CN112456116A - Fluidization type star-shaped feeder and discharging device - Google Patents

Fluidization type star-shaped feeder and discharging device Download PDF

Info

Publication number
CN112456116A
CN112456116A CN202011346649.0A CN202011346649A CN112456116A CN 112456116 A CN112456116 A CN 112456116A CN 202011346649 A CN202011346649 A CN 202011346649A CN 112456116 A CN112456116 A CN 112456116A
Authority
CN
China
Prior art keywords
blanking
area
air
shell
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011346649.0A
Other languages
Chinese (zh)
Inventor
戴真全
虞兰剑
赵福龙
许晶
宋舟明
吴来东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Blest Lithium Power Wisdom Factory Co ltd
Original Assignee
Changzhou Blest Lithium Power Wisdom Factory Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Blest Lithium Power Wisdom Factory Co ltd filed Critical Changzhou Blest Lithium Power Wisdom Factory Co ltd
Priority to CN202011346649.0A priority Critical patent/CN112456116A/en
Publication of CN112456116A publication Critical patent/CN112456116A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/84Star-shaped wheels or devices having endless travelling belts or chains, the wheels or devices being equipped with article-engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/64Large containers characterised by means facilitating filling or emptying preventing bridge formation
    • B65D88/70Large containers characterised by means facilitating filling or emptying preventing bridge formation using fluid jets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

The invention discloses a fluidized star-shaped feeder and a feeding device, wherein the fluidized star-shaped feeder comprises a feeding shell and a feeding assembly; one axial end of the blanking shell is an air inlet, the other axial end of the blanking shell is a driving port, and the radial side surface of the blanking shell is provided with a feed inlet and a discharge outlet; the blanking assembly divides the blanking shell into a plurality of chambers which are circumferentially arranged along a central shaft of the blanking shell, each chamber is divided into a stock bin area and an airflow area through a flow distribution plate, and the airflow area is communicated with the air inlet; when the unloading subassembly is rotatory, the feed bin district can only with the feed inlet perhaps the discharge gate intercommunication, when the feed bin district of one of them cavity only communicates with the discharge gate, the air current district in this cavity is to the blowing gas in feed bin district. The invention divides each chamber into a bin area and an air flow area, when the bin area reaches the discharge hole, the air flow area sprays air to the bin area, and the fast discharge of materials is facilitated.

Description

Fluidization type star-shaped feeder and discharging device
Technical Field
The invention relates to the technical field of powder material transportation, in particular to a fluidized star-shaped feeder and a discharging device, which are mainly used in a lithium battery anode material production line.
Background
The star type dispenser is the device that is used for the even unloading of material, and in lithium cell cathode material production line, the star type dispenser is often used as the even unloading of powder material, because the particularity of lithium electricity raw materials, need notice following several in the production process: firstly, magnetic foreign matters are strictly forbidden to be introduced, so that the part of the feeding equipment, which is in contact with materials in the operation process, cannot be made of metal materials such as carbon steel and the like; secondly, as part of the lithium battery raw materials are high in viscosity, strong in moisture absorption and strong in grinding performance, the star-shaped feeder is required to not only introduce magnetic foreign matters but also smoothly discharge; finally, the equipment is required not to generate and accumulate static electricity during operation, and is particularly suitable for explosion-proof occasions.
The current conventional method comprises the following steps: the part of the star-shaped feeder, which is contacted with the material, is made of non-metallic materials such as SUS304 stainless steel sprayed PTFE (or ETFE) or tungsten carbide (WC) metal wear-resistant materials.
The above-mentioned equipment solution can avoid the magnetic foreign matter to some extent, but still has the following defects: (1) the lithium battery raw material cannot be rapidly discharged, and the material blocking phenomenon is easy to occur; (2) the scheme of spraying non-metallic materials such as PTFE has the risks of easily generating static electricity, being not wear-resistant and still introducing magnetic foreign matters after being worn. (3) The spray WC material solution is limited by the spray process, the spray surface finish is not sufficient, the spray thickness is thin (only around 200 um), and the service life is short with highly polished materials.
To sum up, how to design a star type feeder that can unloading fast, avoid the cavity to block up is the technical problem that needs to solve at present.
Disclosure of Invention
The invention provides a fluidized star-shaped feeder, and aims to solve the technical problem that a blanking cavity in the prior art is easy to cause material blockage.
The invention provides a blanking device, and aims to solve the technical problems that the blanking device in the prior art cannot realize quick blanking and is easy to cause material blockage.
The invention provides a fluidized star-shaped feeder, which comprises a feeding shell and a feeding assembly positioned in the feeding shell; the blanking shell is of a barrel-shaped structure, one axial end of the blanking shell is an air inlet, the other axial end of the blanking shell is a driving port, and a feeding port and a discharging port are arranged on the radial side surface of the blanking shell; the blanking assembly is rotatably connected to two axial ends of the blanking shell, the blanking assembly divides the blanking shell into a plurality of chambers which are circumferentially arranged along a central shaft of the blanking shell, each chamber is divided into a stock bin area and an airflow area through a flow distribution plate, and the airflow area is communicated with the air inlet; when the unloading subassembly is rotatory, the feed bin district can only with the feed inlet perhaps the discharge gate intercommunication, when the feed bin district of one of them cavity only communicates with the discharge gate, the air current district in this cavity is to the blowing gas in feed bin district.
Furthermore, the blanking assembly further comprises a rotating shaft and at least two partition plates fixedly connected with the rotating shaft, the rotating shaft is rotatably connected with two axial ends of the blanking shell, an air flow channel communicated with the air inlet and each air flow area is formed in the rotating shaft, each partition plate extends from the rotating shaft to the inner surface of the blanking shell, the maximum distance between each partition plate and the center of the rotating shaft is equal to the inner diameter of the blanking shell, and a flow distribution plate is connected between every two adjacent partition plates.
Preferably, the blanking shell, the partition plate, the flow distribution plate and the rotating shaft are all made of conductive ceramic materials.
Preferably, the number of the partition plates is four, and the four partition plates are circumferentially arrayed and fixed on the periphery of the rotating shaft.
Preferably, the flow distribution plate is an arc-shaped plate with the center depressed towards the direction of the flow distribution area.
Furthermore, the airflow channels correspond to the airflow zones one by one, each airflow channel comprises an air inlet section and an air outlet section which are sequentially connected, the air inlet section extends along the axial direction and is connected with the air inlet, and the air outlet section extends along the radial direction and is connected with the airflow zones.
Further, the diameter of the inlet end of the discharge port is not larger than the size of the opening of the storage bin area.
The invention also provides a discharging device which comprises an air inlet assembly, a driving assembly and the fluidized star-shaped feeder, wherein the air inlet assembly is connected with the discharging assembly through the air inlet, the air inlet assembly conveys air to the airflow area, the driving assembly is connected with the discharging assembly through a driving port, and the driving assembly drives the discharging assembly to rotate.
Furthermore, the air inlet assembly comprises a rotary joint and a connecting shaft, and one end of the connecting shaft is connected with the rotary joint and the other end of the connecting shaft is connected with the blanking assembly.
Furthermore, the driving assembly comprises a coupler and a speed reducing motor, one end of the coupler is connected with the speed reducing motor, and the other end of the coupler is connected with the blanking assembly.
The invention has the beneficial effects that:
(1) the blanking assembly is arranged in the blanking shell, the blanking assembly divides the blanking shell into a plurality of chambers which are not communicated with each other, and divides each chamber into a bin area and an air flow area, the bin area is used for containing materials, the air flow area is used for circulating air, and when the bin area reaches a discharge hole, the air flow area sprays air to the bin area, so that the materials are quickly discharged under the fluidization action.
(2) According to the invention, the material is separated from the rotating shaft by the flow distribution plate, so that the material can be effectively prevented from being adhered to the rotating shaft, and the phenomenon of material blockage is avoided.
(3) In the invention, the blanking shell, the partition plate, the flow distribution plate and the rotating shaft are all made of conductive ceramics, so that magnetic foreign matters can be prevented from being sucked, the wear resistance is good, and meanwhile, the conductive property of the conductive ceramics also prevents static electricity from being generated and accumulated, thereby ensuring the safety of the system.
(4) According to the invention, the splitter plate is an arc-shaped plate with the center sunken towards the direction of the splitter area, and air flow can be sprayed along the surface of the splitter plate when being sprayed towards the bin area, so that materials are prevented from being adhered to the surface of the splitter plate.
Drawings
The invention is further illustrated with reference to the following figures and examples.
FIG. 1 is a schematic structural view of an embodiment of a fluidized star feeder according to the present invention;
FIG. 2 is a cross-sectional end view of the rotary shaft according to the present invention;
FIG. 3 is a sectional view taken along line A-A of FIG. 2;
FIG. 4 is a schematic view of the state of the fluidized star feeder according to the present invention;
FIG. 5 is a schematic view of the state of the fluidized star feeder according to the present invention;
fig. 6 is a schematic structural view of the blanking device of the present invention.
In the figure, 1, a fluidized star-shaped feeder, 2, a feeding shell, 201, an air inlet, 202, a driving port, 203, a feeding port, 204, a discharging port, 3, a feeding assembly, 301, a flow distribution plate, 302, a rotating shaft, 303, a separation plate, 4, a chamber, 401, a storage bin area, 402, an air flow area, 5, an air flow channel, 501, an air inlet section, 502, an air outlet section, 6, a rotary joint, 7, a connecting shaft, 8, a coupling, 9 and a speed reducing motor.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.
As shown in fig. 1-6, a fluidized star feeder comprises a feeding shell 2 and a feeding assembly 3 positioned inside the feeding shell 2; the blanking shell 2 is of a cylindrical structure, the circular through structure is a cylindrical structure with a circular cross section, one axial end of the blanking shell 2 is an air inlet 201, the other axial end of the blanking shell 2 is a driving port 202, and the radial side surface of the blanking shell 2 is provided with a feeding port 203 and a discharging port 204; the blanking assembly 3 is rotatably connected to two axial ends of the blanking shell 2, namely one end of the blanking assembly 3 is rotatably connected with the air inlet 201 and used for air inlet, the other end of the blanking assembly 3 is rotatably connected with the driving port 202 and used for enabling the blanking assembly 3 to rotate, the blanking assembly 3 is positioned at the air inlet 201 and the driving port 202 and hermetically connected with the blanking shell 2, the blanking assembly 3 divides the blanking shell 2 into a plurality of chambers 4 which are circumferentially arranged along the central shaft of the blanking shell 2, each chamber 4 is divided into a bin area 401 and an airflow area 402 through a splitter plate 301, and the airflow area 402 is communicated with the air inlet 201; when the blanking assembly 3 rotates, the bin region 401 can be communicated with only the feed port 203 or only the discharge port 204, and when the bin region 401 of one chamber 4 is communicated with only the discharge port 204, the air flow region 402 in the chamber 4 blows air to the bin region 401.
The flow distribution plate 301 is a porous plate with a compact filter screen, the flow distribution plate 301 only allows gas to pass through, powder materials cannot pass through the flow distribution plate 301 and enter the airflow zone 402, and in the rotating process of the discharging assembly 3, each chamber 4 also rotates along with the flow distribution plate, so that the communication relation between each chamber 4 and the feeding port 203 and the discharging port 204 is constantly changed, when the bin zone 401 is only communicated with the feeding port 203, the materials are fed from the feeding port 203 to the bin zone 401, and when the bin zone 401 is only communicated with the discharging port 204, the materials are discharged from the discharging port 204 under the action of airflow, so that uniform discharging can be realized, and the discharging speed can also be improved. And when feed bin zone 401 communicates with feed inlet 203 and discharge gate 204 simultaneously, then do not carry out feeding and gas jetting action, be convenient for control material feed volume on the one hand, on the other hand avoids the material to be blown to feed inlet 203.
According to the invention, the drying gas is utilized to fluidize the material through the fluidization plate, so that smooth blanking is realized, wherein the fluidization refers to the phenomenon that solid particles show a fluid-like state under the action of fluid.
A blanking device comprises an air inlet assembly, a driving assembly and the fluidized star-shaped feeder 1, wherein the air inlet assembly is connected with a blanking assembly 3 through an air inlet 201, the air inlet assembly conveys air to an air flow area 402, the driving assembly is connected with the blanking assembly 3 through a driving port 202, and the driving assembly drives the blanking assembly 3 to rotate. The gas enters the blanking cavity body through the gas inlet assembly, when the blanking cavity body works normally, materials are rotationally blanked in the blanking assembly 3 driven by the driving assembly, and when the blockage phenomenon occurs due to poor flowability of the materials, the gas enters the rotating airflow area 402 and blows the material cabin area 401, so that the materials are separated from the surface of the blanking assembly 3.
Example 1, as shown in fig. 1 to 6, a fluidized star feeder 1 comprises a feeding housing 2 and a feeding assembly 3 inside the feeding housing 2; the blanking shell 2 is of a cylindrical structure, one axial end of the blanking shell 2 is an air inlet 201, the other axial end of the blanking shell is a driving port 202, and the radial side surface of the blanking shell 2 is provided with a feeding port 203 and a discharging port 204; the blanking assembly 3 is rotatably connected to two axial ends of the blanking shell 2, the blanking assembly 3 divides the blanking shell 2 into a plurality of chambers 4 which are circumferentially arranged along a central shaft of the blanking shell 2, each chamber 4 is divided into a stock bin area 401 and an airflow area 402 by a flow distribution plate 301, and the airflow area 402 is communicated with the air inlet 201; when the blanking assembly 3 rotates, the bin region 401 can be communicated with only the feed port 203 or only the discharge port 204, and when the bin region 401 of one chamber 4 is communicated with only the discharge port 204, the air flow region 402 in the chamber 4 blows air to the bin region 401.
As shown in fig. 6, the blanking housing 2 is approximately a flat cylindrical structure, the aperture of the blanking assembly 3 is enlarged at the air inlet 201, the driving port 202, the feeding port 203 and the discharging port 204, and the blanking assembly is fixedly connected to an external fixing structure through flanges, in an operating state, the air inlet 201 and the driving port 202 are located at two ends in a horizontal direction, the feeding port 203 is located above, and the discharging port 204 is located below.
As shown in fig. 1, the blanking assembly 3 further includes a rotating shaft 302, four dividing plates 301 and four dividing plates 303, the rotating shaft 302 is rotatably connected to two axial ends of the blanking housing 2, specifically, the rotating shaft 302 is erected between the air inlet 201 and the driving port 202 of the blanking housing 2 through a bearing, the rotating shaft 302 is provided with an air flow channel 5 communicating the air inlet 201 and each air flow zone 402, the four dividing plates 303 are circumferentially arrayed and fixed to the outer periphery of the rotating shaft 302, each dividing plate 303 extends from the rotating shaft 302 to the inner surface of the blanking housing 2, the maximum distance between the dividing plate 303 and the center of the rotating shaft 302 is equal to the inner diameter of the blanking housing 2, that is, the dividing plates 303 are attached to the inner wall of the blanking housing 2, so that two adjacent dividing plates 303 and the outer surface of the rotating shaft 302 form a chamber 4, the four dividing plates 303 divide the blanking housing 2 into four, in each chamber 4, an air flow region 402 is provided between the flow dividing plate 301 and the rotary shaft 302, and a bin region 401 is provided between the flow dividing plate 301 and the lower housing 2.
The feeding principle of the blanking cavity is as follows: in this embodiment, four chambers 4 are partitioned, as shown in fig. 4 and fig. 5, the four chambers 4 are respectively labeled with "a", "b", "c", and "d", and the bin region 401 and the airflow region 402 corresponding to the chamber 4a can be named as a bin region 401a and an airflow region 402a, respectively, taking the feeding process of the chamber 4a as an example, when the chamber 4a rotates to the feeding port 203, the upper material enters the bin region 401a, the material moves downward along with the rotation of the bin region 401a, and when the bin region 401a rotates to the discharging port 204, the dry compressed air enters the airflow region 402a through the airflow, and fluidizes and discharges the material in the bin region 401a through the fluidization plate. Before the chamber 4a rotates through the discharge port 204, the corresponding flow channel is closed, the delivery of the compressed air is stopped, the blanking is completed, and the next feeding cycle is started.
This embodiment is provided with four cavities 4 altogether, four cavities 4's opening is less, the opening means the one side of keeping away from rotation axis 302 in the cavity 4, when cavity 4 and feed inlet 203 or discharge gate 204 intercommunication, the opening appears in cavity 4, when cavity 4 and feed inlet 203 and discharge gate 204 all do not communicate, cavity 4 forms airtight environment with the unloading cavity, this airtight environment and adjacent cavity 4 do not communicate each other this moment to realize the independent feeding and the ejection of compact of every cavity 4, because of four cavities 4 volumes equal again, consequently can realize even unloading. The chamber 4 in this embodiment will not be communicated with the inlet 203 and the outlet 204 at the same time, so as to avoid the occurrence of the phenomenon that the inlet 203 is directly communicated with the outlet 204. In addition, the compressed air water spraying flow distribution plate 301 can realize quick blanking and can prevent the materials from being adhered to the surface of the flow distribution plate 301.
Preferably, the diameter of the inlet end of the discharge port 204 is not larger than the opening size of the silo area 401. When one of the bin regions 401 is completely butted with the discharge port 204, that is, the rest of the bin regions 401 are not communicated with the discharge port 204, the blowing and discharging are started.
The blanking housing 2 and the blanking assembly 3 in this embodiment may be made of non-metallic materials such as SUS304 stainless steel sprayed PTFE (or ETFE) or tungsten carbide (WC) sprayed metal wear-resistant materials in the prior art, which have been able to achieve the effect of preventing magnetic foreign matter from being sucked, but have poor wear resistance, and for this reason, in further design, the blanking housing 2, the partition plate 303, the splitter plate 301, and the rotating shaft 302 are made of conductive ceramic materials. The material contacted with the material is conductive ceramic, the material prevents the introduction of magnetic foreign matters and has good wear resistance, and the conductive property of the conductive ceramic prevents the generation and accumulation of static electricity, thereby ensuring the safety of the system. When facing to the common materials, the smooth blanking can be ensured by the smooth finish of the surface of the ceramic, and the residue of the materials can not be generated.
Embodiment 2, on the basis of embodiment 1, as shown in fig. 1 to 3, the air flow channels 5 correspond to the air flow zones 402 one by one, each air flow channel 5 includes an air inlet section 501 and an air outlet section 502 connected in sequence, the air inlet section 501 extends along the axial direction and is connected to the air inlet 201, and the air outlet section 502 extends along the radial direction and is connected to the air flow zones 402. As shown in the figure, airflow channel 5 is provided with four altogether, and four sections 501 that admit air set up side by side along the axial, and the section 502 of giving vent to anger is extended along four radial directions by the section 501 that admits air that corresponds, and every airflow channel 5 can be followed the axial and arranged a plurality of sections 502 of giving vent to anger, evenly sprays compressed air to airflow zone 402, and when the flow distribution zone was 45 jiaos with division board 303, the radial section 502 of giving vent to anger that sets up can make compressed air front blow to flow distribution board 301, and energy utilization is high.
Embodiment 3, in the above embodiments, a few materials may adhere to the partition plate 303, and for this reason, the present embodiment improves the design of the flow dividing plate 301 on the basis of embodiment 1 or embodiment 2, and the flow dividing plate 301 in the present embodiment is an arc-shaped plate with a center concave toward the direction of the flow dividing area. As shown in fig. 1, the splitter plate 301 is approximately in the shape of a quarter of a circular arc and is tangent to the partition plates 303 at the two sides at the edge, when the airflow blows towards the bin area 401 through the splitter plate 301, the airflow is ejected in the direction perpendicular to the surface of the splitter plate 301, and at the joint of the splitter plate 301 and the partition plate 303, because the splitter plate 301 is tangent to the partition plate 303, the airflow can directly flow in the direction parallel to the surface of the partition plate 303, so that the surface of the partition plate 303 can be purged, and the material on the surface of the partition plate 303 can be removed.
Embodiment 4, a unloader, including admit air subassembly, drive assembly and above the fluidization formula star feeder 1, the subassembly that admits air is connected with unloading subassembly 3 through air inlet 201, and the subassembly that admits air is to airflow zone 402 transport gas, the drive assembly is connected with unloading subassembly 3 through drive mouth 202, and the drive assembly drive unloading subassembly 3 is rotatory.
The air intake assembly may be, but is not limited to, the following structure: as shown in fig. 6, the blanking assembly comprises a rotary joint 6 and a connecting shaft 7, wherein one end of the connecting shaft 7 is connected with the rotary joint 6, and the other end of the connecting shaft 7 is connected with the blanking assembly 3. Specifically, the rotary joint 6 adopts a four-way rotary joint 6 corresponding to the four chambers 4, the connecting shaft 7 adopts a stainless steel rotating shaft, and the connecting shaft 7 is connected with the rotating shaft 302 and rotates synchronously with the rotating shaft 302.
The driving assembly may be, but is not limited to, the following structure: as shown in fig. 6, the automatic blanking device comprises a coupler 8 and a speed reducing motor 9, wherein one end of the coupler 8 is connected with the speed reducing motor 9, and the other end of the coupler 8 is connected with the blanking assembly 3. Specifically, the coupling 8 is connected to the rotary shaft 302 to rotate the rotary shaft 302.
In the description of the present invention, it is to be understood that the terms "central," "upper," "lower," "horizontal," "inner," "outer," "axial," "radial," "circumferential," and the like are used in the positional or orientational relationships indicated in the drawings for the purposes of convenience and simplicity of description, and are not intended to indicate or imply that the referenced device or element must have a particular orientation, be constructed and operated in a particular orientation, and are therefore not to be considered limiting.
Further, in the description of the present invention, "a plurality" means two or more unless otherwise specified.
In this specification, the schematic representations of the terms are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments.
In light of the foregoing description of the preferred embodiment of the present invention, many modifications and variations will be apparent to those skilled in the art without departing from the spirit and scope of the invention. The technical scope of the present invention is not limited to the content of the specification, and must be determined according to the scope of the claims.

Claims (10)

1. A fluidized star feeder characterized by: comprises a blanking shell (2) and a blanking assembly (3) positioned in the blanking shell (2); the blanking shell (2) is of a barrel-shaped structure, one axial end of the blanking shell (2) is provided with an air inlet (201), the other axial end of the blanking shell is provided with a driving port (202), and the radial side surface of the blanking shell (2) is provided with a feeding port (203) and a discharging port (204);
the blanking assembly (3) is rotatably connected to two axial ends of the blanking shell (2), the blanking assembly (3) divides the blanking shell (2) into a plurality of chambers (4) which are circumferentially arranged along a central shaft of the blanking shell (2), each chamber (4) is divided into a stock bin area (401) and an airflow area (402) through a flow distribution plate (301), and the airflow area (402) is communicated with the air inlet (201);
when the blanking assembly (3) rotates, the bin area (401) can be only communicated with the feed opening (203) or the discharge opening (204), and when the bin area (401) of one chamber (4) is only communicated with the discharge opening (204), the air flow area (402) in the chamber (4) blows air to the bin area (401).
2. The fluidized star feeder of claim 1, wherein: the blanking assembly (3) further comprises a rotating shaft (302) and at least two separation plates (303) fixedly connected with the rotating shaft (302), the rotating shaft (302) is rotatably connected with two axial ends of the blanking shell (2), the rotating shaft (302) is provided with an air flow channel (5) communicated with the air inlet (201) and each air flow area (402), each separation plate (303) extends from the rotating shaft (302) to the inner surface of the blanking shell (2), the maximum distance between each separation plate (303) and the center of the rotating shaft (302) is equal to the inner diameter of the blanking shell (2), and two adjacent separation plates (301) are respectively connected between the separation plates (303).
3. The fluidized star feeder of claim 2, wherein: the blanking shell (2), the separation plate (303), the flow distribution plate (301) and the rotating shaft (302) are all made of conductive ceramic materials.
4. The fluidized star feeder of claim 2, wherein: four separation plates (303) are arranged, and the four separation plates (303) are circumferentially arrayed and fixed on the periphery of the rotating shaft (302).
5. The fluidized star feeder of claim 1, wherein: the flow distribution plate (301) is an arc-shaped plate with the center depressed towards the direction of the flow distribution area.
6. The fluidized star feeder of claim 2, wherein: the air flow channels (5) correspond to the air flow areas (402) one by one, each air flow channel (5) comprises an air inlet section (501) and an air outlet section (502) which are sequentially connected, the air inlet sections (501) extend along the axial direction and are connected with the air inlets (201), and the air outlet sections (502) extend along the radial direction and are connected with the air flow areas (402).
7. The fluidized star feeder of claim 1, wherein: the diameter of the inlet end of the discharge hole (204) is not larger than the opening size of the storage bin area (401).
8. The utility model provides a blanking device which characterized in that: comprises an air inlet component, a driving component and the fluidization type star-shaped feeder (1) as claimed in any one of claims 1 to 7, wherein the air inlet component is connected with a blanking component (3) through the air inlet (201), the air inlet component is used for conveying air to the air flow area (402), the driving component is connected with the blanking component (3) through a driving port (202), and the driving component is used for driving the blanking component (3) to rotate.
9. The blanking device of claim 8, wherein: the air inlet assembly comprises a rotary joint (6) and a connecting shaft (7), one end of the connecting shaft (7) is connected with the rotary joint (6) and the other end of the connecting shaft is connected with the blanking assembly (3).
10. The blanking device of claim 8, wherein: the drive assembly comprises a coupler (8) and a speed reducing motor (9), one end of the coupler (8) is connected with the speed reducing motor (9) and the other end of the coupler is connected with the blanking assembly (3).
CN202011346649.0A 2020-11-26 2020-11-26 Fluidization type star-shaped feeder and discharging device Pending CN112456116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011346649.0A CN112456116A (en) 2020-11-26 2020-11-26 Fluidization type star-shaped feeder and discharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011346649.0A CN112456116A (en) 2020-11-26 2020-11-26 Fluidization type star-shaped feeder and discharging device

Publications (1)

Publication Number Publication Date
CN112456116A true CN112456116A (en) 2021-03-09

Family

ID=74808595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011346649.0A Pending CN112456116A (en) 2020-11-26 2020-11-26 Fluidization type star-shaped feeder and discharging device

Country Status (1)

Country Link
CN (1) CN112456116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261552A (en) * 2021-12-22 2022-04-01 昆明中天达玻璃钢开发有限公司 Quantitative filling subassembly and glass steel agitator tank
CN117699350A (en) * 2024-02-06 2024-03-15 常州市锋杰机械有限公司 Composite ceramic spraying rotary valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261552A (en) * 2021-12-22 2022-04-01 昆明中天达玻璃钢开发有限公司 Quantitative filling subassembly and glass steel agitator tank
CN114261552B (en) * 2021-12-22 2023-08-15 昆明中天达玻璃钢开发有限公司 Quantitative filling assembly and glass fiber reinforced plastic stirring tank
CN117699350A (en) * 2024-02-06 2024-03-15 常州市锋杰机械有限公司 Composite ceramic spraying rotary valve
CN117699350B (en) * 2024-02-06 2024-04-09 常州市锋杰机械有限公司 Composite ceramic spraying rotary valve

Similar Documents

Publication Publication Date Title
CN112456116A (en) Fluidization type star-shaped feeder and discharging device
CN201155582Y (en) Rotating blanking valve
EP4005661A1 (en) Impeller assembly, and solid-liquid mixing device using same
CN110215857B (en) Impeller assembly and solid and liquid mixing equipment using same
CN1471440A (en) Inline shifter
CN214651821U (en) Fluidization type star-shaped feeder and discharging device
CN214107393U (en) Rotary feeder
CN115751913A (en) Drying device for food processing
CN108757979A (en) A kind of triple valve for conveying powder and particle
EP0761533A2 (en) Volume reducer
CN210302444U (en) Atomizing device of centrifugal spray drying tower
CN209352220U (en) A kind of at the uniform velocity discharge Anti-blockage rotary feeder
CN217707951U (en) Venturi equipment for pneumatic conveying of solid particles and powder
CN108057384B (en) Method and equipment for continuously feeding and stirring dry powder
CN219765024U (en) Mixed structure and gas-solid circulation mixing system applying same
CN219949848U (en) High-efficient ration powder throws material ware
CN217829801U (en) Powder mixing equipment
CN218840744U (en) Screw conveyer
CN218950503U (en) Three-layer steady flow feeder
CN111686632A (en) Powder distributor
CN217229446U (en) Processing conveyor of barium sulfate for powder coating
CN215755241U (en) Sealed rotary feeder used for being combined with Venturi tube structure
CN217646333U (en) Material mixing equipment suitable for dry method electrode
CN213348662U (en) Pearlescent pigment powder mixing device
CN116422171A (en) Closed airflow negative pressure clash mixing system with nitrogen protection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination