CN112434637B - 基于量子计算线路和LiDAR点云分类的物体识别方法 - Google Patents
基于量子计算线路和LiDAR点云分类的物体识别方法 Download PDFInfo
- Publication number
- CN112434637B CN112434637B CN202011403828.3A CN202011403828A CN112434637B CN 112434637 B CN112434637 B CN 112434637B CN 202011403828 A CN202011403828 A CN 202011403828A CN 112434637 B CN112434637 B CN 112434637B
- Authority
- CN
- China
- Prior art keywords
- point cloud
- quantum
- classification
- point
- lidar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 14
- 238000011176 pooling Methods 0.000 claims abstract description 8
- 230000001133 acceleration Effects 0.000 claims abstract description 7
- 238000013507 mapping Methods 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims abstract description 6
- 238000013528 artificial neural network Methods 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000012549 training Methods 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 5
- 239000002096 quantum dot Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000003094 perturbing effect Effects 0.000 claims 1
- 238000010801 machine learning Methods 0.000 abstract description 3
- 238000013139 quantization Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101100010166 Mus musculus Dok3 gene Proteins 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Multimedia (AREA)
- Computational Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011403828.3A CN112434637B (zh) | 2020-12-04 | 2020-12-04 | 基于量子计算线路和LiDAR点云分类的物体识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011403828.3A CN112434637B (zh) | 2020-12-04 | 2020-12-04 | 基于量子计算线路和LiDAR点云分类的物体识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112434637A CN112434637A (zh) | 2021-03-02 |
CN112434637B true CN112434637B (zh) | 2021-07-16 |
Family
ID=74691174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011403828.3A Active CN112434637B (zh) | 2020-12-04 | 2020-12-04 | 基于量子计算线路和LiDAR点云分类的物体识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112434637B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114764620B (zh) * | 2021-12-31 | 2024-04-09 | 本源量子计算科技(合肥)股份有限公司 | 一种量子卷积操作器 |
CN112801281A (zh) * | 2021-03-22 | 2021-05-14 | 东南大学 | 基于量子化生成模型和神经网络的对抗生成网络构建方法 |
CN113255747B (zh) * | 2021-05-14 | 2023-07-28 | 山东英信计算机技术有限公司 | 量子多通道卷积神经分类方法、系统、终端及存储介质 |
CN114358295B (zh) * | 2022-03-22 | 2022-06-21 | 合肥本源量子计算科技有限责任公司 | 基于机器学习框架的二分类方法及相关装置 |
WO2024095380A1 (ja) * | 2022-11-02 | 2024-05-10 | 三菱電機株式会社 | 点群識別装置、学習装置、点群識別方法、および、学習方法 |
CN116738208B (zh) * | 2023-06-19 | 2024-07-30 | 北京大学深圳研究生院 | 一种量子态点云的特征提取方法、装置及电子设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465006A (zh) * | 2009-01-08 | 2009-06-24 | 清华大学 | 由点云构建网格面的方法 |
CN104091321A (zh) * | 2014-04-14 | 2014-10-08 | 北京师范大学 | 适用于地面激光雷达点云分类的多层次点集特征的提取方法 |
CN106199557A (zh) * | 2016-06-24 | 2016-12-07 | 南京林业大学 | 一种机载激光雷达数据植被提取方法 |
CN108919281A (zh) * | 2018-04-10 | 2018-11-30 | 中国科学院上海技术物理研究所 | 基于波长时间量子态随机交织光脉冲序列的量子激光雷达 |
CN109945844A (zh) * | 2014-05-05 | 2019-06-28 | 赫克斯冈技术中心 | 测量子系统和测量系统 |
CN110157407A (zh) * | 2019-05-14 | 2019-08-23 | 上海交通大学 | 一种InP量子点及其制备方法 |
CN111007529A (zh) * | 2019-11-28 | 2020-04-14 | 武汉大学 | 一种全链路的光子计数激光测高仪点云的生成方法 |
CN111707385A (zh) * | 2020-06-19 | 2020-09-25 | 上海交通大学 | 基于时间飞行探测技术实现时间戳玻色采样量子计算系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11422430B2 (en) * | 2017-02-01 | 2022-08-23 | Jeffrey Albelo | Apparatus and method for beam scanner |
CN111694014B (zh) * | 2020-06-16 | 2022-12-09 | 中国科学院西安光学精密机械研究所 | 一种基于点云模型的激光非视域三维成像场景建模方法 |
-
2020
- 2020-12-04 CN CN202011403828.3A patent/CN112434637B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101465006A (zh) * | 2009-01-08 | 2009-06-24 | 清华大学 | 由点云构建网格面的方法 |
CN104091321A (zh) * | 2014-04-14 | 2014-10-08 | 北京师范大学 | 适用于地面激光雷达点云分类的多层次点集特征的提取方法 |
CN109945844A (zh) * | 2014-05-05 | 2019-06-28 | 赫克斯冈技术中心 | 测量子系统和测量系统 |
CN106199557A (zh) * | 2016-06-24 | 2016-12-07 | 南京林业大学 | 一种机载激光雷达数据植被提取方法 |
CN108919281A (zh) * | 2018-04-10 | 2018-11-30 | 中国科学院上海技术物理研究所 | 基于波长时间量子态随机交织光脉冲序列的量子激光雷达 |
CN110157407A (zh) * | 2019-05-14 | 2019-08-23 | 上海交通大学 | 一种InP量子点及其制备方法 |
CN111007529A (zh) * | 2019-11-28 | 2020-04-14 | 武汉大学 | 一种全链路的光子计数激光测高仪点云的生成方法 |
CN111707385A (zh) * | 2020-06-19 | 2020-09-25 | 上海交通大学 | 基于时间飞行探测技术实现时间戳玻色采样量子计算系统 |
Non-Patent Citations (4)
Title |
---|
Homology computation of large point clouds using quantum annealing;Raouf Dridi等;《arXiv》;20160606;第1-17页 * |
Quantum Point Cloud and its Compression;Nan Jiang等;《International Journal of Theoretical Physics》;20170731;第3147–3163页 * |
可扩展的量子加速算法演示——基于三维集成芯片的专用光量子计算原型机首次实现;唐豪;《物理》;20190331;第181-183页 * |
基于LIDAR点云分类进行建筑物自动提取的研究;宋志勇等;《电力勘测设计》;20170531;第161-165页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112434637A (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112434637B (zh) | 基于量子计算线路和LiDAR点云分类的物体识别方法 | |
Wang | Quantum algorithm for linear regression | |
CN111583263B (zh) | 一种基于联合动态图卷积的点云分割方法 | |
CN110287983B (zh) | 基于最大相关熵深度神经网络单分类器异常检测方法 | |
CN110245655A (zh) | 一种基于轻量级图像金字塔网络的单阶段物体检测方法 | |
CN113496247A (zh) | 估计生成对抗网络的隐含似然 | |
CN112085789B (zh) | 位姿估计方法、装置、设备及介质 | |
CN108171119B (zh) | 基于残差网络的sar图像变化检测方法 | |
CN114019467B (zh) | 一种基于MobileNet模型迁移学习的雷达信号识别与定位方法 | |
CN114821251B (zh) | 一种点云上采样网络的确定方法及确定装置 | |
CN116310466A (zh) | 基于局部无关区域筛选图神经网络的小样本图像分类方法 | |
CN108985385A (zh) | 基于生成对抗学习的快速弱监督目标检测方法 | |
Sharma et al. | Machine-learning classification of two-dimensional vortex configurations | |
CN114187569B (zh) | 一种皮尔森系数矩阵与注意力融合的实时目标检测方法 | |
CN113723468B (zh) | 一种三维点云的物体检测方法 | |
CN109902720A (zh) | 基于子空间分解进行深度特征估计的图像分类识别方法 | |
CN115293639A (zh) | 一种基于隐马尔可夫模型的战场态势研判方法 | |
Bergner et al. | Deformable structural models | |
CN110555483B (zh) | 基于fw-dcgan特征生成的极化sar分类方法 | |
Kuusela et al. | A gradient-based algorithm competitive with variational Bayesian EM for mixture of Gaussians | |
CN113592013A (zh) | 一种基于图注意力网络的三维点云分类方法 | |
CN112257566A (zh) | 一种基于大数据的人工智能目标识别测距方法 | |
KR102614266B1 (ko) | 웨이퍼 검사 방법, 및 이를 이용한 반도체 장치 제조 방법 | |
CN110119782A (zh) | 基于fpga的sar图像变化检测方法 | |
EP4432172A1 (en) | Hybrid quantum classical classification system for classifying images and training method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221102 Address after: 201100 Room 110 and 111, Building 3, No. 600, Jianchuan Road, Minhang District, Shanghai Patentee after: Shanghai Jiaotong University Intellectual Property Management Co.,Ltd. Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District Patentee before: SHANGHAI JIAO TONG University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231031 Address after: 201210 3rd floor, building 1, No.400, Fangchun Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Patentee after: Shanghai Turing intelligent computing Quantum Technology Co.,Ltd. Address before: 201100 Room 110 and 111, Building 3, No. 600, Jianchuan Road, Minhang District, Shanghai Patentee before: Shanghai Jiaotong University Intellectual Property Management Co.,Ltd. |