CN112430810B - Ultrasonic laser composite surface strengthening device - Google Patents
Ultrasonic laser composite surface strengthening device Download PDFInfo
- Publication number
- CN112430810B CN112430810B CN202011270644.4A CN202011270644A CN112430810B CN 112430810 B CN112430810 B CN 112430810B CN 202011270644 A CN202011270644 A CN 202011270644A CN 112430810 B CN112430810 B CN 112430810B
- Authority
- CN
- China
- Prior art keywords
- module
- ultrasonic
- base
- shell
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 238000005728 strengthening Methods 0.000 title claims abstract description 19
- 230000033001 locomotion Effects 0.000 claims abstract description 63
- 238000005253 cladding Methods 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims description 29
- 239000000919 ceramic Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 238000004372 laser cladding Methods 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000036316 preload Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及超声激光熔覆加工技术领域,具体涉及一种超声激光复合表面强化装置,包括激光同轴送粉熔覆头、超声振动模组、旋转驱动模组、三轴运动模组以及基座;所述超声振动模组以及所述旋转驱动模组均固定设置在所述基座上,所述超声振动模组与所述旋转驱动模组在所述基座上呈相对设置,所述三轴运动模组设置在所述基座上且与其活动连接,所述激光同轴送粉熔覆头设置在所述三轴运动模组上且位于所述超声振动模组的上方。本发明的超声激光复合表面强化装置,结构简单,操作方便,使用寿命长,能有效地改善齿轮齿面激光熔覆层的组织和性能,而且大大提高了超声激光熔覆加工的生产效率。
The invention relates to the technical field of ultrasonic laser cladding processing, in particular to an ultrasonic laser composite surface strengthening device, comprising a laser coaxial powder feeding cladding head, an ultrasonic vibration module, a rotary drive module, a three-axis motion module and a base The ultrasonic vibration module and the rotary drive module are fixedly arranged on the base, and the ultrasonic vibration module and the rotary drive module are arranged opposite to each other on the base, and the three The axis movement module is arranged on the base and is movably connected with it, and the laser coaxial powder feeding cladding head is arranged on the three axis movement module and is located above the ultrasonic vibration module. The ultrasonic laser composite surface strengthening device of the invention has the advantages of simple structure, convenient operation and long service life, can effectively improve the structure and performance of the laser cladding layer of the gear tooth surface, and greatly improve the production efficiency of ultrasonic laser cladding processing.
Description
技术领域technical field
本发明涉及超声激光熔覆加工技术领域,具体涉及一种超声激光复合表面强化装置。The invention relates to the technical field of ultrasonic laser cladding processing, in particular to an ultrasonic laser composite surface strengthening device.
背景技术Background technique
随着应用环境的日益复杂,人们对齿轮表面的性能提出了更高要求,不仅要求其具有一定的硬度、耐磨性,还要求其具有理想的心部韧性以及抗腐蚀性等。传统技术,如渗碳等,已难以满足实际需要。激光熔覆技术具有输入热量可控、冷却快及与基体形成冶金结合等特点,因而在航空航天、汽车、医疗和化工等齿轮应用行业具有重要的应用价值。但现有熔覆层处理技术还存在有不少的缺点,中国专利CN209923433U公开了一种超声振动辅助激光熔覆制备无裂纹熔覆层装置,虽然能在一定程度上解决曲面零件熔覆层裂纹多的问题,但是冷却效果不佳,容易出现残余拉应力;另一方面,由于熔池的高温容易导致熔覆层晶粒粗大;此外,熔覆层还会出现气孔和裂纹等缺陷。现有的设备的这些缺点限制了激光熔覆技术在齿轮行业的推广和应用。With the increasingly complex application environment, people have put forward higher requirements for the performance of the gear surface, not only requiring it to have a certain hardness and wear resistance, but also requiring it to have ideal core toughness and corrosion resistance. Traditional techniques, such as carburizing, have been difficult to meet actual needs. Laser cladding technology has the characteristics of controllable heat input, fast cooling and metallurgical bonding with the matrix, so it has important application value in aerospace, automotive, medical and chemical industries. However, the existing cladding layer treatment technology still has many shortcomings. Chinese patent CN209923433U discloses an ultrasonic vibration-assisted laser cladding to prepare a crack-free cladding layer device, although it can solve the cladding layer cracks of curved parts to a certain extent. However, the cooling effect is not good, and residual tensile stress is prone to occur; on the other hand, due to the high temperature of the molten pool, the grains of the cladding layer are likely to be coarse; in addition, the cladding layer will also have defects such as pores and cracks. These shortcomings of the existing equipment limit the promotion and application of laser cladding technology in the gear industry.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术所存在的缺陷,本发明提供了一种超声激光复合表面强化装置,结构简单,操作方便,使用寿命长,能有效地改善齿轮齿面激光熔覆层的组织和性能,而且大大提高了超声激光熔覆加工的生产效率。In order to overcome the defects existing in the prior art, the present invention provides an ultrasonic laser composite surface strengthening device, which has simple structure, convenient operation, long service life, can effectively improve the structure and performance of the laser cladding layer on the gear tooth surface, and The production efficiency of ultrasonic laser cladding processing is greatly improved.
为解决上述技术问题,本发明提供以下技术方案:In order to solve the above-mentioned technical problems, the present invention provides the following technical solutions:
一种超声激光复合表面强化装置,包括激光同轴送粉熔覆头、超声振动模组、旋转驱动模组、三轴运动模组以及基座;所述超声振动模组以及所述旋转驱动模组均固定设置在所述基座上,所述超声振动模组与所述旋转驱动模组在所述基座上呈相对设置,所述三轴运动模组设置在所述基座上且与其活动连接,所述激光同轴送粉熔覆头设置在所述三轴运动模组上且位于所述超声振动模组的上方。An ultrasonic laser composite surface strengthening device, comprising a laser coaxial powder feeding cladding head, an ultrasonic vibration module, a rotary drive module, a three-axis motion module and a base; the ultrasonic vibration module and the rotary drive module The groups are all fixedly arranged on the base, the ultrasonic vibration module and the rotary drive module are arranged oppositely on the base, and the three-axis motion module is arranged on the base and is connected to the base. Actively connected, the laser coaxial powder feeding cladding head is arranged on the three-axis motion module and above the ultrasonic vibration module.
在本发明的超声激光复合表面强化装置中,利用超声振动这一外加的能场来改善齿轮齿面激光熔覆层的组织和性能,采用冷却压缩空气来降低换能器产生的热量,进而提高超声激光熔覆加工的生产效率,具有结构简单、操作方便以及使用寿命长等特点。In the ultrasonic laser composite surface strengthening device of the present invention, the external energy field of ultrasonic vibration is used to improve the structure and performance of the laser cladding layer of the gear tooth surface, and the cooling compressed air is used to reduce the heat generated by the transducer, thereby improving the The production efficiency of ultrasonic laser cladding processing has the characteristics of simple structure, convenient operation and long service life.
进一步的,所述超声振动模组包括往复运动组件、导轨、滑块以及超声高频振动发生组件;所述导轨固定设置在所述基座上,所述滑块滑动连接在所述导轨上,所述超声高频振动发生组件设置在所述滑块上,所述往复运动组件设置在所述基座上且与所述超声高频振动发生组件连接,利用了超声振动这一外加的能场,有效地改善了齿轮齿面激光熔覆层的组织和性能。Further, the ultrasonic vibration module includes a reciprocating motion assembly, a guide rail, a slider and an ultrasonic high-frequency vibration generating assembly; the guide rail is fixedly arranged on the base, and the slider is slidably connected to the guide rail, The ultrasonic high-frequency vibration generating component is arranged on the slider, and the reciprocating motion component is arranged on the base and connected with the ultrasonic high-frequency vibration generating component, using the additional energy field of ultrasonic vibration. , effectively improving the structure and performance of the laser cladding layer on the gear tooth surface.
进一步的,所述超声高频振动发生组件包括外壳、无线能量传输模块、换能器以及工具头;所述无线能量传输模块设置在所述外壳的内部,所述工具头设置在所述外壳的外部且位于所述外壳与所述旋转驱动模组之间,所述无线能量传输模块通过所述换能器与所述工具头连接,有效地改善了齿轮齿面激光熔覆层的组织和性能。Further, the ultrasonic high-frequency vibration generating assembly includes a casing, a wireless energy transmission module, a transducer and a tool head; the wireless energy transmission module is arranged inside the casing, and the tool head is arranged on the inner side of the casing. Outside and between the housing and the rotary drive module, the wireless energy transmission module is connected to the tool head through the transducer, which effectively improves the organization and performance of the laser cladding layer on the gear tooth surface .
进一步的,所述无线能量传输模块包括原边线圈、副边线圈以及固定座;所述换能器包括预紧螺母、压电陶瓷、变幅杆以及盖板;所述固定座设置在所述外壳上且位于远离所述旋转驱动模组的一端,所述原边线圈固定设置在所述固定座上,所述副边线圈固定设置在所述变幅杆上;所述变幅杆穿过所述外壳且与其活动连接,所述变幅杆的一端与所述工具头连接,所述变幅杆的另一端依次与所述压电陶瓷、所述盖板以及所述预紧螺母连接,所述变幅杆、所述压电陶瓷以及所述盖板的内部相连通且设置有与所述预紧螺母相匹配的预紧螺栓,传动效果更好。Further, the wireless energy transmission module includes a primary coil, a secondary coil and a fixing seat; the transducer includes a preload nut, a piezoelectric ceramic, a horn and a cover plate; the fixing seat is arranged on the the outer casing is located at one end away from the rotary drive module, the primary coil is fixedly arranged on the fixing seat, and the secondary coil is fixedly arranged on the horn; the horn passes through the shell is movably connected with it, one end of the horn is connected with the tool head, and the other end of the horn is connected with the piezoelectric ceramics, the cover plate and the preload nut in sequence, The horn, the piezoelectric ceramics and the cover plate are communicated with each other inside and are provided with pre-tightening bolts matched with the pre-tightening nuts, so that the transmission effect is better.
进一步的,所述变幅杆与所述外壳的连接处设置有限位环、限位轴承以及固定环;所述固定环设置在所述外壳的外部,所述限位轴承以及所述限位环依次设置在所述外壳的内部,所述变幅杆均与所述限位环、所述限位轴承以及所述固定环活动连接,有效地控制变幅杆的活动范围。Further, a limiting ring, a limiting bearing and a fixing ring are arranged at the connection between the horn and the housing; the fixing ring is arranged outside the housing, and the limiting bearing and the limiting ring are The horns are arranged inside the casing in sequence, and the horns are all movably connected with the limit ring, the limit bearing and the fixing ring, so as to effectively control the range of movement of the horn.
超声振动模组的工作原理为:首先采用外置的超声波驱动器产生正弦激励信号,通过原边线圈无线传输给副边线圈,压电陶瓷受到电信号激励后产生轴向高频机械振动,该振动经变幅杆放大后,传输给工具头,由于工具头与齿轮试件始终处于预应力压紧状态,故高频振动最终传递给齿轮试件,从而齿轮试件产生轴向振动,整个换能器装置在限位轴承的支撑作用下,由旋转驱动模组带动按照预定控制速度旋转,工具头与齿轮试件的接触与分离,由往复运动组件进行往复运动实现。The working principle of the ultrasonic vibration module is as follows: first, an external ultrasonic driver is used to generate a sinusoidal excitation signal, which is wirelessly transmitted to the secondary coil through the primary coil. After the piezoelectric ceramic is excited by the electrical signal, it generates axial high-frequency mechanical vibration. After being amplified by the horn, it is transmitted to the tool head. Since the tool head and the gear specimen are always in a prestressed state, the high-frequency vibration is finally transmitted to the gear specimen, so that the gear specimen produces axial vibration, and the entire energy conversion Under the support of the limit bearing, the tool device is driven by the rotary drive module to rotate according to a predetermined control speed, and the contact and separation of the tool head and the gear specimen are realized by the reciprocating motion of the reciprocating component.
进一步的,所述外壳上设置有与所述外壳相连通的进气管,所述预紧螺母、所述预紧螺栓、所述盖板、所述压电陶瓷、所述变幅杆以及所述工具头的中部均为与所述进气管相连通的腔体设计,冷却压缩空气经外置冷却机冷却后,由进气管输出到固定座的腔室进行冷却,冷却效果好。Further, the housing is provided with an air intake pipe communicating with the housing, the preload nut, the preload bolt, the cover plate, the piezoelectric ceramic, the horn and the The middle part of the tool head is designed as a cavity connected with the air inlet pipe. After the cooling compressed air is cooled by an external cooler, the air inlet pipe is output to the cavity of the fixed seat for cooling, and the cooling effect is good.
进一步的,所述旋转驱动模组包括电机、联轴器、支撑座、支撑轴承、旋转轴以及三爪卡盘;所述支撑座固定设置在所述基座上,所述支撑轴承设置在所述支撑座上,所述旋转轴穿过所述支撑轴承且与其活动连接,所述电机设置在所述支撑座上,所述旋转轴远离所述超声振动模组的一端与所述电机连接,所述旋转轴的另一端与所述三爪卡盘连接,能更好地夹紧齿轮试件。Further, the rotary drive module includes a motor, a coupling, a support seat, a support bearing, a rotating shaft and a three-jaw chuck; the support seat is fixedly arranged on the base, and the support bearing is arranged on the On the support base, the rotating shaft passes through the support bearing and is movably connected with it, the motor is arranged on the support base, and the end of the rotating shaft away from the ultrasonic vibration module is connected with the motor, The other end of the rotating shaft is connected with the three-jaw chuck, which can better clamp the gear test piece.
冷却压缩空气经外置冷却机冷却后,由进气管输出到达固定座的腔室,然后分成两路:After the cooling compressed air is cooled by the external cooler, it is output from the intake pipe to the chamber of the fixed seat, and then divided into two paths:
1、第一路通过盖板、压电陶瓷与固定座的腔室之间的环形缝隙形成气幕对压电陶瓷等进行冷却,然后由副边线圈的磁环座的微孔输出,接着到达外壳的腔室,最终由限位环导流孔等缝隙挤出;1. The first path forms an air curtain through the annular gap between the cover plate, the piezoelectric ceramic and the cavity of the fixed seat to cool the piezoelectric ceramic, etc., and then output from the micro-hole of the magnetic ring seat of the secondary coil, and then reach the The chamber of the shell is finally extruded from the gap such as the limit ring guide hole;
2、第二路通过预紧螺母、预紧螺栓、变幅杆、工具头等中部的腔体的出气通道直接输送到齿轮试件内径圆环空间,对齿轮试件和三爪卡盘进行冷却,然后由三爪卡盘的调节限位环的周向导流槽流出。2. The second path is directly transported to the inner diameter annular space of the gear specimen through the air outlet channel of the cavity in the middle of the pre-tightening nut, pre-tightening bolt, horn, tool head, etc., to cool the gear specimen and the three-jaw chuck, Then it flows out from the circumferential guide groove of the adjustment limit ring of the three-jaw chuck.
进一步的,所述旋转轴上设置有位于所述支撑座与所述卡盘之间的环形压力传感器,所述环形压力传感器上设置有与所述旋转轴相适应的调节螺母,所述环形压力传感器与所述三爪卡盘之间设置有预紧弹簧,预紧力大小的定量控制由环形压力传感器进行检测反馈,同时可以实时监控超声振动所产生的动态力大小与变化规律。Further, an annular pressure sensor located between the support seat and the chuck is arranged on the rotating shaft, and an adjusting nut adapted to the rotating shaft is arranged on the annular pressure sensor. A pre-tightening spring is arranged between the sensor and the three-jaw chuck, and the quantitative control of the pre-tightening force is detected and fed back by the annular pressure sensor, and the dynamic force and the changing law of the ultrasonic vibration can be monitored in real time.
进一步的,所述电机与所述旋转轴之间通过联轴器进行连接,传动效果更好。Further, the motor and the rotating shaft are connected by a coupling, and the transmission effect is better.
旋转驱动模组的原理为:三爪卡盘能够适应一定规格范围的齿轮试件夹紧固定,将齿轮试件固定后,工具头在往复运动组件的推动下压紧齿轮试件,此时预紧弹簧会被压缩,所需要的预紧力大小可通过调节螺母进行调节,预紧力大小的定量控制由环形压力传感器进行检测反馈,同时可以实时监控超声振动所产生的动态力大小与变化规律;由调节螺母、环形压力传感器、预紧弹簧、三爪卡盘等所组成的部分,在旋转轴的带动下,按照预定的控制速度进行旋转,旋转所需要的动力来源,由电机通过联轴器传递给旋转轴。The principle of the rotary drive module is: the three-jaw chuck can adapt to the clamping and fixing of the gear specimen within a certain specification range. After fixing the gear specimen, the tool head presses the gear specimen under the push of the reciprocating motion component. The tight spring will be compressed, and the required preload force can be adjusted by adjusting the nut. The quantitative control of the preload force is detected and fed back by the annular pressure sensor. At the same time, the dynamic force generated by ultrasonic vibration and the change law can be monitored in real time. ;The part composed of adjusting nut, annular pressure sensor, pre-tightening spring, three-jaw chuck, etc., is driven by the rotating shaft and rotates at a predetermined control speed. The power source required for rotation is driven by the motor through the coupling shaft. is passed to the axis of rotation.
进一步的,所述三轴运动模组包括X轴运动机构、Y轴运动机构、Z轴运动机构、底板、立板以及熔覆头座;所述Y轴运动机构设置在所述基座上,所述底板设置在所述Y轴运动机构上,所述立板设置在所述底板上,所述X轴运动机构设置在所述立板上,所述Z轴运动机构与所述X轴运动机构连接,所述熔覆头座设置在所述Z轴运动机构上,所述激光同轴送粉熔覆头设置在所述熔覆头座上,能够更好地调整激光同轴送粉熔覆头的位置。Further, the three-axis motion module includes an X-axis motion mechanism, a Y-axis motion mechanism, a Z-axis motion mechanism, a bottom plate, a vertical plate and a cladding head seat; the Y-axis motion mechanism is arranged on the base, The bottom plate is arranged on the Y-axis movement mechanism, the vertical plate is arranged on the bottom plate, the X-axis movement mechanism is arranged on the vertical plate, and the Z-axis movement mechanism and the X-axis movement are The cladding head seat is arranged on the Z-axis motion mechanism, and the laser coaxial powder feeding cladding head is arranged on the cladding head seat, which can better adjust the laser coaxial powder feeding and melting Overhead position.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明利用超声振动这一外加的能场来改善齿轮齿面激光熔覆层的组织和性能,采用冷却压缩空气来降低换能器和齿轮试件产生的热量,进而提高超声激光熔覆加工的生产效率,具有结构简单、操作方便以及使用寿命长等特点。The invention utilizes the additional energy field of ultrasonic vibration to improve the structure and performance of the laser cladding layer on the tooth surface of the gear, and uses cooling compressed air to reduce the heat generated by the transducer and the gear test piece, thereby improving the efficiency of ultrasonic laser cladding processing. It has the characteristics of simple structure, convenient operation and long service life.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。In order to explain the technical solutions in the embodiments of the present invention more clearly, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only the embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from the accompanying drawings without any creative effort.
图1为本发明的一种超声激光复合表面强化装置的结构示意图一;1 is a schematic structural diagram 1 of an ultrasonic laser composite surface strengthening device according to the present invention;
图2为本发明的一种超声激光复合表面强化装置的结构示意图二;FIG. 2 is a second structural schematic diagram of an ultrasonic laser composite surface strengthening device according to the present invention;
图3为本发明的一种超声激光复合表面强化装置的主视图;3 is a front view of an ultrasonic laser composite surface strengthening device of the present invention;
图4为本发明的一种超声激光复合表面强化装置的超声振动模组的结构示意图;4 is a schematic structural diagram of an ultrasonic vibration module of an ultrasonic laser composite surface strengthening device according to the present invention;
图5为本发明的一种超声激光复合表面强化装置的旋转驱动模组的结构示意图。FIG. 5 is a schematic structural diagram of a rotary drive module of an ultrasonic laser composite surface strengthening device according to the present invention.
图中:1、激光同轴送粉熔覆头;2、超声振动模组;201、往复运动组件;202、导轨;203、滑块;204、外壳;205、工具头;206、原边线圈;207、副边线圈;208、固定座;209、预紧螺母;210、压电陶瓷;211、变幅杆;212、盖板;213、预紧螺栓;214、限位环;215、限位轴承;216、固定环;3、旋转驱动模组;301、电机;302、支撑座;303、旋转轴;304、三爪卡盘;305、环形压力传感器;306、调节螺母;307、预紧弹簧;4、三轴运动模组;401、X轴运动机构;402、Y轴运动机构;403、Z轴运动机构;404、底板;405、立板;406、熔覆头座;5、基座;6、齿轮试件;7、进气管。In the picture: 1. Laser coaxial powder feeding cladding head; 2. Ultrasonic vibration module; 201, Reciprocating motion component; 202, Guide rail; 203, Slider; 204, Shell; 205, Tool head; 206, Primary coil ; 207, secondary coil; 208, fixed seat; 209, preload nut; 210, piezoelectric ceramics; 211, horn; 212, cover plate; 213, preload bolt; 214, limit ring; 215, limit position bearing; 216, fixing ring; 3, rotary drive module; 301, motor; 302, support seat; 303, rotating shaft; 304, three-jaw chuck; 305, ring pressure sensor; 306, adjusting nut; 307, preset Tight spring; 4. Three-axis motion module; 401, X-axis motion mechanism; 402, Y-axis motion mechanism; 403, Z-axis motion mechanism; 404, bottom plate; 405, vertical plate; 406, cladding head seat; 5, Base; 6. Gear specimen; 7. Air intake pipe.
具体实施方式Detailed ways
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明实施例包括:Embodiments of the present invention include:
实施例一:Example 1:
如图1所示,一种超声激光复合表面强化装置,包括激光同轴送粉熔覆头1、超声振动模组2、旋转驱动模组3、三轴运动模组4以及基座5;超声振动模组2以及旋转驱动模组3均固定设置在基座5上,超声振动模组2与旋转驱动模组3在基座5上呈相对设置,三轴运动模组4设置在基座5上且与其活动连接,激光同轴送粉熔覆头1设置在三轴运动模组4上且位于超声振动模组2的上方。As shown in Figure 1, an ultrasonic laser composite surface strengthening device includes a laser coaxial powder feeding cladding head 1, an ultrasonic vibration module 2, a
在本发明的超声激光复合表面强化装置中,利用超声振动这一外加的能场来改善齿轮齿面激光熔覆层的组织和性能,采用冷却压缩空气来降低换能器产生的热量,进而提高超声激光熔覆加工的生产效率,具有结构简单、操作方便以及使用寿命长等特点。In the ultrasonic laser composite surface strengthening device of the present invention, the external energy field of ultrasonic vibration is used to improve the structure and performance of the laser cladding layer of the gear tooth surface, and the cooling compressed air is used to reduce the heat generated by the transducer, thereby improving the The production efficiency of ultrasonic laser cladding processing has the characteristics of simple structure, convenient operation and long service life.
如图2所示,超声振动模组2包括往复运动组件201、导轨202、滑块203以及超声高频振动发生组件;导轨202固定设置在基座5上,滑块203滑动连接在导轨202上,超声高频振动发生组件设置在滑块203上,往复运动组件201设置在基座5上且与超声高频振动发生组件连接,利用了超声振动这一外加的能场,有效地改善了齿轮齿面激光熔覆层的组织和性能。As shown in FIG. 2 , the ultrasonic vibration module 2 includes a
如图2-3所示,超声高频振动发生组件包括外壳204、无线能量传输模块、换能器以及工具头205;无线能量传输模块设置在外壳204的内部,工具头205设置在外壳204的外部且位于外壳204与旋转驱动模组3之间,无线能量传输模块通过换能器与工具头205连接,有效地改善了齿轮齿面激光熔覆层的组织和性能。As shown in FIGS. 2-3 , the ultrasonic high-frequency vibration generating assembly includes a
如图4所示,无线能量传输模块包括原边线圈206、副边线圈207以及固定座208;换能器包括预紧螺母209、压电陶瓷210、变幅杆211以及盖板212;固定座208设置在外壳204上且位于远离旋转驱动模组3的一端,原边线圈206固定设置在固定座208上,副边线圈207固定设置在变幅杆211上;变幅杆211穿过外壳204且与其活动连接,变幅杆211的一端与工具头205连接,变幅杆211的另一端依次与压电陶瓷210、盖板212以及预紧螺母209连接,变幅杆211、压电陶瓷210以及盖板212的内部相连通且设置有与预紧螺母209相匹配的预紧螺栓213,传动效果更好。As shown in FIG. 4 , the wireless energy transmission module includes a
如图4所示,变幅杆211与外壳204的连接处设置有限位环214、限位轴承215以及固定环216;固定环216设置在外壳204的外部,限位轴承215以及限位环214依次设置在外壳204的内部,变幅杆211均与限位环214、限位轴承215以及固定环216活动连接,有效地控制变幅杆211的活动范围。As shown in FIG. 4 , a
超声振动模组2的工作原理为:首先采用外置的超声波驱动器产生正弦激励信号,通过原边线圈206无线传输给副边线圈207,压电陶瓷210受到电信号激励后产生轴向高频机械振动,该振动经变幅杆211放大后,传输给工具头205,由于工具头205与齿轮试件6始终处于预应力压紧状态,故高频振动最终传递给齿轮试件6,从而齿轮试件6产生轴向振动,整个换能器装置在限位轴承215的支撑作用下,由旋转驱动模组3带动按照预定控制速度旋转,工具头205与齿轮试件6的接触与分离,由往复运动组件201进行往复运动实现。The working principle of the ultrasonic vibration module 2 is as follows: first, an external ultrasonic driver is used to generate a sinusoidal excitation signal, which is wirelessly transmitted to the
如图4所示,外壳204上设置有与外壳204相连通的进气管7,预紧螺母209、预紧螺栓213、盖板212、压电陶瓷210、变幅杆211以及工具头205的中部均为与进气管7相连通的腔体设计,冷却压缩空气经外置冷却机冷却后,由进气管7输出到固定座208的腔室进行冷却,冷却效果好。As shown in FIG. 4 , the
如图5所示,旋转驱动模组3包括电机301、联轴器、支撑座302、支撑轴承、旋转轴303以及三爪卡盘304;支撑座302固定设置在基座5上,支撑轴承设置在支撑座302上,旋转轴303穿过支撑轴承且与其活动连接,电机301设置在支撑座302上,旋转轴303远离超声振动模组2的一端与电机301连接,旋转轴303的另一端与三爪卡盘304连接,能更好地夹紧齿轮试件6。As shown in FIG. 5 , the
冷却压缩空气经外置冷却机冷却后,由进气管7输出到达固定座208的腔室,然后分成两路:After the cooling compressed air is cooled by the external cooler, it is output from the
1、第一路通过盖板212、压电陶瓷210与固定座208的腔室之间的环形缝隙形成气幕对压电陶瓷210等进行冷却,然后由副边线圈207的磁环座的微孔输出,接着到达外壳204的腔室,最终由限位环214导流孔等缝隙挤出;1. The first path forms an air curtain through the annular gap between the
2、第二路通过预紧螺母209、预紧螺栓213、变幅杆211、工具头205等中部的腔体的出气通道直接输送到齿轮试件6内径圆环空间,对齿轮试件6和三爪卡盘304进行冷却,然后由三爪卡盘304的调节限位环214的周向导流槽流出。2. The second path is directly transported to the inner diameter annular space of the
如图5所示,旋转轴303上设置有位于支撑座302与卡盘之间的环形压力传感器305,环形压力传感器305上设置有与旋转轴303相适应的调节螺母306,环形压力传感器305与三爪卡盘304之间设置有预紧弹簧307,预紧力大小的定量控制由环形压力传感器305进行检测反馈,同时可以实时监控超声振动所产生的动态力大小与变化规律。As shown in FIG. 5 , the
在本实施例中,电机301与旋转轴303之间通过联轴器进行连接,传动效果更好。In this embodiment, the
旋转驱动模组3的原理为:三爪卡盘304能够适应一定规格范围的齿轮试件6夹紧固定,将齿轮试件6固定后,工具头205在往复运动组件201的推动下压紧齿轮试件6,此时预紧弹簧307会被压缩,所需要的预紧力大小可通过调节螺母306进行调节,预紧力大小的定量控制由环形压力传感器305进行检测反馈,同时可以实时监控超声振动所产生的动态力大小与变化规律;由调节螺母306、环形压力传感器305、预紧弹簧307、三爪卡盘304等所组成的部分,在旋转轴303的带动下,按照预定的控制速度进行旋转,旋转所需要的动力来源,由电机301通过联轴器传递给旋转轴303。The principle of the
如图2所示,三轴运动模组4包括X轴运动机构401、Y轴运动机构402、Z轴运动机构403、底板404、立板405以及熔覆头座406;Y轴运动机构402设置在基座5上,底板404设置在Y轴运动机构402上,立板405设置在底板404上,X轴运动机构401设置在立板405上,Z轴运动机构403与X轴运动机构401连接,熔覆头座406设置在Z轴运动机构403上,激光同轴送粉熔覆头1设置在熔覆头座406上,能够更好地调整激光同轴送粉熔覆头1的位置。As shown in FIG. 2, the three-axis motion module 4 includes an
本实施例的主要工作流程为:The main workflow of this embodiment is:
1、将齿轮试件6装夹到旋转轴303上,齿轮试件6固定到初始位置,此时预紧弹簧307尚未压缩;1. Clamp the
2、超声高频振动发生模块安装在滑块203上,在往复运动组件201的驱动下,往前移动,变幅杆211和工具头205推动齿轮试件6,齿轮试件6推动压缩预紧弹簧307,从而产生预紧力,此时齿轮试件6被死死压紧在三爪卡盘304上,预紧力的大小可通过调节螺母306来调整;2. The ultrasonic high-frequency vibration generating module is installed on the
3、激光同轴送粉熔覆头1在三轴运动模组4的驱动下,移动到齿轮试件6上方,与待处理齿面保持动态垂直;3. Driven by the three-axis motion module 4, the laser coaxial powder feeding cladding head 1 moves to the top of the
4、由于需要压紧齿轮试件6,换能器受到轴向力,同时需要跟随齿轮试件6旋转,由限位轴承215提供支撑,并由限位环214给以限位,与固定环216连接并安装到外壳204上;4. Due to the need to press the
5、换能器、齿轮试件6、预紧弹簧307、调节螺母306在旋转轴303的带动下一起旋转,旋转轴303的旋转动力由电机301通过联轴器连接输入;5. The transducer, the
6、外置的超声波发生器产生高频正弦电信号,电信号通过原边线圈206无线传输给副边线圈207,换能器中的压电陶瓷210在副边线圈207接收到的电信号激励下产生高频振动,通过变幅杆211进行放大,由工具头205传输给齿轮试件6,从而使得齿轮试件6产生高频振动;6. The external ultrasonic generator generates a high-frequency sinusoidal electrical signal, and the electrical signal is wirelessly transmitted to the
7、换能器产生的热量由外置空气压缩机将换热处理后的冷空气压入外壳204的腔内循环后快速带走;7. The heat generated by the transducer is quickly taken away by the external air compressor, which presses the heat-exchanged cold air into the cavity of the
8、最终,齿轮试件6在高频振动及旋转作用下,与激光同轴送粉熔覆头1形成合运动,从而完成超声激光复合表面熔覆强化处理过程。8. Finally, under the action of high-frequency vibration and rotation, the
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the scope of the patent of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description of the present invention, or directly or indirectly applied in other related technical fields, are all applicable. Similarly, it is included in the scope of patent protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011270644.4A CN112430810B (en) | 2020-11-13 | 2020-11-13 | Ultrasonic laser composite surface strengthening device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011270644.4A CN112430810B (en) | 2020-11-13 | 2020-11-13 | Ultrasonic laser composite surface strengthening device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112430810A CN112430810A (en) | 2021-03-02 |
CN112430810B true CN112430810B (en) | 2022-08-09 |
Family
ID=74700598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011270644.4A Expired - Fee Related CN112430810B (en) | 2020-11-13 | 2020-11-13 | Ultrasonic laser composite surface strengthening device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112430810B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114214621B (en) * | 2021-12-28 | 2025-02-14 | 浙江工业大学 | Ultrasonic vibration composite wire feeding device and method for laser wire feeding cladding forming |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106917086A (en) * | 2017-05-10 | 2017-07-04 | 江苏理工学院 | Method and device for ultrasonic vibration assisted laser cladding |
CN110218999A (en) * | 2019-07-02 | 2019-09-10 | 辽宁科技大学 | A kind of ultrasonic vibration multidimensional influences laser cladding equipment and method |
CN111850541A (en) * | 2020-06-17 | 2020-10-30 | 江苏大学 | A device and method for additive manufacturing of ultra-high-speed laser cladding |
-
2020
- 2020-11-13 CN CN202011270644.4A patent/CN112430810B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106917086A (en) * | 2017-05-10 | 2017-07-04 | 江苏理工学院 | Method and device for ultrasonic vibration assisted laser cladding |
CN110218999A (en) * | 2019-07-02 | 2019-09-10 | 辽宁科技大学 | A kind of ultrasonic vibration multidimensional influences laser cladding equipment and method |
CN111850541A (en) * | 2020-06-17 | 2020-10-30 | 江苏大学 | A device and method for additive manufacturing of ultra-high-speed laser cladding |
Also Published As
Publication number | Publication date |
---|---|
CN112430810A (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103128603B (en) | Ultrasound magnetic force composite efficient finishing process device | |
CN106825679B (en) | A kind of ultrasonic vibration pneumatic drill based on rotating radio energy transmission | |
US3337108A (en) | Frictional welding apparatus | |
CN109571111B (en) | Ultrasonic vibration table and processing technology | |
WO2019037338A1 (en) | Ultrasonic micro-forging combined apparatus for improving structure and performance of additive manufactured metal and additive manufacturing method | |
CN107891158B (en) | Ultrasonic vibration high-speed motorized spindle | |
WO2022222280A1 (en) | Rotary ultrasonic grinding machine tool and application | |
CN106077774A (en) | A kind of ultrasonic helical milling device and processing method | |
CN105397920A (en) | Giant magnetostrictive rotary ultrasonic vibration knife handle | |
CN112430810B (en) | Ultrasonic laser composite surface strengthening device | |
CN111702189A (en) | Giant magnetostrictive elliptical vibration turning device and turning method | |
CN107175543B (en) | A high-speed rotating ultrasonic grinding spindle | |
CN103072081B (en) | Positioning and clamping device adopting ceramic thin-wall long pipe fitting as self reference and grinding method | |
CN107739798A (en) | A kind of pressure-auxiliary ultrasonic vibration can fitting surface intensifying device and method | |
CN110000624A (en) | A kind of Magnetorheological Polishing equipment | |
CN102873019B (en) | High-speed rotary ultrasonic torsional processing device | |
CN105779756B (en) | Angle of spot hole enhanced processing method | |
CN113561047A (en) | Method and device for compound polishing of inner surface of hole | |
CN101220406A (en) | A half-wavelength ultrasonic surface rolling processing actuator and processing method | |
CN113249550A (en) | Laser-ultrasonic-cooling composite surface strengthening device, system and processing method | |
CN110977142B (en) | Impact stirring friction welding device for connecting magnesium-aluminum alloy heterogeneous workpieces | |
CN103406567A (en) | High-speed ultrasonic vibration assistant air drill | |
CN110129537B (en) | A pressure alternating type microporous inner surface cavitation shot peening equipment and working method | |
CN114196812A (en) | Cryogenic ultrasonic shot blasting device | |
CN208297270U (en) | Material high-frequency fatigue test device under combined load and high temperature-atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220809 |