CN112446867B - 血流参数的确定方法、装置、设备及存储介质 - Google Patents

血流参数的确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
CN112446867B
CN112446867B CN202011337866.3A CN202011337866A CN112446867B CN 112446867 B CN112446867 B CN 112446867B CN 202011337866 A CN202011337866 A CN 202011337866A CN 112446867 B CN112446867 B CN 112446867B
Authority
CN
China
Prior art keywords
detected
grid
blood vessel
determining
trained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011337866.3A
Other languages
English (en)
Other versions
CN112446867A (zh
Inventor
王晓东
郭宇翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN202011337866.3A priority Critical patent/CN112446867B/zh
Publication of CN112446867A publication Critical patent/CN112446867A/zh
Application granted granted Critical
Publication of CN112446867B publication Critical patent/CN112446867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/187Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20116Active contour; Active surface; Snakes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Mathematical Analysis (AREA)
  • Quality & Reliability (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Fluid Mechanics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明实施例公开了一种血流参数的确定方法、装置、设备及存储介质。该方法包括:获取待检测原始图像,对待检测原始图像中的血管区域进行分割,得到待检测血管图像,对待检测血管图像进行网格化处理得到待检测网格;根据待检测血管图像确定至少一个待检测点,确定待检测网格中与各待检测点对应的待检测邻域网格;将待检测邻域网格输入到训练完成的网格特征提取模型中,得到待检测邻域网格的网格特征向量;将网格特征向量输入到训练完成的神经网络模型中,得到输出的与各待检测点对应的血流参数。本发明实施例解决了计算血流参数复杂的问题,提高了血流参数计算的准确度。

Description

血流参数的确定方法、装置、设备及存储介质
技术领域
本发明实施例涉及血管影像技术领域,尤其涉及一种血流参数的确定方法、装置、设备及存储介质。
背景技术
计算机断层扫描(Computed Tomography,CT)和磁共振检查(MagneticResonance,MR)等医学影像学技术在医学诊断和治疗中发挥着重要作用。尤其是通过医学影像学技术对血管进行成像分析时,目前的现有技术主要是通过图像分割方法,对血管图像进行分割,以便医生可以清楚的观察到目标血管的形态结构,进而判断目标血管是否存在狭窄、斑块和动脉瘤等问题。进一步的,通过血流参数检测设备,如多普勒超声检查设备,可以得到被测部位的血流参数信息,医生通过结合血管的形状结构信息和血流参数信息,对被测部位进行诊断分析和制定治疗计划。
近年来随着医学的进步,医生希望能进一步了解这些血管中的血流情况,以便对疾病进行更加准确的诊断。因为血管对人体生命活动最重要的功能,只观察到血管的形态和整体上的血流参数,并不足以判断某一特定目标血管供血是否充足,或该处的血管狭窄是否是影响血流参数异常的主要原因。因此,针对每个单位血管位置处的血流动力学参数的研究越来越受到重视。
目前,研究血流动力学参数的现有技术,计算过程复杂,可操作性性不强,且计算结果的准确度不高,从而影响诊断和治疗效果。
发明内容
本发明实施例提供了一种血流参数的确定方法、装置、设备及存储介质,以提高血管中心线处的血流参数的计算效率和计算准确度。
第一方面,本发明实施例提供了一种血流参数的确定方法,该方法包括:
获取待检测原始图像,对所述待检测原始图像中的血管区域进行分割,得到待检测血管图像,对所述待检测血管图像进行网格化处理得到待检测网格;
根据所述待检测血管图像确定至少一个待检测点,确定所述待检测网格中与各所述待检测点对应的待检测邻域网格;
将所述待检测邻域网格输入到训练完成的网格特征提取模型中,得到所述待检测邻域网格的网格特征向量;
将所述网格特征向量输入到训练完成的神经网络模型中,得到输出的与各所述待检测点对应的血流参数。
第二方面,本发明实施例还提供了一种血流参数的确定装置,该装置包括:
待检测网格确定模块,用于获取待检测原始图像,对所述待检测原始图像中的血管区域进行分割,得到待检测血管图像,对所述待检测血管图像进行网格化处理得到待检测网格;
待检测邻域网格确定模块,用于根据所述待检测血管图像确定至少一个待检测点,确定所述待检测网格中与各所述待检测点对应的待检测邻域网格;
网格特征向量确定模块,用于将所述待检测邻域网格输入到训练完成的网格特征提取模型中,得到所述待检测邻域网格的网格特征向量;
血流参数输出模块,用于将所述网格特征向量输入到训练完成的神经网络模型中,得到输出的与各所述待检测点对应的血流参数。
第三方面,本发明实施例还提供了一种电子设备,该电子设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述所涉及的任一所述的血流参数的确定方法。
第四方面,本发明实施例还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行上述所涉及的任一所述的血流参数的确定方法。
本发明实施例通过根据待检测邻域网格、网格特征提取模型和神经网络模型,得到输出的待检测点位置处的血流参数,解决了计算血流参数复杂的问题,与现有技术中对整个待检测原始图像进行处理的方法相比,本实施例将与待检测原始图像对应的离散的待检测邻域网格输入到网格特征提取模型中,识别速度更快,同时也提高了血流参数计算的准确度。
附图说明
图1是本发明实施例一提供的一种血流参数的确定方法的流程图;
图2是本发明实施例二提供的一种血流参数的确定方法的流程图;
图3是本发明实施例二提供的一种待检测网格的示意图;
图4a是本发明实施例二提供的一种链式递归网络模型的示意图;
图4b是本发明实施例二提供的一种树状递归网络模型的示意图;
图5是本发明实施例三提供的一种血流参数的确定装置的示意图;
图6是本发明实施例四提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1是本发明实施例一提供的一种血流参数的确定方法的流程图,本实施例可适用于计算血管预设位置处的血流参数的情况,该方法可以由血管参数的确定装置来执行,该装置可采用软件和/或硬件的方式实现,该装置可以配置于终端设备中。具体包括如下步骤:
S110、获取待检测原始图像,对待检测原始图像中的血管区域进行分割,得到待检测血管图像,对待检测血管图像进行网格化处理得到待检测网格。
其中,待检测原始图像包括通过成像设备采集到的血管医学图像。示例性的,成像设备可以是计算机断层扫描设备、核磁共振设备、数字剪影图像和超声设备。
其中,待检测血管图像中包含血管。示例性的,对血管区域进行分割的方法包括但不限于基于阈值的分割方法、基于区域生长的分割方法、基于边缘的分割方法、基于统计学的分割方法、基于遗传算法的分割方法和基于主动轮廓模型的分割方法中至少一种。
其中,待检测网格包括采用离散网格单元对待检测血管图像划分后得到的网格模型。网格划分是将感兴趣区域图像分割成有限个子区域或子元素,以满足和适应数值模拟计算方法。示例性的,网格划分方法包括但不限于转换扩展法、Delaunay三角形法、覆盖法和前沿法中至少一种。在另一个实施例中,可选的,对待检测血管图像进行三维重建,并对重建得到的三维血管模型进行网格化处理,得到待检测网格。其中,待检测网格的类型包括结构化表面网格、非结构化表面网格、结构化体网格和非结构化体网格。结构化网格模型的特点是每个网格单元与其相邻网格单元时间的连接关系固定不变,非结构化网格模型特点是网格模型中网格单元的相邻网格单元的数量不同。表面网格模型是指仅包含血管表面轮廓的网格单元,体网格模型是指包括血管内部区域的网格单元。
S120、根据待检测血管图像确定至少一个待检测点,确定待检测网格中与各待检测点对应的待检测邻域网格。
其中,待检测点可以是待检测血管图像上的任意一个待检测点,示例性的,待检测点可以是血管中心线上的点,也可以是血管表面上的点,当然还可以是血管特殊结构上的点,如血管分叉位置处。其中,待检测点可以是待检测血管图像上的一个像素点,也可以是预设范围内的多个像素点共同构成该待检测点。此处对待检测点包含的像素点个数不作限定。
在一个实施例中,可选的,对待检测血管图像进行中心线提取得到待检测血管中心线图像,并对待检测血管中心线图像进行处理得到至少一个待检测点。其中,待检测血管图像包含血管中心线。示例性的,提取中心线的方法包括但不限于基于拓扑细化方法、基于追踪方法、最短路径方法、基于距离变换方法和类似区域生长算法中至少一种。
在一个实施例中,可选的,处理的方法包括平滑处理和归一化处理。其中,示例性的,平滑处理的方法可以是均值滤波方法、中值滤波方法、高斯滤波方法、双边滤波方法和卡尔曼滤波方法。其中,示例性的,归一化处理方法可以是线性函数转换法、对数函数转换法和反余切函数转换法等。
在一个实施例中,可选的,确定待检测网格中与各待检测点对应的待检测邻域网格,包括:针对每个待检测点,根据待检测点的位置坐标,在待检测网格上选取待检测点所在的预设范围内的网格节点作为与待检测点对应的待检测邻域网格。
其中,在根据待检测血管图像确定至少一个待检测点后,可以得到各待检测点在待检测血管图像中的位置坐标,相应的,也能得到各待检测点在待检测网格中的位置坐标。其中,示例性的,预设范围可以是圆形范围、方形范围和不规则形状范围等。此处对预设范围不作限定。
S130、将待检测邻域网格输入到训练完成的网格特征提取模型中,得到待检测邻域网格的网格特征向量。
其中,示例性的,网格特征提取模型的类型可以是图卷积神经网络模型,也可以是多层全连接神经网络模型。
S140、将网格特征向量输入到训练完成的神经网络模型中,得到输出的与各待检测点对应的血流参数。
其中,示例性的,神经网络模型包括但不限于强化学习模型、编码解码网络模型、生成对抗网络模型或深度置信网络模型。
在一个实施例中,可选的,神经网络模型为递归神经网络模型。其中,递归神经网络模型可将当前时刻处理的信息传递给下一时刻使用的神经网络模型,具有可变的拓扑结构且权重共享。
其中,示例性的,血流参数包括但不限于血压、血流量、血管壁切应力、血液流速和血流方向中至少一种。在上述实施例的基础上,进一步地,可以对各待检测点上的血流参数进行数学运算。示例性的,沿血流方向,将预设两个待检测点进行差值计算,得到预设两个待检测点之间的压力差值,即压降。其中,预设两个待检测点可以是相邻的待检测点,也可以是不相邻的待检测点。通过压力差值可以判断预设两个待检测点之间的血管情况,如是否血管堵塞或是否供血不足等。
在上述实施例的基础上,可选的,该方法还包括:获取与各待检测点对应的生理参数测量值;将生理参数测量值输入到训练完成的参数特征提取模型中,并将输出的生理特征向量输入到神经网络模型中。
其中,示例性的,生理参数测量值包括血压、心输出量、血液流速和血管直径等生理参数。在一个实施例中,可选的,基于待检测血管图像确定生理参数测量值,和/或,获取用户输入的生理参数测量值。其中,示例性的,根据待检测血管图像的像素尺寸确定冠状动脉的血管直径。其中,示例性的,采用生理参数测量仪器对被测部位进行测量,得到生理参数测量值,如血压和血液流速等测量值。在一个实施例中,生理参数测量值包括全局生理参数测量值和局部生理参数测量值。示例性的,全局生理参数测量值可以是通过生理参数测量仪器测量得到的血压值,局部生理参数测量值可以是冠状动脉的血管直径。
本实施例的技术方案,通过根据待检测邻域网格、网格特征提取模型和神经网络模型,得到输出的待检测点位置处的血流参数,解决了计算血流参数复杂的问题,与现有技术中对整个待检测原始图像进行处理的方法相比,本实施例将与待检测原始图像对应的离散的待检测邻域网格输入到网格特征提取模型中,识别速度更快,同时也提高了血流参数计算的准确度。
实施例二
图2是本发明实施例二提供的一种血流参数的确定方法的流程图,本实施例的技术方案是上述实施例的基础上的进一步细化。可选的,所述方法还包括:根据所述待检测血管图像中血管的血管类型确定所述递归神经网络模型的类型;其中,所述递归神经网络模型的类型包括链式神经网络模型或树状递归神经网络模型。
本实施例的具体实施步骤包括:
S210、获取待检测原始图像,对待检测原始图像中的血管区域进行分割,得到待检测血管图像,对待检测血管图像进行网格化处理得到待检测网格。
在上述实施例的基础上,可选的,根据待检测血管图像中血管的血管类型和/或弧度确定划分的网格密度,并基于网格密度对待检测血管图像进行网格划分得到待检测网格。
在一个实施例中,根据待检测血管图像中血管的类型确定划分的网格密度。其中,具体的,建立血管的类型与网格密度之间的映射关系,根据映射关系确定与血管类型对应的网格密度。其中,待检测血管图像包括至少一种类型的血管。示例性的,待检测血管图像可包括主动脉血管和冠状动脉血管。在一个实施例中,可选的,主动脉血管对应的网格密度小于冠状动脉血管的网格密度。其中,具体的,在对主动脉血管进行网格划分时,采用较大的网格划分,网格密度稀疏。在对冠状动脉血管进行网格划分时,尤其是冠状动脉细支血管处,采用较小的网格划分,网格密度密集。这样设置的好处在于,可以更好的体现出血管细微处的特征信息。
在一个实施例中,根据待检测血管图像中血管的弧度确定划分的网格密度。在一个实施例中,可选的,血管的弧度与网格密度成正相关关系。其中,具体的,当血管的弧度较小时,网格密度密集;当血管的弧度较大时,血管密度稀疏。这样设置的好处在于,弧度较小的血管往往包含更多的血管信息,采用更密集的网格密度对其进行网格划分,可突出血管该位置处的血管特征信息,从而提高计算精度。
在一个实施例中,根据待检测血管图像中血管的类型和弧度确定划分的网格密度。其中,具体的,对冠状动脉血管上弧度较小的血管进行划分时,在对冠状动脉血管进行划分的网格尺寸的基础上,进一步缩小网格尺寸,应用该缩小后的网格尺寸对冠状动脉血管上弧度较小的血管进行划分。
图3是本发明实施例二提供的一种待检测网格的示意图。图3中示出的待训练网格在不同位置处的网络密度不同。如图3所示,位置1对应的圆形区域内的网格密度与位置2对应的圆形区域内的网格密度明显不同,位置1对应的圆形区域内的网格尺寸较小,网格密度较大,位置2对应的圆形区域内的网格尺寸较大,网格密度较小。
S220、根据待检测血管图像确定至少一个待检测点,确定待检测网格中与各待检测点对应的待检测邻域网格。
S230、将待检测邻域网格输入到训练完成的网格特征提取模型中,得到待检测邻域网格的网格特征向量。
S240、根据待检测血管图像中血管的血管类型确定递归神经网络模型的类型。
其中,递归神经网络模型的类型包括链式递归网络模型或树状递归网络模型。图4a是本发明实施例二提供的一种链式递归网络模型的示意图,其中,x1、x2、x3和x4表示递归神经网络模型中每个网络节点的输入,y1、y2、y3和y4表示递归神经网络模型中每个网络节点的输出。图4b是本发明实施例二提供的一种树状递归网络模型的示意图。其中,x1、x2、x4、x5和x6表示递归神经网络模型中每个网络节点的输入,y1、y2、y3、y4和y6表示递归神经网络模型中每个网络节点的输出。
不同组织部位的血管类型不同,且不同的血管类型的血管形态也可能不同。在一个实施例中,当待检测血管图像中血管的血管类型为颈内动脉时,采用链式递归网络模型。在另一个实施例中,当检测血管图像中血管的血管类型为冠状动脉时,如左冠状动脉或右冠状动脉时,采用树状递归网络模型。在一个实施例中,当待检测血管图像包括多种类型的血管时,采用与血管类型对应的递归神经网络模型。其中,示例性的,可建立血管类型与递归神经网络模型的类型之间的映射关系,根据映射关系确定与血管类型对应的递归神经网络模型的类型。
S250、将网格特征向量输入到与血管类型对应的递归神经网络模型中,得到输出的与各待检测点对应的血流参数。
在上述实施例的基础上,可选的,获取待训练原始图像,对待训练原始图像中的血管区域进行分割,得到待训练血管图像,对待训练血管图像进行网格化处理得到待训练网格;根据待训练血管图像确定至少一个待训练点,并确定待训练网格中与各待训练点对应的待训练邻域网格,将待训练邻域网格输入到初始网格特征提取模型中,得到待训练邻域网格的网格特征向量;将网格特征向量输入到初始神经网络模型中;基于初始神经网络模型的输出结果和标准训练参数,对初始网格特征提取模型和初始神经网络模型的模型参数进行调整,以得到训练完成的网格特征提取模型和神经网络模型。
其中,具体的,基于初始神经网络模型的输出结果和标准训练参数的比较结果,采用反向传播方法对初始网格特征提取模型和初始神经网络模型的权重进行调整,得到训练完成的网格特征提取模型和神经网络模型。本实施例与现有技术中对整个待训练原始图像进行处理的方法相比,仅需要根据与待检测原始图像对应的离散的待训练邻域图像对网络模型进行训练,网络模型中需要学习的权重更少,且更容易收敛。
其中,标准训练参数可以是人工标注的与各待训练点对应的血流参数,也可以是基于预设计算方法计算得到的与各待训练点对应的血流参数。在一个实施例中,可选的,采用计算流体力学算法计算得到待训练网格中各网格节点处的初始血流参数;针对每个待训练邻域网格,根据待训练邻域网格中网格节点的初始血流参数确定与待训练点对应的标准训练参数。
其中,计算流体力学算法(Computational Fluid Dynamics,CFD)是利用计算机求解主管流体流动的偏微分方程组,可对流体力学中的各类问题进行数值模拟,便于对实际问题进行定性和定量的分析。在一个实施例中,可选的,计算流体力学方法采用的流体方程包括纳维-斯托克斯方程(N-S方程)。其中,具体的,将待训练生理参数测量值作为边界条件,与待训练网格一起输入到计算流体力学求解器中,得到输出的待训练网格中各网格节点处的初始血流参数。
其中,待训练邻域网格包含多个网格单元,在一个实施例中,可选的,根据待训练邻域网格中网格节点的初始血流参数确定与待训练点对应的标准训练参数,包括:将待训练邻域网格中各网格单元对应的网格节点处的初始血流参数求平均值,得到与训练点对应的标准训练参数。在另一个实施例中,还可以将待训练邻域网格中各网格单元对应的网格节点处的初始血流参数中的最大值、最小值或中值作为与训练点对应的标准训练参数的参数值。
本实施例的技术方案,通过根据待检测血管图像中血管的血管类型确定递归神经网络模型的类型,解决了血管类型多样识别效果不佳的问题,可以实现对不同血管类型的血管图像进行血流参数的计算,并且当血管图像中包含多种血管类型的血管时,也能输出准确度更高的血流参数值。
实施例三
图5是本发明实施例三提供的一种血流参数的确定装置的示意图。本实施例可适用于计算血管预设位置处的血流参数的情况,该装置可采用软件和/或硬件的方式实现,该装置可以配置于终端设备中。该血流参数的确定装置包括:待检测网格确定模块310、待检测邻域网格确定模块320、网格特征向量确定模块330和血流参数输出模块340。
其中,待检测网格确定模块310,用于获取待检测原始图像,对待检测原始图像中的血管区域进行分割,得到待检测血管图像,对待检测血管图像进行网格化处理得到待检测网格;
待检测邻域网格确定模块320,用于根据待检测血管图像确定至少一个待检测点,确定待检测网格中与各待检测点对应的待检测邻域网格;
网格特征向量确定模块330,用于将待检测邻域网格输入到训练完成的网格特征提取模型中,得到待检测邻域网格的网格特征向量;
血流参数输出模块340,用于将网格特征向量输入到训练完成的神经网络模型中,得到输出的与各待检测点对应的血流参数。
本实施例的技术方案,通过根据待检测邻域网格、网格特征提取模型和神经网络模型,得到输出的待检测点位置处的血流参数,解决了计算血流参数复杂的问题,与现有技术中对整个待检测原始图像进行处理的方法相比,本实施例将与待检测原始图像对应的离散的待检测邻域网格输入到网格特征提取模型中,识别速度更快,同时也提高了血流参数计算的准确度。
在上述技术方案的基础上,可选的,待检测邻域网格确定模块320包括:
待检测点确定单元,用于对待检测血管图像进行中心线提取得到待检测血管中心线图像,并对待检测血管中心线图像进行处理得到至少一个待检测点。
在上述技术方案的基础上,可选的,待检测网格确定模块310具体用于:
根据待检测血管图像中血管的血管类型和/或弧度确定划分的网格密度,并基于网格密度对待检测血管图像进行网格划分得到待检测网格。
在上述技术方案的基础上,可选的,待检测邻域网格确定模块320包括:
待检测邻域网格确定单元,用于针对每个待检测点,根据待检测点的位置坐标,在待检测网格上选取待检测点所在的预设范围内的网格节点作为与待检测点对应的待检测邻域网格。
在上述技术方案的基础上,可选的,该装置还包括:
生理特征向量输入模块,用于获取与各待检测点对应的生理参数测量值;将生理参数测量值输入到训练完成的参数特征提取模型中,并将输出的生理特征向量输入到神经网络模型中。
在上述技术方案的基础上,可选的,该装置还包括:
模型训练模块,用于获取待训练原始图像,对待训练原始图像中的血管区域进行分割,得到待训练血管图像,对待训练血管图像进行网格化处理得到待训练网格;根据待训练血管图像确定至少一个待训练点,并确定待训练网格中与各待训练点对应的待训练邻域网格;将待训练邻域网格输入到初始网格特征提取模型中,得到待训练邻域网格的网格特征向量;将网格特征向量输入到初始神经网络模型中,基于初始神经网络模型的输出结果和标准训练参数,对初始网格特征提取模型和初始神经网络模型的模型参数进行调整,以得到训练完成的网格特征提取模型和神经网络模型。
在上述技术方案的基础上,可选的,该装置还包括:
标准训练参数确定模块,用于采用计算流体力学算法计算得到待训练网格中各网格节点处的初始血流参数;针对每个待训练邻域网格,根据待训练邻域网格中网格节点的初始血流参数确定与待训练点对应的标准训练参数。
本发明实施例所提供的血流参数的确定装置可以用于执行本发明实施例所提供的血流参数的确定方法,具备执行方法相应的功能和有益效果。
值得注意的是,上述血流参数的确定装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
实施例四
图6是本发明实施例四提供的一种电子设备的结构示意图,本发明实施例为本发明上述实施例的血流参数的确定方法的实现提供服务,可配置上述实施例中的血流参数的确定装置。图6示出了适于用来实现本发明实施方式的示例性电子设备12的框图。图6显示的电子设备12仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图6所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,系统存储器28,连接不同系统组件(包括系统存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器、外围总线、图形加速端口、处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线、微通道体系结构(MAC)总线、增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
电子设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。电子设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图6未显示,通常称为“硬盘驱动器”)。尽管图6中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本发明所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图6所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
处理单元16通过运行存储在系统存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的血流参数的确定方法。
通过上述设备,解决了计算血流参数复杂的问题,提高了血流参数计算的准确度。
实施例五
本发明实施例五还提供了一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种血流参数的确定方法,该方法包括:
获取待检测原始图像,对待检测原始图像中的血管区域进行分割,得到待检测血管图像,对待检测血管图像进行网格化处理得到待检测网格;
根据待检测血管图像确定至少一个待检测点,确定待检测网格中与各待检测点对应的待检测邻域网格;
将待检测邻域网格输入到训练完成的网格特征提取模型中,得到待检测邻域网格的网格特征向量;
将网格特征向量输入到训练完成的神经网络模型中,得到输出的与各待检测点对应的血流参数。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上的方法操作,还可以执行本发明任意实施例所提供的血流参数的确定方法中的相关操作。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

1.一种血流参数的确定方法,其特征在于,包括:
获取待检测原始图像,对所述待检测原始图像中的血管区域进行分割,得到待检测血管图像,对所述待检测血管图像进行网格化处理得到待检测网格;
根据所述待检测血管图像确定至少一个待检测点,确定所述待检测网格图像中与各所述待检测点对应的待检测邻域网格;
将所述待检测邻域网格输入到训练完成的网格特征提取模型中,得到所述待检测邻域网格的网格特征向量;
将所述网格特征向量输入到训练完成的神经网络模型中,得到输出的与各所述待检测点对应的血流参数;
所述根据所述待检测血管图像确定至少一个待检测点,包括:
对所述待检测血管图像进行中心线提取得到待检测血管中心线图像,并对所述待检测血管中心线图像进行处理得到至少一个待检测点。
2.根据权利要求1所述的方法,其特征在于,所述对所述待检测血管图像进行网格化处理得到待检测网格,包括:
根据所述待检测血管图像中血管的血管类型和/或弧度确定划分的网格密度,并基于所述网格密度对所述待检测血管图像进行网格划分得到待检测网格。
3.根据权利要求1所述的方法,其特征在于,所述确定所述待检测网格中与各所述待检测点对应的待检测邻域网格,包括:
针对每个待检测点,根据所述待检测点的位置坐标,在所述待检测网格上选取所述待检测点所在的预设范围内的网格节点作为与所述待检测点对应的待检测邻域网格。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括:
获取与各所述待检测点对应的生理参数测量值;
将所述生理参数测量值输入到训练完成的参数特征提取模型中,并将输出的生理特征向量输入到所述神经网络模型中。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:
获取待训练原始图像,对所述待训练原始图像中的血管区域进行分割,得到待训练血管图像,对所述待训练血管图像进行网格化处理得到待训练网格;
根据所述待训练血管图像确定至少一个待训练点,并确定所述待训练网格中与各所述待训练点对应的待训练邻域网格;
将所述待训练邻域网格输入到初始网格特征提取模型中,得到所述待训练邻域网格的网格特征向量;
将所述网格特征向量输入到初始神经网络模型中,基于初始神经网络模型的输出结果和标准训练参数,对初始网格特征提取模型和初始神经网络模型的模型参数进行调整,以得到训练完成的网格特征提取模型和神经网络模型。
6.根据权利要求5所述的方法,其特征在于,所述方法还包括:
采用计算流体力学算法计算得到所述待训练网格中各网格节点处的初始血流参数;
针对每个待训练邻域网格,根据所述待训练邻域网格中网格节点的初始血流参数确定与待训练点对应的标准训练参数。
7.根据权利要求1所述的方法,其特征在于,所述神经网络模型为递归神经网络模型;
根据所述待检测血管图像中血管的血管类型确定所述递归神经网络模型的类型;
其中,所述递归神经网络模型的类型包括链式神经网络模型或树状递归神经网络模型。
8.一种血流参数的确定装置,其特征在于,包括:
待检测网格确定模块,用于获取待检测原始图像,对所述待检测原始图像中的血管区域进行分割,得到待检测血管图像,对所述待检测血管图像进行网格化处理得到待检测网格;
待检测邻域网格确定模块,用于根据所述待检测血管图像确定至少一个待检测点,确定所述待检测网格中与各所述待检测点对应的待检测邻域网格;
网格特征向量确定模块,用于将所述待检测邻域网格输入到训练完成的网格特征提取模型中,得到所述待检测邻域网格的网格特征向量;
血流参数输出模块,用于将所述网格特征向量输入到训练完成的神经网络模型中,得到输出的与各所述待检测点对应的血流参数;
所述待检测邻域网格确定模块包括:
待检测点确定单元,用于对待检测血管图像进行中心线提取得到待检测血管中心线图像,并对待检测血管中心线图像进行处理得到至少一个待检测点。
9.一种电子设备,其特征在于,所述电子设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的血流参数的确定方法。
10.一种包含计算机可执行指令的存储介质,其特征在于,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一所述的血流参数的确定方法。
CN202011337866.3A 2020-11-25 2020-11-25 血流参数的确定方法、装置、设备及存储介质 Active CN112446867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011337866.3A CN112446867B (zh) 2020-11-25 2020-11-25 血流参数的确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011337866.3A CN112446867B (zh) 2020-11-25 2020-11-25 血流参数的确定方法、装置、设备及存储介质

Publications (2)

Publication Number Publication Date
CN112446867A CN112446867A (zh) 2021-03-05
CN112446867B true CN112446867B (zh) 2023-05-30

Family

ID=74737626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011337866.3A Active CN112446867B (zh) 2020-11-25 2020-11-25 血流参数的确定方法、装置、设备及存储介质

Country Status (1)

Country Link
CN (1) CN112446867B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113205488B (zh) * 2021-04-19 2023-12-29 深圳睿心智能医疗科技有限公司 血流特性预测方法、装置、电子设备及存储介质
CN114462329A (zh) * 2022-01-10 2022-05-10 中山大学孙逸仙纪念医院 一种升主动脉流体力学参数的测算方法和装置
CN115482358B (zh) * 2022-10-12 2023-04-28 北京医准智能科技有限公司 一种三角网格曲面的生成方法、装置、设备及存储介质
CN116630247B (zh) * 2023-05-06 2023-10-20 河北省儿童医院(河北省第五人民医院、河北省儿科研究所) 脑血流图像处理方法及装置、脑血流监测系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109829446A (zh) * 2019-03-06 2019-05-31 百度在线网络技术(北京)有限公司 眼底图像识别方法、装置、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803071B (zh) * 2016-12-29 2020-02-14 浙江大华技术股份有限公司 一种图像中的物体检测方法及装置
CN108665449B (zh) * 2018-04-28 2022-11-15 杭州脉流科技有限公司 预测血流矢量路径上的血流特征的深度学习模型及装置
CN108765430B (zh) * 2018-05-24 2022-04-08 西安思源学院 一种基于心脏ct图像和机器学习的心脏左腔区域分割方法
CN108830848B (zh) * 2018-05-25 2022-07-05 深圳科亚医疗科技有限公司 利用计算机确定血管上的血管状况参数的序列的装置和系统
CN111160302B (zh) * 2019-12-31 2024-02-23 深圳一清创新科技有限公司 基于自动驾驶环境的障碍物信息识别方法和装置
CN111815598B (zh) * 2020-06-30 2024-04-26 上海联影医疗科技股份有限公司 一种血管参数的计算方法、装置、设备及存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109829446A (zh) * 2019-03-06 2019-05-31 百度在线网络技术(北京)有限公司 眼底图像识别方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112446867A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN112446866B (zh) 血流参数的计算方法、装置、设备及存储介质
CN112446867B (zh) 血流参数的确定方法、装置、设备及存储介质
CN111815598B (zh) 一种血管参数的计算方法、装置、设备及存储介质
US20210358634A1 (en) Systems and methods for image processing to determine blood flow
CN110168613B (zh) 用于使用降阶模型和机器学习估计血流特性的系统和方法
US10398386B2 (en) Systems and methods for estimating blood flow characteristics from vessel geometry and physiology
CN111292314B (zh) 冠脉分段方法、装置、图像处理系统和存储介质
CN111317455B (zh) 血流动力学参数确定方法、装置、设备及存储介质
JP2022550782A (ja) 血管の領域破裂の可能性を決定するための方法及びシステム
WO2021018101A1 (zh) 数据处理方法、装置、设备及存储介质
US20220392070A1 (en) Combined assessment of morphological and perivascular disease markers
CN112419484B (zh) 三维血管合成方法、系统及冠状动脉分析系统和存储介质
CN112749521A (zh) 血流动力学指标数据的处理方法和系统
CN111640124B (zh) 一种血管提取方法、装置、设备及存储介质
CN111312375A (zh) 虚拟冠脉手术的搭桥分析方法、系统、介质及设备
Tan et al. Segmentation of lung airways based on deep learning methods
CN112150454B (zh) 一种主动脉夹层评估方法、装置、设备及存储介质
CN110163872A (zh) 一种hrmr图像分割与三维重建的方法及电子设备
CN114732431B (zh) 对血管病变进行检测的计算机实现方法、装置及介质
CN113811956A (zh) 用于使用响应表面和降阶建模来估计血液流动的系统和方法
CN112001893B (zh) 一种血管参数的计算方法、装置、设备及存储介质
CN112382397A (zh) 基于桥血管的模型构建方法、装置、设备及存储介质
CN112419308B (zh) 斑块评估方法、装置、电子设备及存储介质
CN114170258A (zh) 图像分割方法、装置、电子设备及存储介质
Sankaran et al. Physics driven reduced order model for real time blood flow simulations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant