CN112430837A - 一种三层核壳结构纳米颗粒及其一步法制备与应用 - Google Patents

一种三层核壳结构纳米颗粒及其一步法制备与应用 Download PDF

Info

Publication number
CN112430837A
CN112430837A CN202011103078.8A CN202011103078A CN112430837A CN 112430837 A CN112430837 A CN 112430837A CN 202011103078 A CN202011103078 A CN 202011103078A CN 112430837 A CN112430837 A CN 112430837A
Authority
CN
China
Prior art keywords
shell structure
core
layer
anode
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011103078.8A
Other languages
English (en)
Other versions
CN112430837B (zh
Inventor
张欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202011103078.8A priority Critical patent/CN112430837B/zh
Publication of CN112430837A publication Critical patent/CN112430837A/zh
Application granted granted Critical
Publication of CN112430837B publication Critical patent/CN112430837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dermatology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种三层核壳结构纳米颗粒及其一步法制备与应用,属于材料表面处理和医用生物材料工程领域。方法为以钙源、磷源、纳米氧化锌和铜源作为微弧氧化电解液,以钛或钛合金作为阳极,以惰性电极作为阴极进行微弧氧化,在阳极表面原位生成一层均匀多孔陶瓷膜,表面附着白色纳米颗粒物,即得到三层核壳结构纳米颗粒。本发明采取一步微弧氧化的方法制备三层核壳结构纳米颗粒,以Ti、O为主要组成的无毒外壳可以大大降低该材料的毒性,加强了整个核壳材料的生物稳定性,同时该核壳结构含有的Ca、P、Zn具有促成骨功能,含有的Cu、Zn具有抗菌功能,因此该三层核壳结构纳米颗粒具有良好的抗菌性能与成骨性能,同时材料稳定不易失效。

Description

一种三层核壳结构纳米颗粒及其一步法制备与应用
技术领域
本发明属于材料表面处理和医用生物材料工程领域,更具体地,涉及一种三层核壳结构纳米颗粒及其一步法制备与应用。
背景技术
纳米颗粒在生物医学领域发挥着独特的作用,纳米颗粒可应用在生物医学诊断、药物的装载以及靶向药物方面,因纳米颗粒具有小尺寸和高的比表面积,因此具备更高的表面能,独特的光学性能以及出色的磁性,高表面积允许对其进行表面修饰,以改善其药代动力学特性,延长血管循环寿命,并改善生物利用度。
核壳结构是一类由两个或多个不同材料层组成的纳米颗粒,这些不同的材料层其中一个形成内芯,其余形成外层或壳。这种复合材料表现出核和壳的单个材料无法实现的特性和性能。若所需纳米颗粒有毒,核壳结构可用良性材料充当无毒壳层,使核心的纳米颗粒的毒性大大降低;当核心材料是疏水材料的时候,以核心/壳纳米颗粒的形式将亲水性材料涂覆在核心表面上可以克服分散性以及生物和细胞相容性的问题;若核心材料在暴露的环境中易分解或变性,使用惰性材料充当壳可增强核心材料的稳定性。总之,核壳型纳米颗粒相较于简单的纳米颗粒来说,具备更小的细胞毒性、生物相容性以及更优异的化学稳定性,核壳型纳米颗粒比单个纳米粒子在生物医学方面的应用更有前景。
目前,常用的制备核壳结构的方法有水热合成法、溶胶凝胶法、预涂晶种法、干凝胶转化法、微波合成法。其中,水热合成法虽然操作简单易上手,是常见的制备纳米材料的方法,但制成的核壳结构壳层生长不均匀,壳层厚度大,容易产生缺陷;溶胶凝胶法也是常用的方法,但部分原料昂贵,且壳层容易在反应过程中产生裂缝;预涂晶种法有利于选择性合成,但很难得到纯的目标产物;干凝胶转化法消除了壳层上的缺陷,但在大孔载体上容易发生渗透;微波合成法反应速度快,成本较低,但产出率低,难以实现大规模量产。
发明内容
本发明解决了现有技术中核壳结构壳层生长不均匀,壳层厚度大,容易产生缺陷;壳层容易在反应过程中产生裂缝;以及产出率低,难以实现大规模量产的技术问题,提供了一种三层核壳结构纳米颗粒及其一步法制备与应用。本发明通过微弧氧化的方法,利用弧光放电增强阳极表面的氧化反应,使阳极表面发生微孔放电效应,在阳极表面原位生成多孔的二氧化钛陶瓷膜;所述纳米氧化锌在溶液中发生前置反应,吸附溶液中的钙源、磷源和铜源,形成含有Zn、O、Ca、P和Cu元素的内核;在电场作用下,Ca2+向阴极区移动,[Cu-EDTA]2-和含磷元素的阴离子向阳极区移动,在吸脱附的作用下,纳米氧化锌颗粒会吸附于阳极表面,并在阳极氧化的作用下,纳米氧化锌颗粒外层形成TiO2,即形成含有Ti、O、P和Cu元素的外壳,以及含有P和Cu元素的中层,即得到三层壳结构纳米颗粒。该三层核壳结构纳米颗粒具有良好的抗菌性能与成骨性能,同时材料稳定不易失效。
根据本发明的第一方面,提供了一种一步法制备三层核壳结构纳米颗粒的方法,所述方法为以钙源、磷源、纳米氧化锌和铜源作为微弧氧化电解液,以钛或钛合金作为阳极,以惰性电极作为阴极进行微弧氧化;所述铜源为乙二胺四乙酸铜钠或乙二胺四乙酸铜二铵;
利用弧光放电增强阳极表面的氧化反应,使阳极表面发生微孔放电效应,从而在阳极表面原位生成多孔陶瓷膜;所述纳米氧化锌在溶液中发生前置反应,吸附溶液中的钙源、磷源和铜源,形成含有Zn、O、Ca、P和Cu元素的内核;在电场作用下,Ca2+向阴极区移动,[Cu-EDTA]2-和含磷元素的阴离子向阳极区移动,在吸脱附的作用下,纳米氧化锌颗粒会吸附于阳极表面,并在阳极氧化的作用下,纳米氧化锌颗粒外层形成TiO2,即形成含有Ti、O、P和Cu元素的外壳,以及含有P和Cu元素的中层,得到三层壳结构纳米颗粒。
优选地,包括以下步骤:
(1)配制微弧氧化溶液,所述微弧氧化电解液含有钙源、磷源、纳米氧化锌和铜源;所述铜源为乙二胺四乙酸铜钠或乙二胺四乙酸铜二铵;
(2)以步骤(1)配制的微弧氧化溶液作为电解液,以钛或钛合金作为阳极,以惰性电极作为阴极进行微弧氧化;在阳极表面原位生成一层多孔陶瓷膜,该陶瓷膜层表面附着白色纳米颗粒物;
(3)取出包覆陶瓷膜层的阳极,将该陶瓷膜层表面的白色纳米颗粒物刮下,即得到三层核壳结构纳米颗粒。
优选地,所述微弧氧化的参数为工作电压为300-700V,工作频率为100-600Hz,电流密度为0.05-0.50A/cm2,占空比为0~50%,处理时间为5~30min,反应温度为0~40℃。
优选地,所述钛合金为TA1、TA2、TA3、Ti-6Al-4V、Ti-Ni、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni或Ti-Pd。
优选地,所述钙源为氯化钙或醋酸钙,所述微弧氧化电解液中钙源的浓度为10-20g/L;
所述磷源为磷酸二氢钠或磷酸二氢钾,所述微弧氧化电解液中磷源的浓度为5-10g/L;
所述微弧氧化电解液中铜源的浓度为2-30g/L。
优选地,所述微弧氧化电解液中纳米氧化锌的浓度为2-50g/L。
优选地,所述惰性电极为铂片、石墨或不锈钢;所述阳极和阴极的距离为1-13cm。
按照本发明的另一方面,提供了任一所述方法制备得到的三层核壳结构纳米颗粒。
优选地,所述核壳结构纳米颗粒外壳的主要组成元素为Ti、O、P和Cu,中层主要组成元素为P和Cu,内核的主要组成元素为Zn、O、Ca、P和Cu。
按照本发明的另一方面,提供了所述的三层核壳结构纳米颗粒作为成骨材料的应用。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
(1)本发明利用弧光放电增强阳极表面的氧化反应,在高压放电作用下,使钛或钛合金表面发生微孔放电效应,协同离子化学反应在材料表面生成多孔的硬质陶瓷膜。在溶液的搅拌混合作用下,氧化锌纳米颗粒会在溶液中发生前置反应,吸附溶液中的含Ca、P、Cu等元素的各物质,因此ZnO内核富Zn、O、Ca、P、Cu;随着电压的升高,在电场作用下,Ca2+向阴极移动,而[Cu-EDTA]2-和含有磷元素的阴离子均向阳极区移动,在吸脱附的作用下,部分纳米颗粒会吸附于阳极表面,并在阳极氧化的作用下,在纳米颗粒外层形成TiO2,最终形成了外壳的主要组成元素为Ti、O、P和Cu,中层主要组成元素为P和Cu,内核的主要组成元素为Zn、O、Ca、P和Cu的三层壳结构纳米颗粒。
(2)本发明提出了一种仅需一步微弧氧化过程即可制备出三层核壳型纳米材料的新方法,比起常规的核壳结构的制备方法来说,制备工艺更加简单可控,原料易得,成本低廉,同时制得的核壳结构较完整,无明显缺陷,适合工业大规模生产。
(3)本发明采取一种一步法微弧氧化的方法制备三层核壳结构纳米颗粒,外壳富Ti、O、P、Cu,中层是富P、Cu、内核是富Zn、O、Ca、P、Cu。Zn、Cu等金属组分都具有一定的抗菌作用,但是作用于生物体内具有一定的毒性,需要严格控制其浓度,以Ti、O为主要组成的无毒外壳可以大大降低该材料的毒性。同时该核壳结构含有的Ca、P、Zn具有促成骨功能,含有的Cu、Zn具有抗菌功能,Ti、O为主要组成的外壳则加强了整个核壳材料的生物稳定性。因此该三层核壳结构纳米颗粒具有良好的抗菌性能与成骨性能,同时材料稳定不易失效,此外本发明提出的制备方法操作简单方便,也为制备具有生物功能的核壳结构纳米材料的新方法提供了可能。
(4)本发明获得的新型三层核壳结构纳米颗粒,具有良好的生物相容性和抗菌性能,同时材料稳定不易失效。
附图说明
图1、图2、图3和图4为本发明实施实例1制备的钛表面陶瓷膜不同视角的扫描电子显微镜(SEM)图;
图5是本发明实施例1制备得到的钛表面陶瓷膜的截面的高分辨透射电子显微镜(HRTEM)图;
图6是本发明实施例1制备得到的纳米颗粒的高分辨透射电子显微镜(HRTEM)图;
图7是本发明实施例1制备得到的纳米颗粒在另一倍率下的高分辨透射电子显微镜(HRTEM)图;
图8是本发明实施例1制备得到的纳米颗粒的高角度环形暗场(HAADF)图及对应区域的能谱(EDX)图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
(1)将纯钛进行去油去污处理,然后用360#、600#、1000#、1500#、2000#SiC砂纸逐级进行打磨,用乙醇清洗后干燥;试样用透明胶带包裹露出反应面积尺寸为10mm×10mm。
(2)配置微弧氧化溶液,质量浓度如下:17.6g/L一水合乙酸钙,7.2g/L无水磷酸二氢钠、10g/L纳米氧化锌、5g/L乙二胺四乙酸铜钠;通过磁力搅拌器充分搅拌,使电解液分散均匀。
(3)以预处理后的纯钛为阳极,不锈钢为阴极,将阳极、阴极接脉冲电源,并置于上述电解液中,阴极、阳极板距离为6cm,设定微弧氧化电源参数:电流密度为0.1A/cm2,频率为100Hz,总占空比为10%,温度为4~10℃,时间为600s。
(4)反应完毕后,取出带有陶瓷膜层的试样用去离子水冲洗,自然晾干;用干净的手术刀将陶瓷膜表面的白色颗粒刮下,即得到三层核壳结构纳米颗粒。
实施例2
(1)将Ti-6Al-4V进行去油去污处理,然后用360#、600#、1000#、1500#、2000#SiC砂纸逐级进行打磨,用乙醇清洗后干燥;试样用透明胶带包裹露出反应面积尺寸为10mm×10mm。
(2)配置微弧氧化溶液,质量浓度如下:17.6g/L一水合乙酸钙,8.2g/L磷酸二氢钾、5g/L纳米氧化锌、10g/L乙二胺四乙酸铜钠;通过磁力搅拌器充分搅拌,使电解液分散均匀。
(3)以预处理后的纯钛为阳极,不锈钢为阴极,将阳极、阴极接脉冲电源,并置于上述电解液中,阴极、阳极板距离为6cm,设定微弧氧化电源参数:电流密度为0.09A/cm2,频率为200Hz,总占空比为20%,温度为20℃,时间为700s。
(4)反应完毕后,取出带有陶瓷膜层的试样用去离子水冲洗,自然晾干;用干净的手术刀将陶瓷膜表面的白色颗粒刮下,即得到三层核壳结构纳米颗粒。
实施例3
(1)将纯钛进行去油去污处理,然后用360#、600#、1000#、1500#、2000#SiC砂纸逐级进行打磨,用丙酮清洗后干燥;试样用透明胶带包裹露出反应面积尺寸为10mm×10mm。
(2)配置微弧氧化溶液,质量浓度如下:17.6g/L一水合乙酸钙,7.2g/L无水磷酸二氢钠、15g/L纳米氧化锌、10g/L乙二胺四乙酸铜钠;通过磁力搅拌器充分搅拌,使电解液分散均匀。
(3)以预处理后的纯钛为阳极,不锈钢为阴极,将阳极、阴极接脉冲电源,并置于上述电解液中,阴极、阳极板距离为6cm,设定微弧氧化电源参数:电流密度为0.11A/cm2,频率为600Hz,总占空比为20%,温度为30℃,时间为800s。
(4)反应完毕后,取出带有陶瓷膜层的试样用去离子水冲洗,自然晾干;用干净的手术刀将陶瓷膜表面的白色颗粒刮下,即得到三层核壳结构纳米颗粒。
图1、图2、图3和图4为实施例1合成的陶瓷膜层在不同倍率以及不同部位处的表面形貌图,陶瓷膜内层分布了众多大小不一的圆形或椭圆形孔洞,孔洞外周围堆积着火山状凸起,部分孔洞交叉连通或嵌套,表层堆积覆盖着一层纳米颗粒,黑色箭头所指部分即为纳米颗粒簇,这些纳米颗粒以大小不一的簇状结构覆盖在膜层表面,并覆盖了一部分孔洞。
图5为实施例1合成的陶瓷膜层的截面形貌,白色箭头代表微弧氧化多孔膜,黑色箭头指的是膜层表面的纳米颗粒团簇。图6和图7为实施例1合成纳米颗粒的高分辨透射显微镜图,图中所示纳米颗粒为三层核壳结构。图8是本发明实施例1制备得到的纳米颗粒的高角度环形暗场(HAADF)图及对应区域的能谱(EDX)图。图中所示纳米颗粒外壳的主要组成元素为:Ti、O、P、Cu,中层主要组成元素为:P、Cu,内核的主要组成元素为:Zn、O、Ca、P、Cu。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述方法为以钙源、磷源、纳米氧化锌和铜源作为微弧氧化电解液,以钛或钛合金作为阳极,以惰性电极作为阴极进行微弧氧化;所述铜源为乙二胺四乙酸铜钠或乙二胺四乙酸铜二铵;
利用弧光放电增强阳极表面的氧化反应,使阳极表面发生微孔放电效应,从而在阳极表面原位生成多孔陶瓷膜;所述纳米氧化锌在溶液中发生前置反应,吸附溶液中的钙源、磷源和铜源,形成含有Zn、O、Ca、P和Cu元素的内核;在电场作用下,Ca2+向阴极区移动,[Cu-EDTA]2-和含磷元素的阴离子向阳极区移动,在吸脱附的作用下,纳米氧化锌颗粒会吸附于阳极表面,并在阳极氧化的作用下,纳米氧化锌颗粒外层形成TiO2,即形成含有Ti、O、P和Cu元素的外壳,以及含有P和Cu元素的中层,得到三层壳结构纳米颗粒。
2.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,包括以下步骤:
(1)配制微弧氧化溶液,所述微弧氧化电解液含有钙源、磷源、纳米氧化锌和铜源;所述铜源为乙二胺四乙酸铜钠或乙二胺四乙酸铜二铵;
(2)以步骤(1)配制的微弧氧化溶液作为电解液,以钛或钛合金作为阳极,以惰性电极作为阴极进行微弧氧化;在阳极表面原位生成一层多孔陶瓷膜,该陶瓷膜层表面附着白色纳米颗粒物;
(3)取出包覆陶瓷膜层的阳极,将该陶瓷膜层表面的白色纳米颗粒物刮下,即得到三层核壳结构纳米颗粒。
3.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述微弧氧化的参数为工作电压为300-700V,工作频率为100-600Hz,电流密度为0.05-0.50A/cm2,占空比为0~50%,处理时间为5~30min,反应温度为0~40℃。
4.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述钛合金为TA1、TA2、TA3、Ti-6Al-4V、Ti-Ni、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni或Ti-Pd。
5.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述钙源为氯化钙或醋酸钙,所述微弧氧化电解液中钙源的浓度为10-20g/L;
所述磷源为磷酸二氢钠或磷酸二氢钾,所述微弧氧化电解液中磷源的浓度为5-10g/L;
所述微弧氧化电解液中铜源的浓度为2-30g/L。
6.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述微弧氧化电解液中纳米氧化锌的浓度为2-50g/L。
7.如权利要求1所述的一步法制备三层核壳结构纳米颗粒的方法,其特征在于,所述惰性电极为铂片、石墨或不锈钢;所述阳极和阴极的距离为1-13cm。
8.如权利要求1-7任一所述方法制备得到的三层核壳结构纳米颗粒。
9.如权利要求8所述的三层核壳结构纳米颗粒,其特征在于,所述核壳结构纳米颗粒外壳的主要组成元素为Ti、O、P和Cu,中层主要组成元素为P和Cu,内核的主要组成元素为Zn、O、Ca、P和Cu。
10.如权利要求8或9所述的三层核壳结构纳米颗粒作为成骨材料的应用。
CN202011103078.8A 2020-10-15 2020-10-15 一种三层核壳结构纳米颗粒及其一步法制备与应用 Active CN112430837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011103078.8A CN112430837B (zh) 2020-10-15 2020-10-15 一种三层核壳结构纳米颗粒及其一步法制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011103078.8A CN112430837B (zh) 2020-10-15 2020-10-15 一种三层核壳结构纳米颗粒及其一步法制备与应用

Publications (2)

Publication Number Publication Date
CN112430837A true CN112430837A (zh) 2021-03-02
CN112430837B CN112430837B (zh) 2022-01-07

Family

ID=74690402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011103078.8A Active CN112430837B (zh) 2020-10-15 2020-10-15 一种三层核壳结构纳米颗粒及其一步法制备与应用

Country Status (1)

Country Link
CN (1) CN112430837B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146577A (zh) * 2010-02-05 2011-08-10 佳木斯大学 一种纯钛金属表面微弧氧化处理电解液及其抗菌性生物活性涂层制备方法
CN104674320A (zh) * 2013-11-29 2015-06-03 中国科学院金属研究所 一种钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146577A (zh) * 2010-02-05 2011-08-10 佳木斯大学 一种纯钛金属表面微弧氧化处理电解液及其抗菌性生物活性涂层制备方法
CN104674320A (zh) * 2013-11-29 2015-06-03 中国科学院金属研究所 一种钛或钛合金表面耐磨抑菌生物活性陶瓷膜制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XINXIN ZHANG等: ""Characterization and property of dual-functional Zn-incorporated TiO2 micro-arc oxidation coatings: The influence of current density"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XINXIN ZHANG等: ""Microstructural evolution and biological performance of Cu-incorporated TiO2 coating fabricated through one-step micro-arc oxidation"", 《APPLIED SURFACE SCIENCE》 *

Also Published As

Publication number Publication date
CN112430837B (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Indira et al. A review on TiO 2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications
Li et al. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition
Zhao et al. Electrospinning based all-nano composite materials: recent achievements and perspectives
Huo et al. Fabrication, modification, and biomedical applications of anodized TiO 2 nanotube arrays
US7799839B2 (en) Porous material having hierarchical pore structure and preparation method thereof
Mazinani et al. Graphene oxide (GO) decorated on multi-structured porous titania fabricated by plasma electrolytic oxidation (PEO) for enhanced antibacterial performance
Song et al. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering
Du et al. Improvement of antibacterial activity of hydrothermal treated TC4 substrate through an in-situ grown TiO2/g-C3N4 Z-scheme heterojunction film
Adhikari et al. Synthesis of high porous electrospun hollow TiO2 nanofibers for bone tissue engineering application
CN102525827A (zh) 具有长效抗菌性能和良好生物相容性的医用钛材的制备方法
Shuai et al. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
Tian et al. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: preparation and in vitro osteogenic activity evaluation
Zhang et al. A novel La3+ doped MIL spherical analogue used as antibacterial and anticorrosive additives for hydroxyapatite coating on titanium dioxide nanotube array
Zhang et al. Facile synthesis of a neodymium doped metal organic frame modified antibacterial material and corrosion resistant coating
Chen et al. CaTiO3 nanobricks prepared from anodized TiO2 nanotubes
KR101415531B1 (ko) 광촉매 분리막의 제조 방법
Zhang et al. Synthesis of rare earth doped MOF base coating on TiO2 nanotubes arrays by electrochemical method using as antibacterial implant material
CN112430837B (zh) 一种三层核壳结构纳米颗粒及其一步法制备与应用
Ozder et al. In situ synthesis and cell line studies of nano-hydroxyapatite/graphene oxide composite materials for bone support applications
Zhao et al. Fabrication of hydroxyapatite on pure titanium by micro-arc oxidation coupled with microwave-hydrothermal treatment
Zandvakili et al. Investigating cytotoxicity effect of Ag-deposited, doped and coated titanium dioxide nanotubes on breast cancer cells
Shi et al. Fabrication, properties, and biomedical applications of calcium-containing cellulose-based composites
Sabzehmeidani et al. Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review
TWI532883B (zh) 具有抗菌表面之鈦或鈦合金及其製作方法
Uddin et al. Recent Progress on Synthesis of 3D Graphene, Properties, and Emerging Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant