未成矿单元,则有公式:
Figure BDA0002807051490000072
Figure BDA0002807051490000073
Figure BDA0002807051490000074
式中,
Figure BDA0002807051490000075
为第j个证据因子利于成矿的正权值、
Figure BDA0002807051490000076
为第j个证据因子不利于成矿的负权值,Cj为第j个证据因子的显著性。
Step2:基于每个因子的先验概率和相关参数,确定地质SGrid栅格模型中每个网格的对数后验似然比;然后根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。地质SGrid栅格模型中每个网格包括多个证据因子,公式如下:
Figure BDA0002807051490000077
Figure BDA0002807051490000078
式中,Oprior(d)为先验有利度,lnOpost(d)为网格的对数后验似然比,Ppost(d)为后验概率。
根据公式(1)-(4),可计算出各证据图层的相关参数W+、W-以C,通过SGrid模型的构建属性功能将其赋值给相应的证据层面域。具体操作流程如下:(1)创建各证据图层的W+、W-、lnOprior(d)等属性并赋值;(2)创建各证据图层待预测区域范围内的补集并赋值。补集是指证据图层所占网格之外的所有网格。其赋值规则:当某证据图层的属性是正权值时,其补集的属性值设为0;当补集的属性是负权值时,该证据图层的属性设为0。(3)利用ApplyScript脚本(运算功能),通过各证据图层的所有属性相加运算,使各个网格获得最终的权值,通过公式⑤⑥计算出各网格的对数后验似然比lnOpost(d)和后验概率Ppost(d),最终通过后验概率的分级筛选,在跨越比较大的部位进行分段,为圈定成矿靶区或者远景区提供依据。
图2为本发明基于GOCAD的三维成矿预测系统的结构示意图。如图2所示,本发明基于GOCAD的三维成矿预测系统包括以下结构:
地质数据获取模块201,用于根据待预测区域,获取地质数据。
地质表面模型构建模块202,用于基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型。
地质SGrid栅格模型获取模块203,用于利用所述地质表面模型与原始栅格模型交切,得到所述待预测区域的地质SGrid栅格模型;所述原始栅格模型为按照建模范围建立的栅格模型。
勘探线剖面数据获取模块204,用于获取待预测区域各个勘探线剖面数据。
矿体表面模型构建模块205,用于基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型。
矿体SGrid栅格模型获取模块206,用于利用所述矿体表面模型与所述原始栅格模型交切,得到所述待预测区域的矿体SGrid栅格模型。
成矿概率确定模块207,用于根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率。
作为具体实施例,本发明基于GOCAD的三维成矿预测系统中,所述地质数据获取模块201,具体包括:
地质资料获取单元,用于根据所述待预测区域获取1:500~1:2000比例尺的地质资料;所述地质资料包括:地质图、勘探线剖面图以及中段平面图。
预处理单元,用于将所述地质资料进行影像校正和数字化处理,得到预处理后的地质资料。
空间转换单元,用于将所述预处理后的地质资料通过三维软件3Dmine或者Surpac进行二维至三维的空间转换,并提取三维建模所需的空间数据,得到所述地质数据。
作为具体实施例,本发明基于GOCAD的三维成矿预测系统中,所述地质表面模型构建模块202,具体包括:
拟合单元,用于采用离散光滑插值法,基于所述地质数据进行空间拟合,构建开放的曲面。
3d模型构建单元,用于基于所述开放的曲面,通过3dmodel模块构建封闭的曲面,得到所述地质表面模型。
作为具体实施例,本发明基于GOCAD的三维成矿预测系统中,所述矿体表面模型构建模块205,具体包括:
剖面连接单元,用于采用剖面连接法,将所有勘探线剖面数据通过三角面的方式连接,形成封闭的表面,得到所述矿体表面模型。
作为具体实施例,本发明基于GOCAD的三维成矿预测系统中,所述成矿概率确定模块207,具体包括:
先验概率和相关参数确定单元,用于基于证据权法,根据所述矿体SGrid栅格模型中的已知矿体,确定所述地质SGrid栅格模型中每个证据因子的先验概率和相关参数;所述证据因子为所述地质SGrid栅格模型中的成矿有利信息,所述成矿有利信息包括地层、岩体、断裂、地球物理异常和地球化学异常信息;所述相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性。
对数后验似然比确定单元,用于基于每个因子的先验概率和相关参数,确定所述地质SGrid栅格模型中每个网格的对数后验似然比;所述地质SGrid栅格模型中每个网格包括多个证据因子。
成矿概率确定单元,用于根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。
下面提供一个具体实例,进一步说明本发明的方案。
本实例对鹿井-沙坝子地区成矿进行预测,具体过程如下:
步骤1:收集鹿井矿床1:2000矿床地质图、1:500勘探线剖面图等图件资料,将这些资料影像校正、数字化并三维转换,提取空间点、线等三维建模要素。
步骤2:利用GOCAD半自动化的流程建立曲面,包括地质界线、断层面等。通过建立的地质界面,构建地质体的表面模型,形成封闭的曲面,包括寒武系地层、印支期中粗粒似斑状花岗岩、燕山早期第二阶段中细粒二云母花岗岩、燕山早期第三阶段细粒黑云母花岗岩等。
步骤3:确定三维栅格模型的建模范围为491240.48~497821.38、2833186.74~2836308.32,立方体的尺寸设为建立30m×30m×20m,共建立1224599立方块。通过步骤2获得的各地质体的封闭曲面,将其分割成不同的区域,形成地质体的SGrid栅格模型。
步骤4:共收集勘探线剖面数83个,通过前期的处理,获得各剖面的矿体解译线,将各剖面上命名相同的矿体解译线从前到后依次的通过三角网连接起来,最后封闭三角网的两侧,形成封闭的矿体表面模型,共计121个。封闭的矿体曲面去裁剪步骤3建立的栅格模型,最终得到矿体的栅格模型。
步骤5:鹿井矿床的证据因子有6个,通过统计每个证据因子的块体数以及该证据因子范围内已知的矿体数,根据公式,计算各证据因子的正、负权值以及显著性C值,如表1。
表1证据因子权重表
Figure BDA0002807051490000101
Figure BDA0002807051490000111
步骤6:通过以上步骤,获得了权重值以及先验概率值,调用Apply script脚本函数,计算后验概率似然比,建立后验概率属性,再次使用脚本函数计算后验概率值,其分布直方图以及分布图如图3和图4所示。将后验概率通过直方图的分布,在跨越比较大的部位进行分段,为圈定成矿靶区或者远景区提供依据。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种基于GOCAD的三维成矿预测方法,其特征在于,包括:
根据待预测区域,获取地质数据;
基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型;
利用所述地质表面模型与原始栅格模型交切,得到所述待预测区域的地质SGrid栅格模型;所述原始栅格模型为按照建模范围建立的栅格模型;
获取待预测区域各个勘探线剖面数据;
基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型;
利用所述矿体表面模型与所述原始栅格模型交切,得到所述待预测区域的矿体SGrid栅格模型;
根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率。
2.根据权利要求1所述的基于GOCAD的三维成矿预测方法,其特征在于,所述根据待预测区域,获取地质数据,具体包括:
根据所述待预测区域获取1:500~1:2000比例尺的地质资料;所述地质资料包括:地质图、勘探线剖面图以及中段平面图;
将所述地质资料进行影像校正和数字化处理,得到预处理后的地质资料;
将所述预处理后的地质资料通过三维软件3Dmine或者Surpac进行二维至三维的空间转换,并提取三维建模所需的空间数据,得到所述地质数据。
3.根据权利要求1所述的基于GOCAD的三维成矿预测方法,其特征在于,所述基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型,具体包括:
采用离散光滑插值法,基于所述地质数据进行空间拟合,构建开放的曲面;
基于所述开放的曲面,通过3dmodel模块构建封闭的曲面,得到所述地质表面模型。
4.根据权利要求1所述的基于GOCAD的三维成矿预测方法,其特征在于,所述基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型,具体包括:
采用剖面连接法,将所有勘探线剖面数据通过三角面的方式连接,形成封闭的表面,得到所述矿体表面模型。
5.根据权利要求1所述的基于GOCAD的三维成矿预测方法,其特征在于,所述根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率,具体包括:
基于证据权法,根据所述矿体SGrid栅格模型中的已知矿体,确定所述地质SGrid栅格模型中每个证据因子的先验概率和相关参数;所述证据因子为所述地质SGrid栅格模型中的成矿有利信息,所述成矿有利信息包括岩体、断裂、地球物理异常和地球化学异常信息;所述相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性;
基于每个因子的先验概率和相关参数,确定所述地质SGrid栅格模型中每个网格的对数后验似然比;所述地质SGrid栅格模型中每个网格包括多个证据因子;
根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。
6.一种基于GOCAD的三维成矿预测系统,其特征在于,包括:
地质数据获取模块,用于根据待预测区域,获取地质数据;
地质表面模型构建模块,用于基于GOCAD软件,根据所述地质数据构建所述待预测区域的地质表面模型;
地质SGrid栅格模型获取模块,用于利用所述地质表面模型与原始栅格模型交切,得到所述待预测区域的地质SGrid栅格模型;所述原始栅格模型为按照建模范围建立的栅格模型;
勘探线剖面数据获取模块,用于获取待预测区域各个勘探线剖面数据;
矿体表面模型构建模块,用于基于所述GOCAD软件,根据所有勘探线剖面数据构建待预测区域的矿体表面模型;
矿体SGrid栅格模型获取模块,用于利用所述矿体表面模型与所述原始栅格模型交切,得到所述待预测区域的矿体SGrid栅格模型;
成矿概率确定模块,用于根据所述待预测区域的矿体SGrid栅格模型和地质SGrid栅格模型,基于证据权法,确定所述地质SGrid栅格模型中每个网格对应区域的成矿概率。
7.根据权利要求6所述的基于GOCAD的三维成矿预测系统,其特征在于,所述地质数据获取模块,具体包括:
地质资料获取单元,用于根据所述待预测区域获取1:500~1:2000比例尺的地质资料;所述地质资料包括:地质图、勘探线剖面图以及中段平面图;
预处理单元,用于将所述地质资料进行影像校正和数字化处理,得到预处理后的地质资料;
空间转换单元,用于将所述预处理后的地质资料通过三维软件3Dmine或者Surpac进行二维至三维的空间转换,并提取三维建模所需的空间数据,得到所述地质数据。
8.根据权利要求6所述的基于GOCAD的三维成矿预测系统,其特征在于,所述地质表面模型构建模块,具体包括:
拟合单元,用于采用离散光滑插值法,基于所述地质数据进行空间拟合,构建开放的曲面;
3d模型构建单元,用于基于所述开放的曲面,通过3dmodel模块构建封闭的曲面,得到所述地质表面模型。
9.根据权利要求6所述的基于GOCAD的三维成矿预测系统,其特征在于,所述矿体表面模型构建模块,具体包括:
剖面连接单元,用于采用剖面连接法,将所有勘探线剖面数据通过三角面的方式连接,形成封闭的表面,得到所述矿体表面模型。
10.根据权利要求6所述的基于GOCAD的三维成矿预测系统,其特征在于,所述成矿概率确定模块,具体包括:
先验概率和相关参数确定单元,用于基于证据权法,根据所述矿体SGrid栅格模型中的已知矿体,确定所述地质SGrid栅格模型中每个证据因子的先验概率和相关参数;所述证据因子为所述地质SGrid栅格模型中的成矿有利信息,所述成矿有利信息包括地层、岩体、断裂、地球物理异常和地球化学异常信息;所述相关参数包括利于成矿的正权值、不利于成矿的负权值和显著性;
对数后验似然比确定单元,用于基于每个因子的先验概率和相关参数,确定所述地质SGrid栅格模型中每个网格的对数后验似然比;所述地质SGrid栅格模型中每个网格包括多个证据因子;
成矿概率确定单元,用于根据所述每个网格的对数后验似然比,确定该网格对应的后验概率,得到每个网格的成矿概率。
CN202011375298.6A 2020-11-30 2020-11-30 一种基于gocad的三维成矿预测方法及系统 Pending CN112464479A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011375298.6A CN112464479A (zh) 2020-11-30 2020-11-30 一种基于gocad的三维成矿预测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011375298.6A CN112464479A (zh) 2020-11-30 2020-11-30 一种基于gocad的三维成矿预测方法及系统

Publications (1)

Publication Number Publication Date
CN112464479A true CN112464479A (zh) 2021-03-09

Family

ID=74805710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011375298.6A Pending CN112464479A (zh) 2020-11-30 2020-11-30 一种基于gocad的三维成矿预测方法及系统

Country Status (1)

Country Link
CN (1) CN112464479A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113536535A (zh) * 2021-06-07 2021-10-22 中国地质大学(北京) 成矿研究区的成矿模拟方法及装置
CN114358440A (zh) * 2022-01-17 2022-04-15 核工业北京地质研究院 确定铀矿三维分布概率的方法
CN115272798A (zh) * 2022-08-01 2022-11-01 中国地质大学(武汉) 一种利用信息量扩充成矿预测训练正样本的方法及系统
CN117392337A (zh) * 2023-10-11 2024-01-12 中色地科矿产勘查股份有限公司 基于ai的数字化矿产勘查方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609986A (zh) * 2012-03-14 2012-07-25 中国矿业大学(北京) 数字矿山中矿体建模系统及其建模和检测方法
CN107808413A (zh) * 2017-10-30 2018-03-16 中国煤炭地质总局水文地质局 一种基于gocad的三维地质建模方法
US20190226314A1 (en) * 2015-12-18 2019-07-25 1789703 Ontario Ltd. Explorative Sampling of Natural Mineral Resource Deposits
CN110334882A (zh) * 2019-07-17 2019-10-15 中国地质大学(北京) 一种隐伏矿体定量预测方法及装置
CN110673227A (zh) * 2019-10-31 2020-01-10 中国石油集团东方地球物理勘探有限责任公司 地层不整合交切的处理方法及处理装置
CN111179415A (zh) * 2019-12-30 2020-05-19 核工业北京地质研究院 一种钙结岩型铀矿三维地质模型构建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609986A (zh) * 2012-03-14 2012-07-25 中国矿业大学(北京) 数字矿山中矿体建模系统及其建模和检测方法
US20190226314A1 (en) * 2015-12-18 2019-07-25 1789703 Ontario Ltd. Explorative Sampling of Natural Mineral Resource Deposits
CN107808413A (zh) * 2017-10-30 2018-03-16 中国煤炭地质总局水文地质局 一种基于gocad的三维地质建模方法
CN110334882A (zh) * 2019-07-17 2019-10-15 中国地质大学(北京) 一种隐伏矿体定量预测方法及装置
CN110673227A (zh) * 2019-10-31 2020-01-10 中国石油集团东方地球物理勘探有限责任公司 地层不整合交切的处理方法及处理装置
CN111179415A (zh) * 2019-12-30 2020-05-19 核工业北京地质研究院 一种钙结岩型铀矿三维地质模型构建方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
RUIXI LI ET AL.: "GeoCube: A 3D mineral resources quantitative prediction and assessment system", 《COMPUTERS & GEOSCIENCES》, vol. 89, 30 April 2016 (2016-04-30), pages 161 - 173, XP029440596, DOI: 10.1016/j.cageo.2016.01.012 *
孙岳: "基于GOCAD三维地质建模及资源预测评价", 《中国优秀硕士学位论文全文数据库 基础科学辑》, no. 7, 15 July 2018 (2018-07-15), pages 011 - 105 *
孙涛: "铜陵冬瓜山铜矿床的三维形态及成矿动力学计算模拟", 《中国优秀硕士学位论文全文数据库 基础科学辑》, no. 2, 15 February 2011 (2011-02-15), pages 011 - 29 *
王文杰: "相山铀矿田居隆庵矿床三维建模与定量预测", 《中国优秀硕士学位论文全文数据库 基础科学辑》, no. 8, 15 August 2018 (2018-08-15), pages 011 - 239 *
耿瑞瑞: "鹿井铀矿床深部和外围三维成矿预测研究", 《中国优秀博士学位论文全文数据库 基础科学辑》, no. 2, 15 February 2022 (2022-02-15), pages 011 - 82 *
赵增玉 等: "基于GOCAD的宁芜盆地云台山地区三维地质建模", 《地质学刊》, vol. 38, no. 4, 28 December 2014 (2014-12-28), pages 652 - 656 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113536535A (zh) * 2021-06-07 2021-10-22 中国地质大学(北京) 成矿研究区的成矿模拟方法及装置
WO2022257930A1 (zh) * 2021-06-07 2022-12-15 中国地质大学(北京) 成矿研究区的成矿模拟方法及装置
CN113536535B (zh) * 2021-06-07 2023-05-16 中国地质大学(北京) 成矿研究区的成矿模拟方法及装置
CN114358440A (zh) * 2022-01-17 2022-04-15 核工业北京地质研究院 确定铀矿三维分布概率的方法
CN115272798A (zh) * 2022-08-01 2022-11-01 中国地质大学(武汉) 一种利用信息量扩充成矿预测训练正样本的方法及系统
CN115272798B (zh) * 2022-08-01 2023-05-26 中国地质大学(武汉) 一种利用信息量扩充成矿预测训练正样本的方法及系统
CN117392337A (zh) * 2023-10-11 2024-01-12 中色地科矿产勘查股份有限公司 基于ai的数字化矿产勘查方法
CN117392337B (zh) * 2023-10-11 2024-04-05 中色地科矿产勘查股份有限公司 基于ai的数字化矿产勘查方法

Similar Documents

Publication Publication Date Title
CN112464479A (zh) 一种基于gocad的三维成矿预测方法及系统
CN102142153B (zh) 基于图像的三维模型的重建模方法
CN102609986B (zh) 数字矿山中矿体建模系统及其建模和检测方法
Natali et al. Modeling Terrains and Subsurface Geology.
US10795053B2 (en) Systems and methods of multi-scale meshing for geologic time modeling
CN111079217B (zh) 一种基于bim的岩土工程综合勘察信息解译方法及系统
CN116152461B (zh) 地质建模方法、装置、计算机设备及计算机可读存储介质
CN105184864A (zh) 一种用于天然地基换填工程量计算的场地地层三维地质结构模型生成方法
CN112381937A (zh) 一种基于钻孔和复杂地质剖面的多源地质数据耦合建模方法
CN111383336A (zh) 三维地质模型构建方法
CN103325137A (zh) 天然气水合物藏储层孔隙骨骼结构的提取方法
CN116486025A (zh) 一种基于大数据云计算技术的城市地质数据处理平台
CN106023311B (zh) 提高三维地形生成精度的方法
CN107481320A (zh) 一种三维地质建模的无网格法
CN112862963A (zh) 土木工程中的分水岭分割
CN106875484B (zh) 一种基于三维地形的地质堆积体快速拟合建模方法
CN109712239A (zh) 一种矿床精细三维地质建模方法
Isshiki et al. 3D tsunami run-up simulation and visualization using particle method with GIS-based geography model
CN110765665B (zh) 一种地学动态建模方法及系统
Zhang et al. Method and application of urban 3D rapid modeling of geology based on CAD Borehole Logs
CN111859687A (zh) 一种刻画含铀砂层地质结构的混合地质建模方法及系统
CN110428497A (zh) 辫状河训练图像生成方法
CN108763731B (zh) 一种叠覆式朵体三角洲训练图像建立方法
CN112862969A (zh) 土木工程中的折线贡献者
Turel et al. Delineation of slope profiles from digital elevation models for landslide hazard analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination