CN112439658A - Spraying method for wafer-level sensitive material and semiconductor sensor - Google Patents

Spraying method for wafer-level sensitive material and semiconductor sensor Download PDF

Info

Publication number
CN112439658A
CN112439658A CN202011215050.3A CN202011215050A CN112439658A CN 112439658 A CN112439658 A CN 112439658A CN 202011215050 A CN202011215050 A CN 202011215050A CN 112439658 A CN112439658 A CN 112439658A
Authority
CN
China
Prior art keywords
sensitive
spraying
spraying method
sensitive material
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011215050.3A
Other languages
Chinese (zh)
Inventor
孙建海
马天军
王海容
赵玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Aerospace Information Research Institute of CAS
Original Assignee
Xian Jiaotong University
Aerospace Information Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Aerospace Information Research Institute of CAS filed Critical Xian Jiaotong University
Priority to CN202011215050.3A priority Critical patent/CN112439658A/en
Publication of CN112439658A publication Critical patent/CN112439658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A spraying method of a wafer-level sensitive material and a semiconductor sensor comprises the steps of aligning openings on a prepared mask plate with a sensitive area of a substrate; injecting a precursor solution of a sensitive material to be coated onto a spray head; setting operating parameters of the spray head; aligning the spray head to the mask plate and starting spraying; and separating the mask plate from the substrate after the spraying is finished to obtain the wafer-level sensitive material. The invention adopts a high-precision mask and combines a large-area spraying method, so that the wafer-level uniform modification and fixation of the nano gas-sensitive material can be realized; by adopting a spraying method, the film forming thickness of the sensitive material can be accurately controlled by calculating the spraying time; by adopting the high-precision mask technology, the non-sensitive area can be perfectly protected from being polluted by sensitive materials to influence the subsequent packaging process, so that the method disclosed by the invention is perfectly compatible with the subsequent process.

Description

Spraying method for wafer-level sensitive material and semiconductor sensor
Technical Field
The invention belongs to the field of sensors, and particularly relates to a spraying method of a wafer-level sensitive material and a semiconductor sensor.
Background
The miniature Metal Oxide Semiconductor (MOS) sensor based on the nano sensitive material is a sensor with small volume, low power consumption, high sensitivity, low price and better selectivity. The sensor has low price and wide gas detection range (corresponding sensitive membranes can be selected according to gas components to realize detection of various gases), and is widely applied in the fields of toxic gas monitoring in industrial parks, exhaust emission monitoring of industrial boilers and automobiles, toxic and harmful gas monitoring released by furniture and building materials and the like.
However, the modification and fixation of the sensitive material of the existing metal oxide detector are not wafer-level, and the basic procedure is that after a single micro-hotplate is prepared, the sensitive material is fixed on the sensitive area on the surface of the micro-hotplate by using a spotting instrument. The method can not only solve the problem of mass production and cause high cost, but also has poor performance consistency of each sensor prepared by the method.
Disclosure of Invention
It is therefore one of the primary objectives of the claimed invention to provide a method for spraying wafer-level sensitive material and semiconductor sensor, so as to at least partially solve at least one of the above-mentioned problems.
In order to achieve the above object, as an aspect of the present invention, there is provided a method for spraying a wafer-level sensitive material, comprising:
aligning the openings on the prepared mask plate with the sensitive area of the substrate;
injecting a precursor solution of a sensitive material to be coated onto a spray head;
setting operating parameters of the spray head;
aligning the spray head to the mask plate and starting spraying;
and separating the mask plate from the substrate after the spraying is finished to obtain the wafer-level sensitive material.
As another aspect of the present invention, there is also provided a method for spraying a wafer-level sensitive material and a semiconductor sensor, wherein the semiconductor sensor is provided with a plurality of different sensitive areas, and the method for spraying includes the step of respectively spraying each sensitive area by using the above-mentioned spraying method.
Based on the technical scheme, the wafer-level sensitive material and the spraying method thereof have at least one of the following advantages compared with the prior art:
1. the wafer-level uniform modification and fixation of the nano gas-sensitive material can be realized by adopting a high-precision mask and combining a large-area spraying method;
2. by adopting a spraying method, the film forming thickness of the sensitive material can be accurately controlled by calculating the spraying time;
3. by adopting the high-precision mask technology, the non-sensitive area can be perfectly protected from being polluted by sensitive materials to influence the subsequent packaging process, so that the method disclosed by the invention is perfectly compatible with the subsequent process.
Drawings
FIG. 1 is a schematic diagram of wafer level sensitive material spraying according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of an explosion structure for spraying wafer-level sensitive material according to an embodiment of the present invention;
FIG. 3 is a schematic structural diagram of a micro MOS sensor according to an embodiment of the invention;
FIG. 4 is a schematic diagram of a mask structure of the 3-S1 sensitive area in the CMOS sensor according to an embodiment of the present invention.
Detailed Description
In order that the objects, technical solutions and advantages of the present invention will become more apparent, the present invention will be further described in detail with reference to the accompanying drawings in conjunction with the following specific embodiments.
Aiming at the technical problem of poor consistency of modification and fixation of sensitive materials, the invention provides a wafer-level sensitive material spraying method, which can accurately control the thickness of a sensitive film while realizing the wafer-level modification and fixation of the sensitive materials and realize perfect compatibility with subsequent processes.
The invention discloses a spraying method of a wafer-level sensitive material, which comprises the following steps:
aligning the openings on the prepared mask plate with the sensitive area of the substrate;
injecting a precursor solution of a sensitive material to be coated onto a spray head;
setting operating parameters of the spray head;
aligning the spray head to the mask plate and starting spraying;
and separating the mask plate from the substrate after the spraying is finished to obtain the wafer-level sensitive material.
In some embodiments of the invention, the operating parameters of the spray head include spray speed of the spray head, spray rotational speed of the spray head, and spray time.
In some embodiments of the present invention, the thickness of the sensitive material in the sensitive area of the wafer level sensitive material is controlled by the spraying time.
In some embodiments of the present invention, the spraying method further comprises aging the resulting wafer-level sensitive material.
In some embodiments of the present invention, the opening of the mask is attached to the sensitive region of the silicon substrate.
In some embodiments of the present invention, the position and the size of the opening on the mask are completely consistent with the sensitive area on the substrate.
In some embodiments of the invention, the sensing material comprises at least one of a metal oxide nanomaterial, a carbon nanomaterial, or an organic-inorganic nanocomposite material;
in some embodiments of the invention, the sensitive material is sensitive to a gas.
In some embodiments of the present invention, the metal oxide nanomaterial is a multi-component or composite nanomaterial synthesized using zinc oxide, titanium dioxide, or tin dioxide as a base material.
In some embodiments of the invention, the substrate comprises at least one of a silicon substrate, a ceramic substrate, or a glass substrate.
The invention also discloses a spraying method of the semiconductor sensor, the semiconductor sensor is provided with a plurality of different sensitive areas, and the spraying method comprises the following steps:
each sensitive area is separately sprayed using the spraying method described above.
The technical solution of the present invention is further illustrated by the following specific embodiments in conjunction with the accompanying drawings. It should be noted that the following specific examples are given by way of illustration only and the scope of the present invention is not limited thereto.
Referring to fig. 1-2, the embodiment discloses a spraying method of a wafer-level sensitive material, which includes the following steps:
(1) the sensitive material 2 to be coated is prepared into a corresponding precursor solution and then injected into the spray head 1.
The nano-sensitive material 2 may be selected from, but not limited to, metal oxide nano-materials such as zinc oxide, titanium dioxide, tin dioxide, etc., carbon nano-materials such as graphene, carbon nanotubes, etc., and organic-inorganic nano-composite materials.
(2) Aligning and closely attaching the prepared mask plate 4 (the position and the area of the window are completely consistent with the position and the area of the substrate needing to fix the sensitive material) to the sensitive area of the silicon substrate 5;
(3) after the spraying speed of the spray head 1 and the rotating speed of the spray head are adjusted, the spraying time is accurately calculated;
(4) and opening the spray head 1, spraying the sensitive materials 2 on the mask plate 4 and the silicon substrate 5 right below, and separating the mask plate 4 from the surface of the silicon substrate 5 after spraying is finished, so that a layer of uniform sensitive materials 2 is modified and fixed in an area where the sensitive materials are required to be fixed on the surface of the silicon substrate 5.
(5) And aging the sensitive material 2 on the surface of the silicon substrate 5 to form a surface layer with firm adhesion, completing the spraying of the wafer-level sensitive material, and preparing for a subsequent bonding packaging process.
Wherein, adopt half etching process with the regional attenuate of trompil of mask plate 4 to the thickness that laser can pierce through, then exert tension around mask plate 4, make surfacing to weld the mask plate on the mask frame, later cut out the trompil of mask plate demand with laser, utilize the characteristic that laser beam diameter of laser cutting can reach 1 micron to the trompil of mask base plate, improve the trompil precision of mask plate and the position accuracy of trompil, can prepare out high accuracy mask plate. The prepared high-precision mask is combined with a large-area spraying technology, wafer-level modification and fixation of sensitive materials can be realized, the consistency of film formation is good, and the thickness can be accurately controlled. The position and size of the opening (or window) on the mask are completely consistent with those of the sensitive region of the chip on the silicon substrate, and the explosion diagram is shown in fig. 2.
The mask 4 may be processed by a glass substrate, or may be a silicon wafer or a substrate made of other materials, and in this embodiment, a glass substrate is preferred. In the spraying process, the mask plate 4 can be directly and closely attached to the underlying silicon substrate 5 (the substrate on which the sensitive material needs to be coated) or have a certain distance from the underlying silicon substrate 5, but in any case, each through hole on the mask plate 4 needs to be accurately aligned with a sensitive area on the silicon substrate chip, and a close attachment mode is preferred in the project.
In other implementations of the present invention, a spraying method of a micro metal oxide semiconductor sensor is also disclosed, in which the sensing unit of the micro metal oxide semiconductor sensor may be an array structure, that is, the micro metal oxide semiconductor sensor has a plurality of sensing units, and each sensing unit may be decorated with different sensing materials. As shown in fig. 3-4, the cmos sensor is composed of 4 sensing units S1, S2, S3 and S4, 6-S1 is the opening of the mask corresponding to the sensing area of 3-S1, 7 is the micro-hotplate, 8 is the electrode, E1, E2, E3 and E4 are four interdigital electrodes with the same structure for generating capacitance related to the electric field that can penetrate the material sample and the sensing coating, Hot-P1, Hot-P2, Hot-P3 and Hot-P4 are four heating electrodes for generating the temperature required for the sensing material to reach the optimal chemical activity. For the sensor with the array structure, the modification and fixation steps of the wafer-level sensitive material are as follows: firstly, determining the number of array units and the type of modified sensitive materials; then preparing a mask plate, wherein the modification and the fixation of each sensitive material need a special mask plate (the through hole positions of the mask plate correspond to the modified and fixed sensitive units one by one); and the mask plate corresponding to the sensitive unit is applied to modify a certain sensitive unit.
The thickness of the sensitive film of the micro metal oxide semiconductor sensor is accurately controlled by the spraying time.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are only exemplary embodiments of the present invention and are not intended to limit the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. A spraying method of wafer-level sensitive materials comprises the following steps:
aligning the openings on the prepared mask plate with the sensitive area of the substrate;
injecting a precursor solution of a sensitive material to be coated onto a spray head;
setting operating parameters of the spray head;
aligning the spray head to the mask plate and starting spraying;
and separating the mask plate from the substrate after the spraying is finished to obtain the wafer-level sensitive material.
2. The spraying method according to claim 1,
the spray head operation parameters comprise spray head spray speed, spray head rotation speed and spray time.
3. The spraying method according to claim 1,
the thickness of the sensitive material in the sensitive area of the wafer-level sensitive material is controlled by the spraying time.
4. The spraying method according to claim 1,
the spraying method further comprises the step of aging the obtained wafer-level sensitive material.
5. The spraying method according to claim 1,
and the open hole of the mask plate is attached to the sensitive area of the silicon substrate.
6. The spraying method according to claim 1,
the position and the size of the opening on the mask plate are completely consistent with those of the sensitive area on the substrate.
7. The spraying method according to claim 1,
the sensitive material comprises at least one of a metal oxide nanomaterial, a carbon nanomaterial or an organic-inorganic nanocomposite material;
the sensitive material is sensitive to a certain gas.
8. The spraying method according to claim 7,
the metal oxide nano material is a multi-element or composite nano material synthesized by taking zinc oxide, titanium dioxide or tin dioxide as a base material.
9. The spraying method according to claim 1,
the substrate includes at least one of a silicon substrate, a ceramic substrate, or a glass substrate.
10. A method of painting a semiconductor sensor, the semiconductor sensor having a plurality of distinct sensitive areas, the painting method comprising:
each sensitive area is separately sprayed by the spraying method according to any one of claims 1 to 9.
CN202011215050.3A 2020-11-04 2020-11-04 Spraying method for wafer-level sensitive material and semiconductor sensor Pending CN112439658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011215050.3A CN112439658A (en) 2020-11-04 2020-11-04 Spraying method for wafer-level sensitive material and semiconductor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011215050.3A CN112439658A (en) 2020-11-04 2020-11-04 Spraying method for wafer-level sensitive material and semiconductor sensor

Publications (1)

Publication Number Publication Date
CN112439658A true CN112439658A (en) 2021-03-05

Family

ID=74736827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011215050.3A Pending CN112439658A (en) 2020-11-04 2020-11-04 Spraying method for wafer-level sensitive material and semiconductor sensor

Country Status (1)

Country Link
CN (1) CN112439658A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145844A (en) * 1999-11-22 2001-05-29 Ricoh Co Ltd Mask for film-forming by spraying superfine particle and method for fixing mask and substrate to apparatus body
US20080248205A1 (en) * 2007-04-05 2008-10-09 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate using a mask material
CN102608203A (en) * 2012-02-16 2012-07-25 北京中科飞鸿科技有限公司 Preparation method of surface acoustic wave sensor chip sensitive membrane for gas detection
CN104532183A (en) * 2015-01-26 2015-04-22 深圳市华星光电技术有限公司 Manufacturing method of high-precision mask
CN106568812A (en) * 2016-11-09 2017-04-19 西安交通大学 Preparation method of gas sensor used for detection of isoprene gas
US20170176370A1 (en) * 2015-12-17 2017-06-22 Massachusetts Institute Of Technology Graphene oxide sensors
CN109379848A (en) * 2018-11-23 2019-02-22 江苏集萃微纳自动化系统与装备技术研究所有限公司 The manufacturing method of novel flexible printed circuit
CN111384303A (en) * 2018-12-28 2020-07-07 Tcl集团股份有限公司 Preparation method of film layer and quantum dot light-emitting diode
CN111398364A (en) * 2020-04-29 2020-07-10 中国科学院空天信息创新研究院 High-selectivity array MOS sensor and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145844A (en) * 1999-11-22 2001-05-29 Ricoh Co Ltd Mask for film-forming by spraying superfine particle and method for fixing mask and substrate to apparatus body
US20080248205A1 (en) * 2007-04-05 2008-10-09 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate using a mask material
CN102608203A (en) * 2012-02-16 2012-07-25 北京中科飞鸿科技有限公司 Preparation method of surface acoustic wave sensor chip sensitive membrane for gas detection
CN104532183A (en) * 2015-01-26 2015-04-22 深圳市华星光电技术有限公司 Manufacturing method of high-precision mask
US20170176370A1 (en) * 2015-12-17 2017-06-22 Massachusetts Institute Of Technology Graphene oxide sensors
CN106568812A (en) * 2016-11-09 2017-04-19 西安交通大学 Preparation method of gas sensor used for detection of isoprene gas
CN109379848A (en) * 2018-11-23 2019-02-22 江苏集萃微纳自动化系统与装备技术研究所有限公司 The manufacturing method of novel flexible printed circuit
CN111384303A (en) * 2018-12-28 2020-07-07 Tcl集团股份有限公司 Preparation method of film layer and quantum dot light-emitting diode
CN111398364A (en) * 2020-04-29 2020-07-10 中国科学院空天信息创新研究院 High-selectivity array MOS sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6131166B2 (en) Electrode for gas sensor and gas sensor element using the same
JP6730069B2 (en) Nitrogen oxide gas sensor and oxygen pump
KR100479687B1 (en) Cantilever sensor and method for fabrication thereof
CA2679648C (en) Method for the production of a diaphragm vacuum measuring cell
Schöning et al. About 20 years of silicon‐based thin‐film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization
JP4616648B2 (en) Thermal barrier coating and method of applying such a coating
US20050241939A1 (en) Method and apparatus for providing and electrochemical gas sensor having a porous electrolyte
CN101573611A (en) Process for production of sensitive glass film for ion electrode, sensitive glass film for ion electrode, and ion electrode
Zhang et al. P (VDF-HFP) polymer as sensing material for capacitive carbon dioxide sensors
CN112439658A (en) Spraying method for wafer-level sensitive material and semiconductor sensor
Tsunozaki et al. Fabrication and electrochemical characterization of boron-doped diamond microdisc array electrodes
CN1466557A (en) Method for joining
CN106124575A (en) A kind of NO2sensor and preparation method thereof
US20160123944A1 (en) Method for manufacturing no2 gas sensor for detection at room temperature
Meher et al. Tissue paper assisted spray ionization mass spectrometry
US8298488B1 (en) Microfabricated thermionic detector
KR101618337B1 (en) a method for fabricating a sensor and a sensor fabricated thereby
Raileanu et al. An amperometric sensor for thiocholine based on cluster-assembled zirconia modified electrodes
CN108918353A (en) A kind of method of particle matter qualitative detection in atmospheric environment
JPH06294765A (en) Manufacture of humidity sensor
CN1186626C (en) Chip of low power dissipation chemical gas sensor, sensor and their preparing method
CN108362890A (en) Based on the enrichment of boracic comb polymer patterning target plate, desalination and the method for identifying glycopeptide
JPS6366900B2 (en)
JP3195139B2 (en) Electrochemical probe for measuring oxygen content in exhaust gas and its manufacturing method
US8148683B2 (en) Method for characterizing a membrane in a wet condition by positron annihilation spectrometer and sample holder thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210305

RJ01 Rejection of invention patent application after publication