CN112437238A - 一种低kTC噪声三维图像传感器锁相像素结构 - Google Patents

一种低kTC噪声三维图像传感器锁相像素结构 Download PDF

Info

Publication number
CN112437238A
CN112437238A CN201910790306.4A CN201910790306A CN112437238A CN 112437238 A CN112437238 A CN 112437238A CN 201910790306 A CN201910790306 A CN 201910790306A CN 112437238 A CN112437238 A CN 112437238A
Authority
CN
China
Prior art keywords
ktc noise
rst
nmos tubes
reset
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910790306.4A
Other languages
English (en)
Other versions
CN112437238B (zh
Inventor
徐江涛
史晓琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University Marine Technology Research Institute
Original Assignee
Tianjin University Marine Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University Marine Technology Research Institute filed Critical Tianjin University Marine Technology Research Institute
Priority to CN201910790306.4A priority Critical patent/CN112437238B/zh
Publication of CN112437238A publication Critical patent/CN112437238A/zh
Application granted granted Critical
Publication of CN112437238B publication Critical patent/CN112437238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种低kTC噪声三维图像传感器锁相像素结构,其主要由NMOS管M1、M2、M3,光电二极管Photo‑detector,NMOS管SF1、SF2,NMOS管Msel1、Msel2,尾电流源I1、I2;该像素结构采用双抽头‑三复位管结构,通过在原有两复位光中间增加一个桥联的复位管,使两个抽头在复位操作时引入的kTC噪声进行平分,通过后续读出电路做减法运算,进行有效抵消。该像素在滚筒曝光无法实现CDS的前提下,可以有效抑制像素由于复位引入的kTC噪声。

Description

一种低kTC噪声三维图像传感器锁相像素结构
技术领域
本发明属于图像传感器领域,特别涉及一种低kTC噪声三维图像传感器锁相像素结构。
背景技术
传感器作为人类感官的延伸,实现了对外界信息准确可靠的获取和转换。CMOS图像传感器更是在各种领域发挥着重要作用。近年来,能够反映图像深度信息的三维图像传感器应运而生。鉴于其具有反映目标物体深度信息的能力,三维图像传感器广泛被用于工业军事、汽车、消费电子等领域。在工业领域可用于三维重建、自动加工、高度测量等;在军事领域可用于无人机侦查、潜艇水下领航、星际遥测成像等;在汽车领域可用于无人驾驶,辅助驾驶;在消费电子中,应用于体感游戏、手势识别等。基于飞行时间(Time of Flight,ToF)的三维图像传感器由于成像系统较为简单,具有更为广阔的应用前景。基于方波调制光信号的3D图像传感器原理如图1所示,光源发生器发射经调制的光信号,经过往返距离延迟后,到达探测器的相位发生改变,通过测量调制光飞行时间Tflight的变化,通过式1可以计算得到目标距离信息L,即
Figure 654285DEST_PATH_IMAGE001
根据飞行时间的测量原理,需要在一个光波调制周期完成四次采样,以获得相位变化信息,四相位积分示意图如图2所示,调制光周期为Tmod,三个相位分别为0,Tmod/4,Tmod/2,3Tmod/4,在三个相位处的积分结果分别为Q1,Q2,Q3,Q4进而通过计算获得距离信息。根据积分结果由式2可以得到所探测距离的表达式为:
Figure 66331DEST_PATH_IMAGE002
在获取相位变化信息时,为降低误差需要对反射光信号的每一相位均进行多次采样并累加。由于需要对来自四个阶段的信号进行集成,需要较长的时间才能获得一帧三维图像。为解决帧频过低的问题,传统的有效方式是在一个像素内集成两个抽头和两个浮动扩散节点。虽然该方法可以使成像速度达到单抽头像素的两倍,但是由于传统的三维图像传感器受读出电路速度影响,常采用滚筒曝光模式。在该曝光模式下,传统的三维图像传感器的曝光过程与普通图像传感器中的3T像素相类似,因此不可避免地引入了一个缺点,即没有相关双采样(Correlation double sampling, CDS)就无法消除像素复位时产生的kTC噪声。
发明内容
针对现有技术存在的问题,本发明提出一种低kTC噪声三维图像传感器锁相像素结构,所提出像素采用双抽头-三复位管结构,通过在原有两复位光中间增加一个桥联的复位管,使两个抽头在复位操作时引入的kTC噪声进行平分,通过后续读出电路做减法运算,进行有效抵消。该像素在滚筒曝光无法实现CDS的前提下,可以有效抑制像素由于复位引入的kTC噪声。
一种低kTC噪声三维图像传感器锁相像素结构,如图3所示,其主要由NMOS管M1、M2、M3,光电二极管Photo-detector,NMOS管SF1、SF2,NMOS管Msel1、Msel2,尾电流源I1、I2;该像素中各个组件的连接关系如下:NMOS管M1、M2的源极均接电源VDD,栅极分别接在RST1和RST2信号上,漏极分别接光电二极管Photo-detector的FD1、FD2;NMOS管M3的源级与M1的源级相连,M3的漏极与M2的源级相连,M3的栅极与信号RST’相连;NMOS管SF1、SF2的源极均接电源VDD,栅极分别与光电二极管Photo-detector的FD1、FD2相连接,源极分别与NMOS管Msel1、Msel2的漏极相连;NMOS管Msel1、Msel2的栅极分别与控制信号Sel1、Sel2相连,源极分别与尾电流源I1、I2的正端相连;电流源I1、I2的负端均与地相连。
一种低kTC噪声三维图像传感器锁相像素结构,工作时序图如图4所示,在光生电荷积分之前,通过RST的信号复位两个FDS用于滚动快门操作。在奇数帧中,FD1和FD2在(n-1)Tmod、n*Tmod/2相位处累积用于Tmod/4的时间的调制光信号,其中t表示调制光的周期,n表示调制光的周期数。在偶数帧中,FD1和FD2在n*Tmod/4、3n*Tmod/4相位处累积调制光信号。在对光电子积分之后,读出电路将读出FD1和FD2中的电压。当Sel为“高”且RST为“低”时,S/H电路处于“采样”状态,信号电压被读出。当Sel为“高”且RST为“高”时,S/H电路处于“保持”级,复位电压被读出。两个FD中存储的电压差值理论上可以由式3计算:
Figure 199503DEST_PATH_IMAGE003
本发明为了减少在实际复位过程中会引入的随机kTC噪声,在M1和M2的两个源节点之间桥联一个名为M3的NMOS管。该MOS管的控制时序如图4中RST’所示。RST’下降沿的发生时间稍晚于RST。这种复位机制可以使M1和M2引入的kTC两部分噪声进行均分,存储在两个FD中的电压差值可以用式4计算:
Figure 144194DEST_PATH_IMAGE004
其中σn,2k是RST在第2k次复位时的kTC噪声,σn,2k+1是RST在第(2k+1)次复位时的kTC噪声,k为整数。奇数帧和偶数帧构成一个完整的距离探测周期;由式4可知,该方法可以有效的抑制kTC噪声。
本发明提出了一种低kTC噪声三维图像传感器锁相像素结构,具有更高的成像精度,更低的kTC噪声,进而扩大3D图像传感器的使用场合。
附图说明
图1是基于方波调制光信号的3D图像传感器原理图;
图2是基于飞行时间三维图像传感器的四相位积分示意图;
图3是本发明提出一种采用滚筒曝光模式的低kTC噪声高速三维图像传感器锁相像素结构及读出电路;
图4是传统像素结构与所提出像素结构的读出电路控制时序。
具体实施方式
为使本发明的目的、技术方案和优点更加清晰,下面将结合实例给出本发明实施方式的具体描述。
在该实例中,本发明设计像素尺寸为10um×10um,其中填充因子为40%,FD1~FD3为使本发明的目的、技术方案和优点更加清晰,下面将结合实例给出本发明实施方式的具体描述。在该实例中,本发明设计像素尺寸为10um×10um,其中填充因子为69%,FD1、FD2尺寸为1.5um2,调制光源为占空比1:4,周期Tmod=250ns,平均功率为1W的方波。该像素输出经由一个增益为90dB的缓冲器输出至片外ADC。该ADC选取分辨率为16位,转换速率为4MHz的AD9825。在读出电路工作在四倍增益的前提下,像素在未开启RST’的工作模式下,引入的总噪声为0.0067V,在开启RST’的工作模式下,引入的总噪声为0.0045V,本发明可以有效降低kTC噪声500uV。

Claims (3)

1.一种低kTC噪声三维图像传感器锁相像素结构,其特征在于:主要组成部分为NMOS管M1、M2、M3,光电二极管Photo-detector,NMOS管SF1、SF2,NMOS管Msel1、Msel2,尾电流源I1、I2;该像素中各个组件的连接关系如下:NMOS管M1、M2的源极均接电源VDD,栅极分别接在RST1和RST2信号上,漏极分别接光电二极管Photo-detector的FD1、FD2;NMOS管M3的源级与M1的源级相连,M3的漏极与M2的源级相连,M3的栅极与信号RST’相连;NMOS管SF1、SF2的源极均接电源VDD,栅极分别与光电二极管Photo-detector的FD1、FD2相连接,源极分别与NMOS管Msel1、Msel2的漏极相连;NMOS管Msel1、Msel2的栅极分别与控制信号Sel1、Sel2相连,源极分别与尾电流源I1、I2的正端相连;电流源I1、I2的负端均与地相连。
2.根据权利要求1所述一种低kTC噪声三维图像传感器锁相像素结构,其特征在于:在光生电荷积分之前,通过RST的信号复位两个FDS用于滚动快门操作;在奇数帧中,FD1和FD2在(n-1)Tmod、n*Tmod/2相位处累积用于Tmod/4的时间的调制光信号,其中t表示调制光的周期,n表示调制光的周期数;在偶数帧中,FD1和FD2在n*Tmod/4、3n*Tmod/4相位处累积调制光信号;在对光电子积分之后,读出电路将读出FD1和FD2中的电压;当Sel为“高”且RST为“低”时,S/H电路处于“采样”状态,信号电压被读出;当Sel为“高”且RST为“高”时,S/H电路处于“保持”级,复位电压被读出。
3.根据权利要求1所述一种低kTC噪声三维图像传感器锁相像素结构,其特征在于:在M1和M2的两个源节点之间桥联一个名为M3的NMOS管,RST’下降沿的发生时间稍晚于RST,使M1和M2引入的kTC两部分噪声进行均分,存储在两个FD中的电压差值可以用式4计算;其中σn,2k是RST在第2k次复位时的kTC噪声,σn,2k+1是RST在第(2k+1)次复位时的kTC噪声,k为整数;奇数帧和偶数帧构成一个完整的距离探测周期;
Figure DEST_PATH_IMAGE001
由式4可知,该方法可以有效的抑制kTC噪声。
CN201910790306.4A 2019-08-26 2019-08-26 一种低kTC噪声三维图像传感器锁相像素结构 Active CN112437238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910790306.4A CN112437238B (zh) 2019-08-26 2019-08-26 一种低kTC噪声三维图像传感器锁相像素结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910790306.4A CN112437238B (zh) 2019-08-26 2019-08-26 一种低kTC噪声三维图像传感器锁相像素结构

Publications (2)

Publication Number Publication Date
CN112437238A true CN112437238A (zh) 2021-03-02
CN112437238B CN112437238B (zh) 2023-06-09

Family

ID=74689608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910790306.4A Active CN112437238B (zh) 2019-08-26 2019-08-26 一种低kTC噪声三维图像传感器锁相像素结构

Country Status (1)

Country Link
CN (1) CN112437238B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424375B1 (en) * 1999-09-21 2002-07-23 Pixel Devices, International Low noise active reset readout for image sensors
US20020175269A1 (en) * 2001-04-04 2002-11-28 Krymski Alexander I. Method and apparatus for reducing kTC noise in an active pixel sensor (APS) device
US6963372B1 (en) * 1998-04-24 2005-11-08 Canon Kabushiki Kaisha Solid-state image sensing apparatus and method of operating the same
CN104243861A (zh) * 2014-09-29 2014-12-24 中国电子科技集团公司第四十四研究所 高速全局快门像素结构及其信号控制方法
WO2015028672A1 (fr) * 2013-08-30 2015-03-05 Pyxalis Capteur d'image avec bruit ktc reduit
US20170343695A1 (en) * 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-Optical Detecting Apparatus and Methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963372B1 (en) * 1998-04-24 2005-11-08 Canon Kabushiki Kaisha Solid-state image sensing apparatus and method of operating the same
US6424375B1 (en) * 1999-09-21 2002-07-23 Pixel Devices, International Low noise active reset readout for image sensors
US20020175269A1 (en) * 2001-04-04 2002-11-28 Krymski Alexander I. Method and apparatus for reducing kTC noise in an active pixel sensor (APS) device
WO2015028672A1 (fr) * 2013-08-30 2015-03-05 Pyxalis Capteur d'image avec bruit ktc reduit
CN104243861A (zh) * 2014-09-29 2014-12-24 中国电子科技集团公司第四十四研究所 高速全局快门像素结构及其信号控制方法
US20170343695A1 (en) * 2016-05-31 2017-11-30 Lockheed Martin Corporation Magneto-Optical Detecting Apparatus and Methods

Also Published As

Publication number Publication date
CN112437238B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2016075945A1 (ja) 光飛行型測距装置
US9442196B2 (en) Demodulation sensor with separate pixel and storage arrays
CN111727602B (zh) 单芯片rgb-d相机
CN107300705B (zh) 基于载波调制的激光雷达测距系统及测距方法
US8908063B2 (en) Method and apparatus for a time-of-flight sensor with charge storage
JP2011520116A (ja) バックグランド放射光の抑制に有利なtof領域
Kim et al. 7.2 A 48× 40 13.5 mm depth resolution flash LiDAR sensor with in-pixel zoom histogramming time-to-digital converter
Spickermann et al. CMOS 3D image sensor based on pulse modulated time-of-flight principle and intrinsic lateral drift-field photodiode pixels
US10520590B2 (en) System and method for ranging a target with a digital-pixel focal plane array
JP6539990B2 (ja) 光飛行型測距装置
CN109510955B (zh) 基于飞行时间三维图像传感器的背景噪声抑制像素电路
TW201735623A (zh) 用於減少對於黑訊號之類比數位轉換時間之方法及系統
TW202037926A (zh) 用於直接飛行時間測量的cmos影像感測器
Hatakeyama et al. A Hybrid ToF Image Sensor for Long-Range 3D Depth Measurement Under High Ambient Light Conditions
Sesta et al. Time-to-digital converters and histogram builders in SPAD arrays for pulsed-LiDAR
WO2018180660A1 (ja) 固体撮像装置
CN112437238B (zh) 一种低kTC噪声三维图像传感器锁相像素结构
Stoppa et al. A 16/spl times/16-pixel range-finding CMOS image sensor
Yamada et al. A distance measurement method using a time-of-flight cmos range image sensor with 4-tap output pixels and multiple time-windows
CN111048540A (zh) 一种门控式像素单元以及3d图像传感器
EP3684052B1 (en) Pixel circuit and image sensing system
CN112399104B (zh) 一种全局曝光低噪声高速三维传感器锁相像素及读出方式
CN112505722A (zh) 一种同时捕获深度及灰度信息的ToF像素结构
Wang et al. A direct TOF sensor with in-pixel differential time-to-charge converters for automotive flash Lidar and other 3D applications
Shi et al. A low kTC noise and low FPN reset method for pixel in ToF image sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shi Xiaolin

Inventor after: Xu Jiangtao

Inventor before: Xu Jiangtao

Inventor before: Shi Xiaolin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant