CN112432715B - SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method - Google Patents

SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method Download PDF

Info

Publication number
CN112432715B
CN112432715B CN202011302617.0A CN202011302617A CN112432715B CN 112432715 B CN112432715 B CN 112432715B CN 202011302617 A CN202011302617 A CN 202011302617A CN 112432715 B CN112432715 B CN 112432715B
Authority
CN
China
Prior art keywords
photonic crystal
crystal fiber
type photonic
temperature
spr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011302617.0A
Other languages
Chinese (zh)
Other versions
CN112432715A (en
Inventor
沈涛
王韶峰
张智文
梁涵
杨添宇
宋明歆
王东兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Yicui Electric Control Technology Co ltd
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202011302617.0A priority Critical patent/CN112432715B/en
Publication of CN112432715A publication Critical patent/CN112432715A/en
Application granted granted Critical
Publication of CN112432715B publication Critical patent/CN112432715B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention provides a D-type photonic crystal fiber temperature sensing device and method based on SPR (surface plasmon resonance), which consists of a broadband light source, a polarizer, a temperature change box, a D-type photonic crystal fiber, a single-mode fiber, a spectrum analyzer and a computer, wherein the temperature change box is arranged on the surface of the broadband light source; the optical fiber temperature sensor is positioned in the temperature change box, and the temperature in the temperature change box is controlled by an input value; coating Ag and Ta on the polished surface of the side surface of the D-type photonic crystal fiber 2 O 5 The film is coated with temperature-sensitive material Polydimethylsiloxane (PDMS) again, and is welded with the single-mode fiber of the D-type photonic crystal fiber and coated with Ag and Ta 2 O 5 The film and the D-type photonic crystal fiber made of the temperature-sensitive material form a probe of the SPR-based D-type photonic crystal fiber temperature sensing device together. The SPR sensing mechanism is utilized to convert the temperature change into the change of a measurable loss peak, so that the temperature sensing is realized, and the SPR sensing mechanism has the advantages of high sensitivity, flexible design, compact structure, strong stability and the like, and has wide application value in the field of temperature monitoring.

Description

SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method
Technical Field
The invention belongs to the technical field of optical fiber sensing, and particularly relates to a D-type photonic crystal optical fiber temperature sensing device and method based on SPR.
Background
Surface Plasmon Resonance (SPR) exists between a metal and a medium (or air), and Surface Plasmon Polaritons (SPP) are excited using a total reflection evanescent wave. The SPR sensing technology has become a multifunctional tool for monitoring the refractive index of an analyte, filtering light of a specific frequency and detecting the formation of a nano-biofilm due to its characteristics of high sensitivity, no background interference, no label in a sample, no need of further purification, real-time rapid detection, etc. In recent years, the concept of SPR sensors based on Photonic Crystal Fibers (PCF) has been proposed. A feature of photonic crystal fibers is their flexibility of design, so that dispersion, birefringence, nonlinearity, etc. can be tailored through different arrangements of air holes. These aspects make photonic crystal fibers particularly attractive in many fields and have wide applications in gas-based nonlinear optics, atom and particle guidance, ultra-high nonlinearity, rare earth-doped lasers, and sensing. The PCF-SPR sensor can realize perfect matching of a plasma mode and a fundamental mode, and has high sensitivity and resolution in refractive index detection because the effective refractive index of the fundamental mode can be designed to be between zero and the refractive index of a core material. The defects of large volume, high transmission loss and low sensitivity of the SPR sensor based on the prism and the traditional optical fiber are overcome.
The side edge polishing photonic crystal fiber is an optical fiber element which removes part of cladding by using an optical fiber grinding and polishing technology, not only can maintain the advantages of the traditional optical fiber, but also can enable the conduction mode in the optical fiber to leak out through a polishing area for other applications, such as the application of evanescent waves in the field of sensors and the like. J.J.Wu et al (J.J.Wu, S.G.Li, M.Shi, X.X.Feng, photonic crystal fiber temporal sensor with high sensitivity based)
on surface plasma response, optical Fiber Technology, 2018, 43-94) proposes a PCF temperature sensor based on SPR using metallic gold as SPR excitation material, four small air holes and one large air hole below the solid Fiber core for generating birefringence, measuring temperature range is 10-85 ℃ (refractive index range is 1.336-1.3696); n. Chen et al (N. Chen, M. Chang, X.L. Lu, J. Zhou and X.D. Zhang, polymeric Analysis of Midinared D-Shaped Photonic-crystalline-Fiber Sensor)
based on Surface-plasma-response Effect for Environmental Monitoring, applied Sciences, 2020, 10 (11): 3897) proposes a D-type PCF refractive index sensor based on SPR Effect, working in near infrared band (2.9-3.6 μm), for Environmental Monitoring, where the analyte is in direct contact with the gold layer and surrounds the whole D-type PCF, rather than only the polished Surface, the cladding material is silicon, and the three layers of air holes in the cladding are arranged according to hexagonal lattice; m.n. Sakib et Al (m.n. Sakib, m.b. Hossain, k.f. Al-tabatabaie, i.m. Mehedi, m.t. Hasan, m.a. Hossain, i.s. Amiri, high Performance Dual Core D-Shape PCF-SPR Sensor Modeling amplifying Gold Coat, results in physics, 2019, 15; s, singh et al (S. Singh, Y.K. Prajapati, high sensitive on D-shaped PCF with gold-
graphene layers on the polshed surface, applied Physics a, 2019, 125) proposes a D-type PCF refractive index sensor with a polished surface coated with gold and a graphene layer, two large air holes are placed in the x direction of a solid fiber core, and the limiting loss spectrum when polarized light in the x direction is coupled is studied; A.A. Rifat et al (A.A. Rifat, G.A. Mahiraji, D.M. Chow, Y.G. Shee, R.Ahmed and F.R.M. Adikan, photonic Crystal Fiber-Based Surface plasma reaction Sensor with Selective analytical Channels and Graphene-Silver deposed Core, sensors, 2015, 15 (5): 11499-11510) propose a D-type Photonic Crystal Fiber refractive index Sensor using Silver as SPR excitation material, which not only has a narrow detection range, but also fails to satisfy the requirement of high sensitivity. 2011. Wang Y et al, by femtosecond laser assisted selective infiltration, selectively fills a hole in a photonic crystal fiber with a liquid having a refractive index of 1.46 to form a liquid rod waveguide having a length of 2.4cm adjacent to the core, where the base film of the core can be effectively coupled to the base film of the liquid rod waveguide. The optical fiber is welded with a common single mode optical fiber, so that an interference peak can be formed in an interference spectrum, and the temperature sensitivity test can be carried out through a test result, so that the requirement of high sensitivity can not be met.
Disclosure of Invention
Although the above researchers have made relevant research and improvement on the above polished photonic crystal fiber, the detection range is narrow and the requirement of high sensitivity cannot be satisfied. The sensing sensitivity, the detection range and the practicability of the device have great limitations. In order to overcome the defects of the prior art, the invention provides a D-type photonic crystal fiber temperature sensing device and method based on SPR, which have the advantages of compact structure, higher sensitivity and wider detection range and are in line with practical production.
The technical scheme adopted by the invention for solving the technical problem is as follows:
the technical scheme is as follows: a D-type photonic crystal fiber temperature sensing device and method based on SPR are characterized by comprising a broadband light source (1), a polarizer (2), a temperature changing box (3), a D-type photonic crystal fiber (4), a single mode fiber (5), a spectrum analyzer (6) and a computer (7); the optical fiber temperature sensor is positioned in the temperature changing box, and the temperature in the temperature changing box is controlled by an input value;
the polished surface of the side surface of the D-type photonic crystal fiber (4) is coated with Ag and Ta 2 O 5 A film (8), a temperature-sensitive material (9) is coated on the film again, and the film is welded with the D-type photonic crystal fiber (4) through a single-mode fiber (5), coated with Ag and Ta 2 O 5 The thin-film D-type photonic crystal fiber (4) together forms a probe of the SPR-based D-type photonic crystal fiber temperature sensing device;
the D-type photonic crystal fiber (4) includes: ag and Ta 2 O 5 The film (8), the temperature sensitive material (9), the cladding (10), 25 are located in the air hole in the cladding; the method is characterized in that the air holes (11) and (12) rotate by 20 degrees, 40 degrees, 60 degrees and 79 degrees respectively by taking an original point as a center, and then mirror images are formed to form a first layer of air holes and a second layer of air holes; the air holes (13) rotate 20 degrees and 40 degrees respectively by taking the original point as the center, and then mirror images are formed to form third-layer air holes; the elliptical air hole (14) is positioned at the y-axis (hollow) fiber core;
the polished surface of the side surface of the D-type photonic crystal fiber (4) is coated with Ag and Ta 2 O 5 The preparation method of the film (8) and the PDMS film (9) comprises the following steps: and forming a silver coating on the polished surface of the side surface of the D-type photonic crystal fiber (4) by using a magnetron sputtering coating method. Fixing the drawn D-type photonic crystal fiber (4) on a fixture, placing the D-type photonic crystal fiber in a cavity of a magnetron sputtering coating machine, adjusting the position to ensure that the polishing surface is opposite to the reaction direction, vacuumizing the cavity, filling Ar gas, starting the magnetron sputtering coating machine to prepare a silver coating, and sputtering by adopting a direct current target positionAnd (3) coating, wherein the starting power is set to be 40W, the sputtering power is set to be 70W, the working air pressure is 0.8Pa, and the working time is 15min, so that the D-type photonic crystal fiber (4) with the polished side surface coated with the silver film is obtained. Then changing parameter setting, putting the D-type photonic crystal fiber (4) with the polished side surface coated with the silver film into a cavity of a magnetron sputtering coating machine, vacuumizing the cavity, filling Ar gas with the purity of 99.95 percent as working gas and O with the purity of 99.95 percent 2 As a reaction gas, the volume ratio of the working gas to the reaction gas is 5: 1; setting the starting power at 40W, the sputtering power at 30-40W, the working pressure at 1.8Pa, the working time at 15-25 min, sputtering Ta target material which is high-purity tantalum with the purity of 99.95 percent, the working time at 15-25 min, and obtaining Ta on the silver coating 2 O 5 A film. Adding a curing agent into the PDMS solution, wherein the mass ratio of the solution to the curing agent is 10.
Further, the cladding air hole pitch Lambda of the D-type photonic crystal fiber (4) is 10-12 mu m, the cladding diameter D is 100 mu m, and the diameters D of the air holes (11), the air holes (12) and the air holes (13) are 1 、d 2 And d 3 Respectively 8.55-9.45 μm, 6.65-7.35 μm, 4.75-5.25 μm; the minor axis a and major axis b of the elliptical air holes (14) are 3 μm and 7 μm, respectively.
Further, the cladding material of the D-type photonic crystal fiber (4) is fused silica, and the refractive index of the fused silica is defined by a Sellmeier formula.
Further, the temperature-sensitive material (9) is Polydimethylsiloxane (PDMS), the refractive index of the PDMS material changes along with the temperature, and the refractive index is measured by an Abbe refractometer.
A D-type photonic crystal fiber temperature sensing device and method based on SPR are characterized in that: preparing photonic crystal fiber by adopting stacking-drawing technology, and then preparing the photonic crystal fiber in a V shapePolishing and grinding the fiber in the groove to obtain D-type photonic crystal fiber, and coating Ag and Ta by magnetron sputtering coating 2 O 5 A thin film, D-type photonic crystal fiber;
the stacking-wire drawing technology comprises the following steps: firstly, pretreating a quartz sleeve, drawing a capillary tube according to parameters in an ultra-clean environment at the drawing temperature of 1900-2000 ℃, then carrying out tapering and hole sealing on two ends of the capillary tube by using oxyhydrogen flame, stacking the capillary tube in the quartz sleeve according to design requirements to form a required structure, filling a gap by using a pure quartz rod, sintering the quartz sleeve and the capillary tube together by using oxyacetylene flame, and preparing the photonic crystal fiber on a wire drawing tower by using a twice wire drawing technology;
the D-type photonic crystal fiber temperature sensing device and method based on SPR have the following transmission paths: the broadband light source (1) is changed into y polarized light through the polarizer (2), the y polarized light is transmitted to the D type photonic crystal fiber (4) in the temperature changing box (3), the D type photonic crystal fiber (4) outputs the y polarized light to the single mode fiber (5) and inputs the y polarized light to the spectrum analyzer (6), and the output end of the spectrum analyzer (6) is connected with the computer (7);
the Ag and Ta 2 O 5 The wave vector of the plasma wave excited on the surface of the film and the wave vector of the incident light field reach phase matching in a specific wavelength range, coupling occurs, and a resonance loss peak appears; surface Plasmon Resonance (SPR) is very sensitive to a medium environment, the change of temperature can cause the change of the refractive index RI of PDMS, the change of the refractive index RI can cause the change of resonance conditions, the obvious change of a resonance loss peak is caused, and high-sensitivity and real-time detection can be realized.
The invention has the structure that: a D-type photonic crystal fiber temperature sensing device and method based on SPR.
Compared with the prior art, the invention has the beneficial effects that:
1. the elliptical air hole (14) on the cladding of the D-type photonic crystal fiber is positioned at the y-axis (hollow) fiber core, so that the birefringence characteristic and the dispersion characteristic are greatly improved, the polarization state can be maintained, and the D-type photonic crystal fiber can be widely applied to the fields of polarization control, precise fiber sensing and the like.
2. The invention discloses a D-type photonic crystal fiber temperature sensor based on SPR, which adopts Ag and Ta 2 O 5 The film is used as an SPR excitation material, and the temperature measurement is realized through the characteristic that the refractive index of the PDMS material changes along with the temperature.
Drawings
FIG. 1 is a diagram of a D-type photonic crystal fiber temperature sensing device based on SPR provided by the invention.
FIG. 2 is a two-dimensional cross-sectional view of a D-type photonic crystal fiber based on SPR provided by the present invention.
Detailed Description
The following describes an embodiment of a D-type photonic crystal fiber temperature sensing device and method based on SPR according to the present invention with reference to the accompanying drawings.
As shown in fig. 1, a diagram of a D-type photonic crystal fiber temperature sensing device based on SPR provided by the present invention is composed of a broadband light source (1), a polarizer (2), a temperature changing box (3), a D-type photonic crystal fiber (4), a single mode fiber (5), a spectrum analyzer (6) and a computer (7); the optical fiber temperature sensor is positioned in the temperature changing box, and the temperature in the temperature changing box is controlled by an input value; the polished surface of the side surface of the D-type photonic crystal fiber (4) is coated with Ag and Ta 2 O 5 A film (8), a temperature-sensitive material (9) is coated on the film again, and the film is welded with the D-type photonic crystal fiber (4) through a single-mode fiber (5), coated with Ag and Ta 2 O 5 The thin-film D-type photonic crystal fiber (4) together forms a probe of the SPR-based D-type photonic crystal fiber temperature sensing device; the broadband light source (1) is changed into y polarized light through the polarizer (2), the y polarized light is transmitted to the D-type photonic crystal fiber (4) in the temperature changing box (3), the D-type photonic crystal fiber (4) outputs the y polarized light to the single-mode fiber (5) and inputs the y polarized light to the spectrum analyzer (6), and the output end of the spectrum analyzer (6) is connected with the computer (7).
As shown in fig. 2, a two-dimensional cross-sectional view of a D-type photonic crystal fiber based on SPR provided by the present invention includes: ag and Ta 2 O 5 The film (8), the temperature sensitive material (9), the cladding (10) and the 25 are positioned in air holes in the cladding; the method is characterized in that the air holes (11) and (12) rotate by 20 degrees, 40 degrees, 60 degrees and 79 degrees respectively by taking an original point as a center, and then mirror images are formed to form a first layer of air holes and a second layer of air holes; the air holes (13) rotate 20 degrees and 40 degrees respectively by taking the original point as the center, and then mirror images are formed to form third-layer air holes; the elliptical air hole (14) is positioned at the y-axis (hollow) fiber core; the cladding air hole pitch Λ is 10-12 μm, the cladding diameter D is 100 μm, and the diameters D of the air holes (11), (12) and (13) 1 、d 2 And d 3 Respectively 8.55-9.45 μm, 6.65-7.35 μm, 4.75-5.25 μm; the minor axis a and the major axis b of the elliptical air hole (14) are respectively 3 μm and 7 μm; the cladding material is fused silica, the refractive index of which is defined by the Sellmeier equation.
Detecting the sensitivity of the D-type photonic crystal fiber temperature sensing device to the RI of the refractive index of PDMS based on SPR; the refractive indexes RI of PDMS materials with different temperatures are analyzed and are sequentially used for measurement by the SPR-based D-type photonic crystal fiber temperature sensing device provided by the invention; the resonance condition can be changed due to the change of the RI of the refractive index of the PDMS material, so that the resonance loss peak is obviously changed, and the high-sensitivity real-time detection on the temperature can be realized.

Claims (5)

1. A D-type photonic crystal fiber temperature sensing device based on SPR is characterized by comprising a broadband light source (1), a polarizer (2), a temperature changing box (3), a D-type photonic crystal fiber (4), a single mode fiber (5), a spectrum analyzer (6) and a computer (7); the optical fiber temperature sensor is positioned in the temperature changing box, and the temperature in the temperature changing box is controlled by an input value;
the polished surface of the side surface of the D-type photonic crystal fiber (4) is coated with Ag and Ta 2 O 5 A film (8), a temperature-sensitive material (9) is coated on the film again, and the film is welded with the single-mode fiber (5) of the D-type photonic crystal fiber (4), coated with Ag and Ta 2 O 5 The thin-film D-type photonic crystal fiber (4) together forms a probe of the SPR-based D-type photonic crystal fiber temperature sensing device;
the D-type photonic crystal fiber (4) includes: ag andTa 2 O 5 the film (8), the temperature sensitive material (9), the cladding (10), 25 are located in the air hole in the cladding; the first air hole (11) and the second air hole (12) rotate by 20 degrees, 40 degrees, 60 degrees and 79 degrees respectively by taking the original point as the center, and then mirror images are formed to form a first layer of air hole and a second layer of air hole; the third air hole (13) rotates by 20 degrees and 40 degrees respectively by taking the original point as the center, and then forms a third layer of air hole in a mirror image mode; the elliptical air hole (14) is positioned at the Y-axis fiber core;
the polished surface of the side surface of the D-type photonic crystal fiber (4) is coated with Ag and Ta 2 O 5 The preparation method of the film (8) and the PDMS film (9) comprises the following steps: forming a silver coating on the polished surface of the side surface of the D-type photonic crystal fiber (4) by using a magnetron sputtering coating method, fixing the drawn D-type photonic crystal fiber (4) on a clamp, placing the D-type photonic crystal fiber in a cavity of a magnetron sputtering coating machine, adjusting the position to ensure that the polished surface is opposite to the reaction direction, filling Ar gas after vacuumizing the cavity, starting the magnetron sputtering coating machine to prepare the silver coating, sputtering the D-type photonic crystal fiber (4) with the silver film coated on the polished surface of the side surface by adopting a direct current target position, setting the starting power to be 40W, the sputtering power to be 70W, the working pressure to be 0.8Pa and the working time to be 15min, changing the parameter setting, placing the D-type photonic crystal fiber (4) with the silver film coated on the polished surface of the side surface into the cavity of the magnetron sputtering coating machine, filling Ar gas with the purity of 99.95 percent as the working gas and the O gas with the purity of 99.95 percent after vacuumizing the cavity, filling Ar gas with the purity of 99.95 percent 2 As a reaction gas, the volume ratio of the working gas to the reaction gas is 5: 1; setting the starting power at 40W, the sputtering power at 30-40W, the working pressure at 1.8Pa, the working time at 15-25 min, sputtering Ta target material which is high-purity tantalum with the purity of 99.95 percent, and the working time at 15-25 min, and obtaining Ta on the silver coating 2 O 5 The method comprises the steps of adding a curing agent into a PDMS solution, wherein the mass ratio of the solution to the curing agent is 10Keeping at-80 deg.C for 20min.
2. The SPR based D-type photonic crystal fiber temperature sensing device of claim 1, wherein: the space Lambda of cladding air holes of the D-type photonic crystal fiber (4) is 10-12 mu m, the diameter D of the cladding is 100 mu m, and the diameters D of the first air hole (11), the second air hole (12) and the third air hole (13) are 1 、d 2 And d 3 8.55-9.45 μm, 6.65-7.35 μm and 4.75-5.25 μm respectively; the minor axis a and major axis b of the elliptical air holes (14) are 3 μm and 7 μm, respectively.
3. The SPR based D-type photonic crystal fiber temperature sensing device of claim 1, wherein: the cladding material of the D-type photonic crystal fiber (4) is fused silica, and the refractive index of the D-type photonic crystal fiber is defined by a Sellmeier formula.
4. The SPR based D-type photonic crystal fiber temperature sensing device of claim 1, wherein: the temperature-sensitive material (9) is Polydimethylsiloxane (PDMS), the refractive index of the PDMS material changes along with the temperature, and the refractive index is measured by an Abbe refractometer.
5. The method for sensing a D-type photonic crystal fiber temperature sensing device based on SPR according to any one of claims 1 to 4, wherein: preparing photonic crystal fiber by adopting a stacking-drawing technology, polishing and grinding the photonic crystal fiber in a V-shaped groove to form D-shaped photonic crystal fiber, and obtaining the Ag and Ta coating by utilizing a magnetron sputtering coating method 2 O 5 A thin film, D-type photonic crystal fiber;
the stacking-wire drawing technology comprises the following steps: firstly, pretreating a quartz sleeve, drawing a capillary tube according to parameters in an ultra-clean environment at the drawing temperature of 1900-2000 ℃, then carrying out tapering and hole sealing on two ends of the capillary tube by using oxyhydrogen flame, stacking the capillary tube in the quartz sleeve according to design requirements to form a required structure, filling a gap by using a pure quartz rod, sintering the quartz sleeve and the capillary tube together by using oxyacetylene flame, and preparing the photonic crystal fiber on a wire drawing tower by using a twice wire drawing technology;
the transmission path of the D-type photonic crystal fiber temperature sensing device based on SPR is as follows: the broadband light source (1) is changed into y polarized light through the polarizer (2), the y polarized light is transmitted to the D type photonic crystal fiber (4) in the temperature changing box (3), the D type photonic crystal fiber (4) outputs the y polarized light to the single mode fiber (5) and inputs the y polarized light to the spectrum analyzer (6), and the output end of the spectrum analyzer (6) is connected with the computer (7);
the Ag and Ta 2 O 5 The plasma wave vector excited on the surface of the film and the wave vector of the incident light field reach phase matching in a specific wavelength range, coupling occurs, and a resonance loss peak appears; surface Plasmon Resonance (SPR) is very sensitive to a medium environment, the change of temperature can cause the change of the refractive index RI of PDMS, the change of the refractive index RI can cause the change of resonance conditions, the obvious change of a resonance loss peak is caused, and high-sensitivity and real-time detection can be realized.
CN202011302617.0A 2020-11-19 2020-11-19 SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method Active CN112432715B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011302617.0A CN112432715B (en) 2020-11-19 2020-11-19 SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011302617.0A CN112432715B (en) 2020-11-19 2020-11-19 SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method

Publications (2)

Publication Number Publication Date
CN112432715A CN112432715A (en) 2021-03-02
CN112432715B true CN112432715B (en) 2022-11-25

Family

ID=74694375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011302617.0A Active CN112432715B (en) 2020-11-19 2020-11-19 SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method

Country Status (1)

Country Link
CN (1) CN112432715B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049138B (en) * 2021-03-19 2021-12-14 东北大学 Double-layer connection type liquid core anti-resonance optical fiber and temperature measuring device and method thereof
CN113466760A (en) * 2021-05-14 2021-10-01 东北大学秦皇岛分校 Temperature self-reference photonic crystal fiber surface plasma resonance magnetic field sensor
CN113405991A (en) * 2021-06-17 2021-09-17 燕山大学 Two-channel synchronous detection photonic crystal fiber sensor
CN113483793A (en) * 2021-07-03 2021-10-08 桂林电子科技大学 Dual-parameter SPR sensor based on dual-polarization D-type photonic crystal fiber
CN113959582B (en) * 2021-10-27 2023-05-16 南京信息工程大学 Temperature sensing measurement method of mirror image type one-dimensional photonic crystal model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521582A (en) * 2020-05-31 2020-08-11 桂林电子科技大学 Near-infrared band double-D type photonic crystal fiber SPR sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371981A (en) * 2015-11-23 2016-03-02 大连理工大学 Inner wall-silver plated and liquid crystal-filled hollow optical fiber surface plasmon resonance temperature sensor
US10725373B1 (en) * 2016-10-21 2020-07-28 Iowa State University Research Foundation, Inc. Nano-patterning methods including: (1) patterning of nanophotonic structures at optical fiber tip for refractive index sensing and (2) plasmonic crystal incorporating graphene oxide gas sensor for detection of volatile organic compounds
CN109029778B (en) * 2018-10-15 2023-05-23 辽宁省计量科学研究院 Temperature measuring device and method based on surface plasma resonance
CN110108384A (en) * 2019-05-16 2019-08-09 东北大学 Based on hollow-core fiber surface plasma resonance in fine formula temperature sensor and detection method
CN110441257A (en) * 2019-07-01 2019-11-12 南京邮电大学 Biological dual sampling device based on photonic crystal fiber
CN110823841A (en) * 2019-11-27 2020-02-21 桂林电子科技大学 D-type photonic crystal fiber multi-parameter SPR sensor based on magneto-optical effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521582A (en) * 2020-05-31 2020-08-11 桂林电子科技大学 Near-infrared band double-D type photonic crystal fiber SPR sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器;施伟华等;《物理学报》(第22期);全文 *
高灵敏光子晶体光纤温度传感器的特性分析;曾维友等;《光通信研究》(第05期);全文 *

Also Published As

Publication number Publication date
CN112432715A (en) 2021-03-02

Similar Documents

Publication Publication Date Title
CN112432715B (en) SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method
Zhu et al. High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel
Zhu et al. High-sensitivity Fano resonance temperature sensor in MIM waveguides coupled with a polydimethylsiloxane-sealed semi-square ring resonator
Chen et al. Review of femtosecond laser machining technologies for optical fiber microstructures fabrication
Wang et al. Surface plasmon polariton high-sensitivity refractive index sensor based on MMF-MOF-MMF structure
Yang et al. High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling
Wang et al. Ultra-wide bandwidth polarization filter based on gold-coated photonic crystal fiber around the wavelength of 1.55 µm
Wang et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film
Liu et al. High sensitive methane sensor with temperature compensation based on selectively liquid-infiltrated photonic crystal fibers
CN112432924B (en) Square hole photonic crystal fiber refractive index sensing device based on SPR
CN112432925B (en) SPR-based D-type photonic crystal fiber refractive index sensor device and method
CN114062309A (en) Near-infrared waveband based double-peak PCF concentration and magnetic field double-parameter sensing system
Fan et al. Two kinds of liquid crystal filled pcfs temperature and ri sensors based on spr
Wang et al. High-sensitivity refractive index sensing and broadband tunable polarization filtering characteristics of D-shaped micro-structured fiber with single-layer air-holes and gold film based on SPR
Liu et al. Micro-open-cavity interferometer for highly sensitive axial-strain measurement via bias-taper and Vernier effect
Zhao et al. Wavelength Modulated Anti-Resonant Fiber-Optic Microfluidic Device Based on SMF-HCTF-SMF Structure
Zhang et al. High sensitivity surface plasmon resonance magnetic field sensor based on Au/gold nanoparticles/magnetic fluid in the hollow core fiber
NL2029744B1 (en) Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores
Fu et al. A highly sensitive six-conjoined-tube anti-resonance optical fiber temperature sensor based on surface plasmon resonance
Haque et al. Surface plasmonic resonance sensor for wider range of low refractive index detection
CN112433179B (en) Gas-sensitive optical fiber sensor and method for judging fault degree of transformer
CN112433183A (en) SPR-based D-type photonic crystal fiber magnetic field sensitive sensing device and method
CN107449471A (en) A kind of magnetic field and temperature simultaneously measuring device based on highly doped germanium fibre-optical probe
Yang et al. Liquid crystal-embedded fiber optic fabry perot temperature sensor based on Vernier effect
Liu et al. Simultaneous and Ultrasensitive Measurement of Refractive Index and Temperature Based on SPR of Hollow-Core Anti-resonant Fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231108

Address after: Room 251, I-shaped Building, No. 23 Sanda Power Road, Xiangfang District, Harbin City, Heilongjiang Province, 150040

Patentee after: Harbin yicui Electric Control Technology Co.,Ltd.

Address before: No.52 Xuefu Road, Nangang District, Harbin City, Heilongjiang Province

Patentee before: HARBIN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right