CN112417681B - 一种蒸汽发生器一二次侧对流换热系数分布的估计方法 - Google Patents

一种蒸汽发生器一二次侧对流换热系数分布的估计方法 Download PDF

Info

Publication number
CN112417681B
CN112417681B CN202011308496.0A CN202011308496A CN112417681B CN 112417681 B CN112417681 B CN 112417681B CN 202011308496 A CN202011308496 A CN 202011308496A CN 112417681 B CN112417681 B CN 112417681B
Authority
CN
China
Prior art keywords
working medium
section
channel
phase working
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011308496.0A
Other languages
English (en)
Other versions
CN112417681A (zh
Inventor
惠久武
凌君
袁景淇
胡诗曲
邹恒斐
栾振华
王改霞
邓冠华
王浩
高仕航
董贺
孙鑫宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011308496.0A priority Critical patent/CN112417681B/zh
Publication of CN112417681A publication Critical patent/CN112417681A/zh
Application granted granted Critical
Publication of CN112417681B publication Critical patent/CN112417681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供了一种蒸汽发生器一二次侧对流换热系数分布的估计方法,具体包括:获取给定时刻下蒸汽发生器的实时运行数据;建立下降通道模型,得到当前时刻下降通道底部出口液相工质的流量、温度及压力;建立一回路冷却剂模型,得到当前时刻沿倒U型管高度的一回路冷却剂的流速、温度、压力分布以及一次侧对流换热系数分布;建立上升通道模型,得到当前时刻沿倒U型管高度的二回路工质的流速、温度、压力分布以及二次侧对流换热系数分布;建立汽水分离器模型,计算得到汽水分离器出口气相工质、液相工质的温度、压力和质量流量。本发明能实现蒸汽发生器一二次侧对流换热系数分布的实时估计。

Description

一种蒸汽发生器一二次侧对流换热系数分布的估计方法
技术领域
本发明给出了一种机理建模与DCS(运行机组现场分布式控制系统)实时测量数据相结合的核电蒸汽发生器对流换热系数分布实时估计(辨识)方法,属于核电站运行优化控制技术领域。
背景技术
在核电站中,反应堆出来的高温高压冷却剂首先进入蒸汽发生器的进口腔,然后流入倒U形管,将热量通过倒U型管金属管壁传递给二次侧流体后流出U型管,由出口腔流出。在二次侧,给水与一二级汽水分离器分离出来的再循环流体混合后形成混合水,流入蒸汽发生器下降通道,在底部经套筒缺口进入传热管束,然后向上流动进入热交换区域,冲刷倒U型管壁,吸收一次侧冷却剂热量,在沸腾段发生相变饱和并沸腾,产生的汽水混合流向上流经一二级汽水分离器。从分离器分离出来的饱和蒸汽进入蒸汽腔室,然后输出到汽轮机/发电机组做功。
蒸汽发生器结构复杂,在蒸汽发生器内部存在着复杂的传热过程。例如在蒸汽发生器二回路侧,倒U型管向工质的热量传递包括单相对流换热、过冷沸腾以及饱和沸腾对流换热。在沸腾对流换热过程中,二回路工质局部汽化,形成气液两相流。气泡产生、成长、脱离壁面区域的过程强烈扰动二回路水位及传热阻力。而在蒸汽发生器一回路侧,冷却剂向倒U型管的热量传递为单相对流换热。由于蒸汽发生器系统的非线性、非对称性、时滞以及两相流换热过程的复杂性,目前国内外的相关研究以对蒸汽发生器集总参数建模和稳态性能仿真为主,对蒸汽发生器内部工质动态研究较少,故研究成果并不能用于变工况条件下的蒸汽发生器动态特性仿真,也不能用于改进蒸汽发生器的实时液位控制系统的控制品质。
经过对现有技术检索后发现,授权公告号为CN201510212481.7,授权公告日为2015年08月12日的中国发明专利“一种直管式直流蒸汽发生器换热性能的仿真方法”,提出了一种基于传热分区的直流蒸汽发生器一维均相流数学模型,采用适当的判别条件对二次侧换热过程进行划分,在此基础上自主开发了基于MATLAB软件的直流蒸汽发生器换热仿真程序,进行直流蒸汽发生器在不同工况下稳态换热性能的仿真。该专利主要贡献在于提出了一种蒸汽发生器均相流稳态数学模型,但不能动态的实时输出蒸汽发生器沿倒U型管高度的、一二次侧对流换热系数分布。
综上,现有公开报道均未涉及核电蒸汽发生器沿倒U型管高度的、一二次侧对流换热系数分布实时估计问题,这一空缺有待填补。
发明内容
针对现有技术的不足,本发明的目的是提供一种核电蒸汽发生器沿倒U型管高度的、一二次侧对流换热系数分布实时估计方法。
本发明是通过以下技术方案实现的。
本发明提供了一种蒸汽发生器一二次侧对流换热系数分布的估计方法,包括:
获取给定时刻下蒸汽发生器的实时运行数据;
将蒸汽发生器划分为热段、冷段和汽水分离器,其中热段和冷段又分别划分为下降通道和上升通道:下降通道是指外壳与内部套筒之间工质流经的空间,工质向下流动;上升通道是指内部套筒与倒U型管壁之间工质流经的空间,工质向上流动;
利用获取的蒸汽发生器的实时运行数据,建立下降通道模型,采用龙格库塔法解算下降通道模型,得到当前时刻下降通道底部出口液相工质的温度、压力及质量流量;
利用获取的蒸汽发生器的实时运行数据,建立一回路冷却剂模型,采用龙格库塔法解算一回路冷却剂模型,得到当前时刻沿倒U型管高度的一回路工质的流速、温度以及压力分布,进而采用迪图斯-贝尔特公式计算当前时刻沿倒U型管高度的一次侧对流换热系数分布;
利用获取的蒸汽发生器的实时运行数据以及得到的下降通道底部出口液相工质的流量、温度、压力,采用龙格库塔法解算上升通道模型,得到当前时刻沿倒U型管高度的二回路工质的流速、温度以及压力分布,进而计算当前时刻沿倒U型管高度的二次侧对流换热系数分布,其中单相工质预热段采用采用迪图斯-贝尔特公式计算对流传热系数,气液两相工质沸腾段采用Chen公式计算;所述当前时刻沿倒U型管高度的二回路工质的流速、温度以及压力分布包括上升通道顶部出口气液混合物工质的流速、温度以及压力;
利用获取的蒸汽发生器的实时运行数据以及得到的上升通道顶部出口气液混合物工质的流速、温度以及压力,建立汽水分离器模型,采用龙格库塔法解算汽水分离器模型,得到汽水分离器出口气相工质、液相工质的温度、压力和质量流量,实现蒸汽发生器一二次侧对流换热系数分布的估计。
优选地,所述给定时刻下蒸汽发生器的实时运行数据,包括:
-机组负荷;
-给水温度、压力以及质量流量;
-饱和蒸汽温度、压力以及质量流量;
-一回路冷却剂进出口温度、压力以及质量流量;
-水位高度。
优选地,在所述上升通道中,根据二回路工质状态将上升通道划分为预热区和沸腾区;其中,预热区和沸腾区分界面的划分依据为:
hRC(t,z)=hsw(t,z) (1)
式中,hRC(t,z)是上升通道当前时刻t和高度z的二回路工质的比焓;hsw(t,z)是当前时刻t和高度z的二回路工质饱和状态比焓。
优选地,所述下降通道入口液相工质中,占比
Figure BDA0002789028150000031
的给水流入热段,占比
Figure BDA0002789028150000032
Figure BDA0002789028150000033
的给水流入冷段,占比
Figure BDA0002789028150000034
的再循环水流入热段,占比
Figure BDA0002789028150000035
的再循环水流入冷段;,
Figure BDA0002789028150000036
的取值范围为:70~90;
Figure BDA0002789028150000037
的取值范围为:40~60。根据动量、质量和能量守恒关系,建立热段下降通道模型为式(2)~(4):
Figure BDA0002789028150000038
Figure BDA0002789028150000039
Figure BDA00027890281500000310
式中,MHL,DC是热段下降通道液相工质质量;ρHL,DC是热段下降通道底部出口液相工质密度;AHL,DC是热段下降通道的横截面积;H是下降通道的水位高度;Gfw是给水质量流量;Grw是再循环水质量流量;GHL,DC,out是热段下降通道底部出口液相工质质量流量;CP,HL,DC是热段下降通道液相工质的定压比热容;THL,DC是热段下降通道底部出口液相工质温度;hHL,DC是热段下降通道液相工质比焓,可根据热段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hfw是给水比焓,可根据给水温度和压力通过工质物性参数数据库计算得到;hrw是再循环水比焓,可根据再循环水温度和压力通过工质物性参数数据库计算得到;hHL,DC,out是热段下降通道底部出口液相工质比焓,可根据热段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PHL,DC热段下降通道底部出口液相工质压力;GHL,DC是热段下降通道液相工质质量流量;fHL,DC是热段下降通道摩擦因子;De,HL,DC是热段下降通道当量直径;g是重力加速度;
通过对热段下降通道模型求解,得到当前时刻热段下降通道底部出口液相工质的温度、压力以及质量流量。
建立冷段下降通道模型为式(5)~(7):
Figure BDA0002789028150000041
Figure BDA0002789028150000042
Figure BDA0002789028150000043
式中,MCL,DC是冷段下降通道液相工质质量;ρCL,DC是冷段下降通道液相工质密度;ACL,DC是冷段下降通道的横截面积;GCL,DC,out是冷段下降通道底部出口液相工质质量流量;CP,CL,DC是冷段下降通道液相工质的定压比热容;TCL,DC是冷段下降通道液相工质温度;hCL,DC是冷段下降通道液相工质比焓,可根据冷段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hCL,DC,out是冷段下降通道底部出口液相工质比焓,可根据冷段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PCL,DC冷段下降通道液相工质压力;GCL,DC是冷段下降通道液相工质质量流量;fCL,DC是冷段下降通道摩擦因子;De,CL,DC是冷段下降通道当量直径;
通过对冷段下降通道模型求解,得到当前时刻冷段下降通道底部出口液相工质的温度、压力以及质量流量。
优选的,热段和冷段一回路冷却剂与倒U型管金属壁之间对流换热系数KHL,PS和KCL,PS以及热段和冷段预热区倒U型管金属壁与二回路工质之间的对流换热系数KHL,RC,PR和KCL,RC,PR,采用迪图斯-贝尔公式计算:
K=0.023Rew 0.8Prw 0.3λw/dHL,MT (8)
式中,Rew是对应的热段或冷段一回路或二回路工质雷诺数;Prw是对应的热段或冷段一回路或二回路工质普朗特数;λw是对应的热段或冷段一回路或二回路工质热导率;dHL,MT是倒U型管内径;
对热段和冷段沸腾区倒U型管金属壁与二回路工质之间的对流换热系数K*,RC,BR采用式(9)~(14)Chen公式计算,其中,在热段的K*,RC,BR用KHL,RC,BR替换,在冷段的K*,RC,BR用KCL,RC,BR替换:
K*,RC,BR=Kcht+Kbht (9)
Figure BDA0002789028150000051
Figure BDA0002789028150000052
Figure BDA0002789028150000053
Figure BDA0002789028150000054
Figure BDA0002789028150000055
式中,Kcht、Kbht分别是对流传热部分的对流换热系数和泡核沸腾传热部分的对流换热系数;CP,w是工质定压比热容;hfs是沸腾区液相工质汽化潜热;σ沸腾区液相工质表面张力系数;△TMT是沸腾区倒U型管金属壁过热度;△PMT是沸腾区饱和蒸汽压差;x是质量气含率;ρw是上升通道液相工质密度;ρs是上升通道饱和蒸汽密度;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;dHL,MT是热段倒U型管内径,G是工质质量流量;Xtt和S是中间变量。。
优选的,考虑热段一回路冷却剂重力压降,根据动量、质量和能量守恒关系,建立热段一回路冷却剂模型为式(15)~(18):
Figure BDA0002789028150000061
Figure BDA0002789028150000062
Figure BDA0002789028150000063
Figure BDA0002789028150000064
式中,ρHL,PS是热段一回路冷却剂密度;WHL,PS是热段一回路冷却剂的流速;CP,HL,PS是热段一回路冷却剂定压比热容;THL,PS是热段一回路冷却剂温度;KHL,PS是热段一回路冷却剂与倒U型管金属壁间对流换热系数;dHL,MT是热段倒U型管内径;PHL,PS是热段一回路冷却剂压力。
通过对热段一回路冷却剂模型求解,得到热段工质温度、压力、质量流量以及热段一次侧与倒U型管壁之间对流换热系数。
建立冷段一回路冷却剂模型为式(19)~(22):
Figure BDA0002789028150000065
Figure BDA0002789028150000066
Figure BDA0002789028150000067
Figure BDA0002789028150000068
式中,ρCL,PS是冷段一回路冷却剂密度;WCL,PS是冷段一回路冷却剂的流速;CP,CL,PS是冷段一回路冷却剂定压比热容;TCL,PS是冷段一回路冷却剂温度;KCL,PS是冷段一回路冷却剂与倒U型管金属壁间对流换热系数;dCL,MT是冷段倒U型管内径;PCL,PS是冷段一回路冷却剂压力。
通过对冷段一回路冷却剂模型求解,得到冷段工质温度、压力、质量流量以及热段一次侧与倒U型管壁之间对流换热系数。
优选的,考虑热段上升通道工质重力压降、摩擦压降和加速压降,根据动量、质量和能量守恒关系,建立热段上升通道模型为式(23)~(30):
Figure BDA0002789028150000071
Figure BDA0002789028150000072
Figure BDA0002789028150000073
Figure BDA0002789028150000074
Figure BDA0002789028150000075
Figure BDA0002789028150000076
Figure BDA0002789028150000077
Figure BDA0002789028150000078
式中,ρHL,RC是热段上升通道工质密度;WHL,RC是热段上升通道工质的流速;ρHL,MT是热段倒U型管金属壁密度;CP,HL,MT是热段倒U型管金属壁的定压比热容;THL,MT是热段倒U型管金属壁温度;n是倒U型管根数;KHL,RC,PR是热段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数;dHL,MT是热段倒U型管内径;THL,RC,PR是热段上升通道预热区液相工质温度;ρHL,RC,PR是热段上升通道预热区液相工质密度;CP,HL,RC,PR是热段上升通道预热区液相工质定压比热容;WHL,RC,PR是热段上升通道预热区液相工质的流速;KHL,RC,BR是热段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数;THL,RC,BR是热段上升通道沸腾区气液混合相工质温度;ρHL,RC,BR是热段上升通道沸腾区气液混合相工质密度;CP,HL,RC,BR是热段上升通道沸腾区气液混合相工质定压比热容;WHL,RC,BR是热段上升通道沸腾区气液混合相工质的流速;PHL,RC,PR是热段上升通道预热区液相工质压力a;GHL,RC,PR是热段上升通道预热区液相工质质量流量;fHL,RC,PR是热段上升通道预热区摩擦因子;De,HL,RC,PR是热段上升通道预热区当量直径;ξHL,RC,PR是热段上升通道预热区局部阻力系数;PHL,RC,BR是热段上升通道沸腾区气液混合相工质压力;GHL,RC,BR是热段上升通道沸腾区气液混合相工质质量流量;fHL,RC,BR是热段上升通道沸腾区摩擦因子;De,HL,RC,BR是热段上升通道沸腾区当量直径;φ是两相倍乘因子;ξHL,RC,BR是热段上升通道沸腾区局部阻力系数;x是质量气含率;ρw是上升通道液相工质密度;ρs是上升通道饱和蒸汽密度;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;
通过对热段上升通道模型求解,得到热段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及热段二次侧与倒U型管壁对流换热系数分布。
建立冷段上升通道模型为式(31)~(37):
Figure BDA0002789028150000081
Figure BDA0002789028150000082
Figure BDA0002789028150000083
Figure BDA0002789028150000084
Figure BDA0002789028150000085
Figure BDA0002789028150000086
Figure BDA0002789028150000087
式中,ρCL,RC是冷段上升通道工质密度;WCL,RC是冷段上升通道工质的流速;ρCL,MT是冷段倒U型管金属壁密度;CP,CL,MT是冷段倒U型管金属壁的定压比热容;TCL,MT是冷段倒U型管金属壁温度;KCL,RC,PR是冷段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数;dCL,MT是冷段倒U型管内径;TCL,RC,PR是冷段上升通道预热区液相工质温度;ρCL,RC,PR是冷段上升通道预热区液相工质密度;CP,CL,RC,PR是冷段上升通道预热区液相工质定压比热容;WCL,RC,PR是冷段上升通道预热区液相工质的流速;KCL,RC,BR是冷段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数;TCL,RC,BR是冷段上升通道沸腾区气液混合相工质温度;ρCL,RC,BR是冷段上升通道沸腾区气液混合相工质密度;CP,CL,RC,BR是冷段上升通道沸腾区气液混合相工质定压比热容;WCL,RC,BR是冷段上升通道沸腾区气液混合相工质的流速;PCL,RC,PR是冷段上升通道预热区液相工质压力a;GCL,RC,PR是冷段上升通道预热区液相工质质量流量;fCL,RC,PR是冷段上升通道预热区摩擦因子;De,CL,RC,PR是冷段上升通道预热区当量直径;ξCL,RC,PR是冷段上升通道预热区局部阻力系数;PCL,RC,BR是冷段上升通道沸腾区气液混合相工质压力;GCL,RC,BR是冷段上升通道沸腾区气液混合相工质质量流量;fCL,RC,BR是冷段上升通道沸腾区摩擦因子;De,CL,RC,BR是冷段上升通道沸腾区当量直径;ξCL,RC,BR是冷段上升通道沸腾区局部阻力系数;
通过对冷段上升通道模型求解,得到冷段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及冷段二次侧与倒U型管壁对流换热系数分布。
优选的,计算当前时刻沿倒U型管高度的气含率分布:
Figure BDA0002789028150000091
式中,hBR是沸腾区气液混合相工质比焓;hss是沸腾区饱和蒸汽比焓;hsw是沸腾区饱和水比焓;xBR是沸腾区工质质量气含率。hBR,hsw和hsw可根据沸腾区气液混合相工质温度和压力通过工质物性参数数据库计算得到。
优选的,所述汽水分离器模型为式(39)~(46):
Gss,SP,out=(xHL,RC,BR,outGHL,RC,BR,out+xCL,RC,BR,outGCL,RC,BR,out)×η (39)
Gsw,SP,out=(1-xHL,RC,BR,out×η)GHL,RC,BR,out+(1-xCL,RC,BR,out×η)GCL,RC,BR,out (40)
Figure BDA0002789028150000092
GSP,in=GHL,RC,BR,out+GCL,RC,BR,out (42)
PSP,in=PHL,RC,BR,out=PCL,RC,BR,out (43)
TSP,in=THL,RC,BR,out=TCL,RC,BR,out (44)
PSP,out=Pss,SP,out=Tsw,SP,out (45)
TSP,in=Tss,SP,out=Tsw,SP,out (46)
式中,Gss,SP,out是汽水分离器出口饱和蒸汽质量流量;xHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量气含率;GHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量流量;xCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量气含率;GCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量流量;η是汽水分离器效率;Gsw,SP,out是汽水分离器出口饱和水质量流量;PSP,out是汽水分离器出口工质压力;Pss,SP,out是汽水分离器出口饱和蒸汽压力;Psw,SP,out是汽水分离器出口饱和水压力;PSP,in是汽水分离器入口气液混合相工质压力;TSP,in是汽水分离器入口气液混合相工质温度;TCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质温度;THL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质温度;ξSP是汽水分离器局部阻力系数;GSP,in是汽水分离器入口气液混合相工质质量流量;ρSP,in是汽水分离器入口气液混合相工质密度;PHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质压力;PCL,RC,BR,out是冷段上升通道沸腾区出口气液混。
与现有技术相比,本发明实施例具有以下至少一种有益效果:
本发明解决了核电蒸汽发生器沿倒U型管高度的、一二次侧对流换热系数分布实时估计的问题,填补了空白。
本发明实现了全工况蒸汽发生器一二次侧对流换热系数分布实时估计,为蒸汽发生器运行优化及监测提供支撑条件,有助于提高核电站运行的安全性与经济性。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一优选实施例蒸汽发生器一二次侧对流换热系数分布实时估计方法示意图;
图2为本发明一优选实施例蒸汽发生器简化结构示意图;
图3为本发明一优选实施例中核电站机组输出负荷变化图;
图4为本发明一优选实施例中热段一次侧与倒U型管壁之间对流换热系数分布计算结果;
图5为本发明一优选实施例中冷段一次侧与倒U型管壁之间对流换热系数分布计算结果。
图6为本发明一优选实施例中热段二次侧与倒U型管壁之间对流换热系数分布计算结果;
图7为本发明一优选实施例中冷段二次侧与倒U型管壁之间对流换热系数分布计算结果。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明一实施例提供了一种核电蒸汽发生器一二次侧对流换热系数分布实时估计方法及系统,以蒸汽发生器为研究对象,根据蒸汽发生器具体结构,将蒸汽发生器划分为热段、冷段和汽水分离器。基于质量、能量、动量动态衡算建立蒸汽发生器机理模型,完成模型验证,最后基于模型和DCS测量数据实时计算一二次侧对流换热系数分布。
本实施例提供的核电蒸汽发生器一二次侧对流换热系数分布实时估计方法,包括以下步骤:
步骤一,获取给定时刻下蒸汽发生器的实时运行数据;
步骤二,将蒸汽发生器划分为热段、冷段和汽水分离器,其中热段和冷段又分别划分为下降通道和上升通道:下降通道是指外壳与内部套筒之间工质流经的空间,工质向下流动;上升通道是指内部套筒与倒U型管壁之间工质流经的空间,工质向上流动;
步骤三,利用获取的蒸汽发生器的实时运行数据,建立下降通道模型,得到当前时刻下降通道底部出口液相工质的温度、压力及质量流量;
步骤四,利用获取的蒸汽发生器的实时运行数据,建立一回路冷却剂模型,得到一回路冷却剂温度、压力、质量流量以及一次侧与倒U型管壁之间的对流换热系数分布;
步骤五,利用获取的蒸汽发生器的实时运行数据以及得到的下降通道底部出口液相工质的流量、温度、压力,建立上升通道模型,得到当前时刻沿倒U型管高度的二回路工质的流速、温度以及压力分布,进而计算二次侧与倒U型管壁之间的对流换热系数分布;
步骤六,利用获取的蒸汽发生器的实时运行数据以及得到的上升通道顶部出口气液混合物工质的流速、温度以及压力,建立汽水分离器模型,计算得到汽水分离器出口气相工质、液相工质的温度、压力和质量流量,实现核电蒸汽发生器一二次侧对流换热系数分布的实时估计。
下面结合附图,对本实施例提供的核电蒸汽发生器一二次侧对流换热系数分布实时估计方法进一步详细描述如下。
本实施例提供的方法,涉及核电站立式U型自循环蒸汽发生器全工况一二次侧对流换热系数分布实时估计。图1是实施例蒸汽发生器一二次侧对流换热系数分布实时估计方法示意图。利用从运行机组现场DCS分布式控制系统实时测量数据库中获取给定时刻下机组负荷,给水温度、压力、质量流量,饱和蒸汽温度、压力、质量流量,一回路冷却剂进出口温度、压力、质量流量以及水位高度等数据,结合工质物性参数数据库和蒸汽发生器结构参数库,解算热段模型、冷段模型和汽水分离器模型,输出热段和冷段与倒U型管壁之间对流换热系数分布。图2是蒸汽发生器简化结构示意图。根据蒸汽发生器真实结构,进行简化划分为热段、冷段和汽水分离器。热段和冷段的二回路又可以根据工质是否达到饱和状态划分为预热区和沸腾区。
方法包括以下步骤:
步骤一、从运行机组现场分布式控制系统(DCS)实测数据库中获取给定时刻的运行数据包括:机组负荷;给水温度、压力、质量流量;饱和蒸汽温度、压力、质量流量;一回路冷却剂进出口温度、压力、质量流量以及水位高度等;
步骤二、在蒸汽发生器上升通道模型中,根据二回路工质状态将上升通道划分为预热区和沸腾区。预热区和沸腾区分界面的划分依据为:
hRC(t,z)=hsw(t,z) (1)
式中,hRC(t,z)是上升通道当前时刻t和高度z的二回路工质的比焓,kJ/kg;hsw(t,z)是当前时刻t和高度z的二回路工质饱和状态比焓,kJ/kg。
步骤三、下降通道入口液相工质中占比80%的给水流入热段,占比20%的给水流入冷段,占比50%的再循环水流入热段,占比50%的再循环水流入冷段。求解热段下降通道模型,式(2)~(4):
Figure BDA0002789028150000121
Figure BDA0002789028150000122
Figure BDA0002789028150000131
式中,MHL,DC是热段下降通道液相工质质量,kg;ρHL,DC是热段下降通道底部出口液相工质密度,kg/m3;AHL,DC是热段下降通道的横截面积,m2;H是下降通道的水位高度,m;Gfw是给水质量流量,kg/s;Grw是再循环水质量流量,kg/s;GHL,DC,out是热段下降通道底部出口液相工质质量流量,kg/s;CP,HL,DC是热段下降通道液相工质的定压比热容,kJ/(kg·K);THL,DC是热段下降通道底部出口液相工质温度,K;hHL,DC是热段下降通道液相工质比焓,kJ/kg,可根据热段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hfw是给水比焓,kJ/kg,可根据给水温度和压力通过工质物性参数数据库计算得到;hrw是再循环水比焓,kJ/kg,可根据再循环水温度和压力通过工质物性参数数据库计算得到;hHL,DC,out是热段下降通道底部出口液相工质比焓,kJ/kg,可根据热段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PHL,DC热段下降通道底部出口液相工质压力,MPa;GHL,DC是热段下降通道液相工质质量流量,kg/s;fHL,DC是热段下降通道摩擦因子;De,HL,DC是热段下降通道当量直径,m;g是重力加速度,m/s2
通过对热段下降通道模型求解,得到当前时刻热段下降通道底部出口液相工质的温度、压力以及质量流量。
求解冷段下降通道模型,式(5)~(7):
Figure BDA0002789028150000132
Figure BDA0002789028150000133
Figure BDA0002789028150000134
式中,MCL,DC是冷段下降通道液相工质质量,kg;ρCL,DC是冷段下降通道液相工质密度,kg/m3;ACL,DC是冷段下降通道的横截面积,m2;GCL,DC,out是冷段下降通道底部出口液相工质质量流量,kg/s;CP,CL,DC是冷段下降通道液相工质的定压比热容,kJ/(kg·K);TCL,DC是冷段下降通道液相工质温度,K;hCL,DC是冷段下降通道液相工质比焓,kJ/kg,可根据冷段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hCL,DC,out是冷段下降通道底部出口液相工质比焓,kJ/kg,可根据冷段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PCL,DC冷段下降通道液相工质压力,MPa;GCL,DC是冷段下降通道液相工质质量流量,kg/s;fCL,DC是冷段下降通道摩擦因子;De,CL,DC是冷段下降通道当量直径,m;
通过对冷段下降通道模型求解,得到当前时刻冷段下降通道底部出口液相工质的温度、压力以及质量流量。
步骤四、热段和冷段一回路冷却剂与倒U型管金属壁之间对流换热系数KHL,PS和KCL,PS以及热段和冷段预热区倒U型管金属壁与二回路工质之间的对流换热系数KHL,RC,PR和KCL,RC,PR,采用迪图斯-贝尔特公式计算:
K=0.023Rew 0.8Prw 0.3λw/dHL,MT (8)
式中,Rew是对应的热段或冷段一回路或二回路工质雷诺数;Prw是对应的热段或冷段一回路或二回路工质普朗特数;λw是对应的热段或冷段一回路或二回路工质热导率;dHL,MT是倒U型管内径;
对热段和冷段沸腾区倒U型管金属壁与二回路工质之间的对流换热系数K*,RC,BR采用式(9)~(14)Chen公式计算,其中,在热段的K*,RC,BR用KHL,RC,BR替换,在冷段的K*,RC,BR用KCL,RC,BR替换:
K*,RC,BR=Kcht+Kbht (9)
Figure BDA0002789028150000141
Figure BDA0002789028150000142
Figure BDA0002789028150000143
Figure BDA0002789028150000144
Figure BDA0002789028150000145
式中,Kcht、Kbht分别是对流传热部分的对流换热系数和泡核沸腾传热部分的对流换热系数;CP,w是工质定压比热容;hfs是沸腾区液相工质汽化潜热;σ沸腾区液相工质表面张力系数;△TMT是沸腾区倒U型管金属壁过热度;△PMT是沸腾区饱和蒸汽压差;x是质量气含率;ρw是上升通道液相工质密度;ρs是上升通道饱和蒸汽密度;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;dHL,MT是热段倒U型管内径。G是工质质量流量;Xtt和S是中间变量。
步骤五、考虑热段一回路冷却剂重力压降,根据动量、质量和能量守恒关系,求解热段一回路冷却剂模型,式(15)~(18):
Figure BDA0002789028150000151
Figure BDA0002789028150000152
Figure BDA0002789028150000153
Figure BDA0002789028150000154
式中,ρHL,PS是热段一回路冷却剂密度,kg/m3;WHL,PS是热段一回路冷却剂的流速,m/s;CP,HL,PS是热段一回路冷却剂定压比热容,kJ/(kg·K);THL,PS是热段一回路冷却剂温度,K;KHL,PS是热段一回路冷却剂通过倒U型管金属壁向二回路工质传热的对流换热系数,kW/(m2·K);dHL,MT是热段倒U型管内径,m;PHL,PS是热段一回路冷却剂压力,MPa。
通过对热段一回路冷却剂模型求解,得到热段工质温度、压力、质量流量以及热段一次侧与倒U型管壁之间对流换热系数。
求解冷段一回路冷却剂模型,式(19)~(22):
Figure BDA0002789028150000155
Figure BDA0002789028150000156
Figure BDA0002789028150000157
Figure BDA0002789028150000158
式中,ρCL,PS是冷段一回路冷却剂密度,kg/m3;WCL,PS是冷段一回路冷却剂的流速,m/s;CP,CL,PS是冷段一回路冷却剂定压比热容,kJ/(kg·K);TCL,PS是冷段一回路冷却剂温度,K;KCL,PS是冷段一回路冷却剂通过倒U型管金属壁向二回路工质传热的对流换热系数,kW/(m2·K);dCL,MT是冷段倒U型管内径,m;PCL,PS是冷段一回路冷却剂压力,MPa。
通过对冷段一回路冷却剂模型求解,得到冷段工质温度、压力、质量流量以及热段一次侧与倒U型管壁之间对流换热系数。
步骤六、考虑热段上升通道工质重力压降、摩擦压降和加速压降,根据动量、质量和能量守恒关系,求解热段上升通道模型,式(23)~(30):
Figure BDA0002789028150000161
Figure BDA0002789028150000162
Figure BDA0002789028150000163
Figure BDA0002789028150000164
Figure BDA0002789028150000165
Figure BDA0002789028150000166
Figure BDA0002789028150000167
Figure BDA0002789028150000168
式中,ρHL,RC是热段上升通道工质密度,kg/m3;WHL,RC是热段上升通道工质的流速,m/s;ρHL,MT是热段倒U型管金属壁密度,kg/m3;CP,HL,MT是热段倒U型管金属壁的定压比热容,kJ/(kg·K);THL,MT是热段倒U型管金属壁温度,K;n是倒U型管根数;KHL,RC,PR是热段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数,kW/(m2·K);dHL,MT是热段倒U型管内径,m;THL,RC,PR是热段上升通道预热区液相工质温度,K;ρHL,RC,PR是热段上升通道预热区液相工质密度,kg/m3;CP,HL,RC,PR是热段上升通道预热区液相工质定压比热容,kJ/(kg·K);WHL,RC,PR是热段上升通道预热区液相工质的流速,m/s;KHL,RC,BR是热段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数,kW/(m2·K);THL,RC,BR是热段上升通道沸腾区气液混合相工质温度,K;ρHL,RC,BR是热段上升通道沸腾区气液混合相工质密度,kg/m3;CP,HL,RC,BR是热段上升通道沸腾区气液混合相工质定压比热容,kJ/(kg·K);WHL,RC,BR是热段上升通道沸腾区气液混合相工质的流速,m/s;PHL,RC,PR是热段上升通道预热区液相工质压力,MPa;GHL,RC,PR是热段上升通道预热区液相工质质量流量,kg/s;fHL,RC,PR是热段上升通道预热区摩擦因子;De,HL,RC,PR是热段上升通道预热区当量直径,m;ξHL,RC,PR是热段上升通道预热区局部阻力系数;PHL,RC,BR是热段上升通道沸腾区气液混合相工质压力,MPa;GHL,RC,BR是热段上升通道沸腾区气液混合相工质质量流量,kg/s;fHL,RC,BR是热段上升通道沸腾区摩擦因子;De,HL,RC,BR是热段上升通道沸腾区当量直径,m;φ是两相倍乘因子;ξHL,RC,BR是热段上升通道沸腾区局部阻力系数;x是质量气含率,%;ρw是上升通道液相工质密度,kg/m3;ρs是上升通道饱和蒸汽密度,kg/m3;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;
通过对热段上升通道模型求解,得到热段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及热段二次侧与倒U型管壁对流换热系数分布。
求解冷段上升通道模型,式(31)~(37):
Figure BDA0002789028150000171
Figure BDA0002789028150000172
Figure BDA0002789028150000173
Figure BDA0002789028150000174
Figure BDA0002789028150000175
Figure BDA0002789028150000181
Figure BDA0002789028150000182
式中,ρCL,RC是冷段上升通道工质密度,kg/m3;WCL,RC是冷段上升通道工质的流速,m/s;ρCL,MT是冷段倒U型管金属壁密度,kg/m3;CP,CL,MT是冷段倒U型管金属壁的定压比热容,kJ/(kg·K);TCL,MT是冷段倒U型管金属壁温度,K;KCL,RC,PR是冷段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数,kW/(m2·K);dCL,MT是冷段倒U型管内径,m;TCL,RC,PR是冷段上升通道预热区液相工质温度,K;ρCL,RC,PR是冷段上升通道预热区液相工质密度,kg/m3;CP,CL,RC,PR是冷段上升通道预热区液相工质定压比热容,kJ/(kg·K);WCL,RC,PR是冷段上升通道预热区液相工质的流速,m/s;KCL,RC,BR是冷段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数,kW/(m2·K);TCL,RC,BR是冷段上升通道沸腾区气液混合相工质温度,K;ρCL,RC,BR是冷段上升通道沸腾区气液混合相工质密度,kg/m3;CP,CL,RC,BR是冷段上升通道沸腾区气液混合相工质定压比热容,kJ/(kg·K);WCL,RC,BR是冷段上升通道沸腾区气液混合相工质的流速,m/s;PCL,RC,PR是冷段上升通道预热区液相工质压力,MPa;GCL,RC,PR是冷段上升通道预热区液相工质质量流量,kg/s;fCL,RC,PR是冷段上升通道预热区摩擦因子;De,CL,RC,PR是冷段上升通道预热区当量直径,m;ξCL,RC,PR是冷段上升通道预热区局部阻力系数;PCL,RC,BR是冷段上升通道沸腾区气液混合相工质压力,MPa;GCL,RC,BR是冷段上升通道沸腾区气液混合相工质质量流量,kg/s;fCL,RC,BR是冷段上升通道沸腾区摩擦因子;De,CL,RC,BR是冷段上升通道沸腾区当量直径,m;ξCL,RC,BR是冷段上升通道沸腾区局部阻力系数;
通过对冷段上升通道模型求解,得到冷段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及冷段二次侧与倒U型管壁对流换热系数分布。
进一步,计算当前时刻沿倒U型管高度的气含率分布:
Figure BDA0002789028150000183
式中,hBR是沸腾区气液混合相工质比焓,kJ/kg;hss是沸腾区饱和蒸汽比焓,kJ/kg;hsw是沸腾区饱和水比焓,kJ/kg;xBR是沸腾区工质质量气含率,%。hBR,hsw和hsw可根据沸腾区气液混合相工质温度和压力通过工质物性参数数据库计算得到。
步骤七,求解汽水分离器模型,式(39)~(46):
Gss,SP,out=(xHL,RC,BR,outGHL,RC,BR,out+xCL,RC,BR,outGCL,RC,BR,out)×η (39)
Gsw,SP,out=(1-xHL,RC,BR,out×η)GHL,RC,BR,out+(1-xCL,RC,BR,out×η)GCL,RC,BR,out (40)
Figure BDA0002789028150000191
GSP,in=GHL,RC,BR,out+GCL,RC,BR,out (42)
PSP,in=PHL,RC,BR,out=PCL,RC,BR,out (43)
TSP,in=THL,RC,BR,out=TCL,RC,BR,out (44)
PSP,out=Pss,SP,out=Tsw,SP,out (45)
TSP,in=Tss,SP,out=Tsw,SP,out (46)
式中,Gss,SP,out是汽水分离器出口饱和蒸汽质量流量,kg/s;xHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量气含率,%;GHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量流量,kg/s;xCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量气含率,%;GCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量流量,kg/s;η是汽水分离器效率,%;Gsw,SP,out是汽水分离器出口饱和水质量流量,kg/s;PSP,out是汽水分离器出口工质压力,MPa;Pss,SP,out是汽水分离器出口饱和蒸汽压力,MPa;Psw,SP,out是汽水分离器出口饱和水压力,MPa;PSP,in是汽水分离器入口气液混合相工质压力,MPa;TSP,in是汽水分离器入口气液混合相工质温度,K;TCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质温度,K;THL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质温度,K;ξSP是汽水分离器局部阻力系数;GSP,in是汽水分离器入口气液混合相工质质量流量,kg/s;ρSP,in是汽水分离器入口气液混合相工质密度,kg/m3;PHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质压力,MPa;PCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质压力,MPa;Tss,SP,out是汽水分离器出口饱和蒸汽温度,K;Tsw,SP,out是汽水分离器出口饱和水温度,K;ρHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质密度,kg/m3;ρCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质密度,kg/m3
通过对汽水分离器模型求解,得到汽水分离器出口饱和水以及饱和蒸汽的温度、压力、质量流量。
本实施例提供的核电蒸汽发生器一二次侧对流换热系数分布实时估计方法,如图3所示,获取实施例核电站机组2019年6月10日不同负荷下的蒸汽发生器DCS实测数据。图4是热段一次侧与倒U型管壁之间对流换热系数分布估计结果,图5是冷段一次侧与倒U型管壁之间对流换热系数分布估计结果,图6是热段二次侧与倒U型管壁之间对流换热系数分布估计结果,图7是冷段二次侧与倒U型管壁之间对流换热系数分布估计结果。由图4-7可知,一二次侧与倒U型管壁之间对流换热系数随着核电站机组负荷升高而升高,反之亦反。
本发明上述实施例提供的核电蒸汽发生器一二次侧对流换热系数分布实时估计方法及系统。本发明上述实施例获取给定时刻下蒸汽发生器相关测点的实时测量数据;将蒸汽发生器划分为热段、冷段和汽水分离器,其中热段和冷段又划分为下降通道和上升通道:下降通道是指蒸汽发生器外壳与内部套筒之间二回路工质流经的空间,上升通道是指内部套筒与倒U型管管壁之间二回路工质流经的空间;求解下降通道模型得到当前时刻下降通道底部出口二回路工质的比焓、流量、温度、压力以及密度;求解一回路冷却剂模型得到当前时刻沿倒U型管高度的一回路冷却剂的比焓、流量、温度、压力以及密度分布,进而计算出当前时刻沿倒U型管高度的一次侧对流换热系数分布;求解上升通道模型得到当前时刻沿倒U型管高度的二回路工质的比焓、流量、温度、压力以及密度分布,进而计算出当前时刻沿倒U型管高度的二次侧对流换热系数分布;求解汽水分离器模型计算得到汽水分离器出口工质温度、压力和流量;可描述蒸汽发生器内部二回路工质热工水力特性动态变化过程,并可进一步应用于虚假水位甄别和液位安全限控制策略的改进。本发明上述实施例提供的技术方案,实现了全工况蒸汽发生器一二次侧对流换热系数分布实时估计,为蒸汽发生器运行优化及监测提供支撑条件,有助于提高核电站运行的安全性与经济性。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (9)

1.一种蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,包括:
获取给定时刻下蒸汽发生器的实时运行数据;
将蒸汽发生器划分为热段、冷段和汽水分离器,其中热段和冷段又分别划分为下降通道和上升通道:下降通道是指外壳与内部套筒之间工质流经的空间,工质向下流动;上升通道是指内部套筒与倒U型管壁之间工质流经的空间,工质向上流动;
利用获取的蒸汽发生器的实时运行数据,建立下降通道模型,采用龙格库塔法解算下降通道模型,得到当前时刻下降通道底部出口液相工质的温度、压力及质量流量;
利用获取的蒸汽发生器的实时运行数据,建立一回路冷却剂模型,采用龙格库塔法解算一回路冷却剂模型,得到当前时刻沿倒U型管高度的一回路工质的流速、温度以及压力分布,进而采用迪图斯-贝尔特公式计算当前时刻沿倒U型管高度的一次侧对流换热系数分布;
利用获取的蒸汽发生器的实时运行数据以及得到的下降通道底部出口液相工质的流量、温度、压力,采用龙格库塔法解算上升通道模型,得到当前时刻沿倒U型管高度的二回路工质的流速、温度以及压力分布,进而计算当前时刻沿倒U型管高度的二次侧对流换热系数分布,其中单相工质预热段采用迪图斯-贝尔特公式计算对流传热系数,气液两相工质沸腾段采用Chen公式计算;所述当前时刻沿倒U型管高度的二回路工质的流速、温度以及压力分布包括上升通道顶部出口气液混合物工质的流速、温度以及压力;
利用获取的蒸汽发生器的实时运行数据以及得到的上升通道顶部出口气液混合物工质的流速、温度以及压力,建立汽水分离器模型,采用龙格库塔法解算汽水分离器模型,得到汽水分离器出口气相工质、液相工质的温度、压力和质量流量,实现蒸汽发生器一二次侧对流换热系数分布的估计。
2.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,所述给定时刻下蒸汽发生器的实时运行数据,包括:
-机组负荷;
-给水温度、压力以及质量流量;
-饱和蒸汽温度、压力以及质量流量;
-一回路冷却剂进出口温度、压力以及质量流量;
-水位高度。
3.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,在所述上升通道中,根据二回路工质状态将上升通道划分为预热区和沸腾区;其中,预热区和沸腾区分界面的划分依据为:
hRC(t,z)=hsw(t,z) (1)
式中,hRC(t,z)是上升通道当前时刻t和高度z的二回路工质的比焓;hsw(t,z)是当前时刻t和高度z的二回路工质饱和状态比焓。
4.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,所述下降通道入口液相工质中,占比
Figure FDA0002789028140000021
的给水流入热段,占比
Figure FDA0002789028140000022
Figure FDA0002789028140000023
的给水流入冷段,占比
Figure FDA0002789028140000027
的再循环水流入热段,占比
Figure FDA0002789028140000028
的再循环水流入冷段;根据动量、质量和能量守恒关系,建立热段下降通道模型为式(2)~(4):
Figure FDA0002789028140000024
Figure FDA0002789028140000025
Figure FDA0002789028140000026
式中,MHL,DC是热段下降通道液相工质质量;ρHL,DC是热段下降通道底部出口液相工质密度;AHL,DC是热段下降通道的横截面积;H是下降通道的水位高度;Gfw是给水质量流量;Grw是再循环水质量流量;GHL,DC,out是热段下降通道底部出口液相工质质量流量;CP,HL,DC是热段下降通道液相工质的定压比热容;THL,DC是热段下降通道底部出口液相工质温度;hHL,DC是热段下降通道液相工质比焓,可根据热段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hfw是给水比焓,可根据给水温度和压力通过工质物性参数数据库计算得到;hrw是再循环水比焓,可根据再循环水温度和压力通过工质物性参数数据库计算得到;hHL,DC,out是热段下降通道底部出口液相工质比焓,可根据热段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PHL,DC热段下降通道底部出口液相工质压力;GHL,DC是热段下降通道液相工质质量流量;fHL,DC是热段下降通道摩擦因子;De,HL,DC是热段下降通道当量直径;g是重力加速度;
通过对热段下降通道模型求解,得到当前时刻热段下降通道底部出口液相工质的温度、压力以及质量流量;
进一步,建立冷段下降通道模型为式(5)~(7):
Figure FDA0002789028140000031
Figure FDA0002789028140000032
Figure FDA0002789028140000033
式中,MCL,DC是冷段下降通道液相工质质量;ρCL,DC是冷段下降通道液相工质密度;ACL,DC是冷段下降通道的横截面积;GCL,DC,out是冷段下降通道底部出口液相工质质量流量;CP,CL,DC是冷段下降通道液相工质的定压比热容;TCL,DC是冷段下降通道液相工质温度;hCL,DC是冷段下降通道液相工质比焓,可根据冷段下降通道液相工质温度和压力通过工质物性参数数据库计算得到;hCL,DC,out是冷段下降通道底部出口液相工质比焓,可根据冷段下降通道底部出口液相工质温度和压力通过工质物性参数数据库计算得到;PCL,DC冷段下降通道液相工质压力;GCL,DC是冷段下降通道液相工质质量流量;fCL,DC是冷段下降通道摩擦因子;De,CL,DC是冷段下降通道当量直径;
通过对冷段下降通道模型求解,得到当前时刻冷段下降通道底部出口液相工质的温度、压力以及质量流量。
5.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,热段和冷段一回路冷却剂与倒U型管金属壁之间对流换热系数KHL,PS和KCL,PS以及热段和冷段预热区倒U型管金属壁与二回路工质之间的对流换热系数KHL,RC,PR和KCL,RC,PR,采用迪图斯-贝尔特公式计算:
K=0.023Rew 0.8Prw 0.3λw/dHL,MT (8)
式中,Rew是对应的热段或冷段一回路或二回路工质雷诺数;Prw是对应的热段或冷段一回路或二回路工质普朗特数;λw是对应的热段或冷段一回路或二回路工质热导率;dHL,MT是倒U型管内径;
对热段和冷段沸腾区倒U型管金属壁与二回路工质之间的对流换热系数K*,RC,BR采用式(9)~(14)Chen公式计算,其中,在热段的K*,RC,BR用KHL,RC,BR替换,在冷段的K*,RC,BR用KCL,RC,BR替换:
K*,RC,BR=Kcht+Kbht (9)
Figure FDA0002789028140000041
Figure FDA0002789028140000042
Figure FDA0002789028140000043
Figure FDA0002789028140000044
Figure FDA0002789028140000045
式中,Kcht、Kbht分别是对流传热部分的对流换热系数和泡核沸腾传热部分的对流换热系数;CP,w是工质定压比热容;hfs是沸腾区液相工质汽化潜热;σ沸腾区液相工质表面张力系数;△TMT是沸腾区倒U型管金属壁过热度;△PMT是沸腾区饱和蒸汽压差;x是质量气含率;ρw是上升通道液相工质密度;ρs是上升通道饱和蒸汽密度;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;
dHL,MT是热段倒U型管内径;G是工质质量流量;Xtt和S是中间变量。
6.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,考虑热段一回路冷却剂重力压降,根据动量、质量和能量守恒关系,建立热段一回路冷却剂模型为式(15)~(18):
Figure FDA0002789028140000046
Figure FDA0002789028140000047
Figure FDA0002789028140000051
Figure FDA0002789028140000052
式中,ρHL,PS是热段一回路冷却剂密度;WHL,PS是热段一回路冷却剂的流速;CP,HL,PS是热段一回路冷却剂定压比热容;THL,PS是热段一回路冷却剂温度;KHL,PS是热段一回路冷却剂与倒U型管金属壁之间对流换热系数;dHL,MT是热段倒U型管内径;PHL,PS是热段一回路冷却剂压力;
通过对热段一回路冷却剂模型求解,得到热段工质温度、压力、质量流量以及热段一次侧与倒U型管壁之间对流换热系数;
建立冷段一回路冷却剂模型为式(19)~(22):
Figure FDA0002789028140000053
Figure FDA0002789028140000054
Figure FDA0002789028140000055
Figure FDA0002789028140000056
式中,ρCL,PS是冷段一回路冷却剂密度;WCL,PS是冷段一回路冷却剂的流速;CP,CL,PS是冷段一回路冷却剂定压比热容;TCL,PS是冷段一回路冷却剂温度;KCL,PS是冷段一回路冷却剂与倒U型管金属壁之间的对流换热系数;dCL,MT是冷段倒U型管内径;PCL,PS是冷段一回路冷却剂压力;
通过对冷段一回路冷却剂模型求解,得到冷段工质温度、压力、质量流量以及冷段一次侧与倒U型管壁之间对流换热系数。
7.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,考虑热段上升通道工质重力压降、摩擦压降和加速压降,根据动量、质量和能量守恒关系,建立热段上升通道模型为式(23)~(30):
Figure FDA0002789028140000057
Figure FDA0002789028140000058
Figure FDA0002789028140000061
Figure FDA0002789028140000062
Figure FDA0002789028140000063
Figure FDA0002789028140000064
Figure FDA0002789028140000065
Figure FDA0002789028140000066
式中,ρHL,RC是热段上升通道工质密度;WHL,RC是热段上升通道工质的流速;ρHL,MT是热段倒U型管金属壁密度;CP,HL,MT是热段倒U型管金属壁的定压比热容;THL,MT是热段倒U型管金属壁温度;n是倒U型管根数;KHL,RC,PR是热段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数;dHL,MT是热段倒U型管内径;THL,RC,PR是热段上升通道预热区液相工质温度;ρHL,RC,PR是热段上升通道预热区液相工质密度;CP,HL,RC,PR是热段上升通道预热区液相工质定压比热容;WHL,RC,PR是热段上升通道预热区液相工质的流速;KHL,RC,BR是热段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数;THL,RC,BR是热段上升通道沸腾区气液混合相工质温度;ρHL,RC,BR是热段上升通道沸腾区气液混合相工质密度;CP,HL,RC,BR是热段上升通道沸腾区气液混合相工质定压比热容;WHL,RC,BR是热段上升通道沸腾区气液混合相工质的流速;PHL,RC,PR是热段上升通道预热区液相工质压力a;GHL,RC,PR是热段上升通道预热区液相工质质量流量;fHL,RC,PR是热段上升通道预热区摩擦因子;De, HL,RC,PR是热段上升通道预热区当量直径;ξHL,RC,PR是热段上升通道预热区局部阻力系数;PHL,RC,BR是热段上升通道沸腾区气液混合相工质压力;GHL,RC,BR是热段上升通道沸腾区气液混合相工质质量流量;fHL,RC,BR是热段上升通道沸腾区摩擦因子;De,HL,RC,BR是热段上升通道沸腾区当量直径;φ是两相倍乘因子;ξHL,RC,BR是热段上升通道沸腾区局部阻力系数;x是质量气含率;ρw是上升通道液相工质密度;ρs是上升通道饱和蒸汽密度;μw是上升通道液相工质粘性系数;μs是上升通道饱和蒸汽粘性系数;
通过对热段上升通道模型求解,得到热段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及热段二次侧与倒U型管壁之间对流换热系数分布;
建立冷段上升通道模型为式(31)~(37):
Figure FDA0002789028140000071
Figure FDA0002789028140000072
Figure FDA0002789028140000073
Figure FDA0002789028140000074
Figure FDA0002789028140000075
Figure FDA0002789028140000076
Figure FDA0002789028140000077
式中,ρCL,RC是冷段上升通道工质密度;WCL,RC是冷段上升通道工质的流速;ρCL,MT是冷段倒U型管金属壁密度;CP,CL,MT是冷段倒U型管金属壁的定压比热容;TCL,MT是冷段倒U型管金属壁温度;KCL,RC,PR是冷段上升通道预热区二回路工质与倒U型管金属壁间对流换热系数;dCL,MT是冷段倒U型管内径;TCL,RC,PR是冷段上升通道预热区液相工质温度;ρCL,RC,PR是冷段上升通道预热区液相工质密度;CP,CL,RC,PR是冷段上升通道预热区液相工质定压比热容;WCL,RC,PR是冷段上升通道预热区液相工质的流速;KCL,RC,BR是冷段上升通道沸腾区二回路工质与倒U型管金属壁间对流换热系数;TCL,RC,BR是冷段上升通道沸腾区气液混合相工质温度;ρCL,RC,BR是冷段上升通道沸腾区气液混合相工质密度;CP,CL,RC,BR是冷段上升通道沸腾区气液混合相工质定压比热容;WCL,RC,BR是冷段上升通道沸腾区气液混合相工质的流速;PCL,RC,PR是冷段上升通道预热区液相工质压力a;GCL,RC,PR是冷段上升通道预热区液相工质质量流量;fCL,RC,PR是冷段上升通道预热区摩擦因子;De,CL,RC,PR是冷段上升通道预热区当量直径;ξCL,RC,PR是冷段上升通道预热区局部阻力系数;PCL,RC,BR是冷段上升通道沸腾区气液混合相工质压力;GCL,RC,BR是冷段上升通道沸腾区气液混合相工质质量流量;fCL,RC,BR是冷段上升通道沸腾区摩擦因子;De,CL,RC,BR是冷段上升通道沸腾区当量直径;ξCL,RC,BR是冷段上升通道沸腾区局部阻力系数;
通过对冷段上升通道模型求解,得到冷段当前时刻沿倒U型管高度的二回路工质的流速、温度、压力以及冷段二次侧与倒U型管壁之间对流换热系数分布。
8.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,计算当前时刻沿倒U型管高度的气含率分布:
Figure FDA0002789028140000081
式中,hBR是沸腾区气液混合相工质比焓;hss是沸腾区饱和蒸汽比焓;hsw是沸腾区饱和水比焓;xBR是沸腾区工质质量气含率;hBR,hss和hsw可根据沸腾区气液混合相工质温度和压力通过工质物性参数数据库计算得到。
9.根据权利要求1所述的蒸汽发生器一二次侧对流换热系数分布的估计方法,其特征在于,所述汽水分离器模型为式(39)~(46):
Gss,SP,out=(xHL,RC,BR,outGHL,RC,BR,out+xCL,RC,BR,outGCL,RC,BR,out)×η (39)
Gsw,SP,out=(1-xHL,RC,BR,out×η)GHL,RC,BR,out+(1-xCL,RC,BR,out×η)GCL,RC,BR,out (40)
Figure FDA0002789028140000082
GSP,in=GHL,RC,BR,out+GCL,RC,BR,out (42)
PSP,in=PHL,RC,BR,out=PCL,RC,BR,out (43)
TSP,in=THL,RC,BR,out=TCL,RC,BR,out (44)
PSP,out=Pss,SP,out=Tsw,SP,out (45)
TSP,in=Tss,SP,out=Tsw,SP,out (46)
式中,Gss,SP,out是汽水分离器出口饱和蒸汽质量流量;xHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量气含率;GHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质质量流量;xCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量气含率;GCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质质量流量;η是汽水分离器效率;Gsw,SP,out是汽水分离器出口饱和水质量流量;PSP,out是汽水分离器出口工质压力;Pss,SP,out是汽水分离器出口饱和蒸汽压力;Psw,SP,out是汽水分离器出口饱和水压力;PSP,in是汽水分离器入口气液混合相工质压力;TSP,in是汽水分离器入口气液混合相工质温度;TCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质温度;THL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质温度;ξSP是汽水分离器局部阻力系数;GSP,in是汽水分离器入口气液混合相工质质量流量;ρSP,in是汽水分离器入口气液混合相工质密度;PHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质压力;PCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质压力;Tss,SP,out是汽水分离器出口饱和蒸汽温度;Tsw,SP,out是汽水分离器出口饱和水温度;ρHL,RC,BR,out是热段上升通道沸腾区出口气液混合相工质密度;ρCL,RC,BR,out是冷段上升通道沸腾区出口气液混合相工质密度;
通过对汽水分离器模型求解,得到汽水分离器出口饱和水以及饱和蒸汽的温度、压力、质量流量。
CN202011308496.0A 2020-11-19 2020-11-19 一种蒸汽发生器一二次侧对流换热系数分布的估计方法 Active CN112417681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011308496.0A CN112417681B (zh) 2020-11-19 2020-11-19 一种蒸汽发生器一二次侧对流换热系数分布的估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011308496.0A CN112417681B (zh) 2020-11-19 2020-11-19 一种蒸汽发生器一二次侧对流换热系数分布的估计方法

Publications (2)

Publication Number Publication Date
CN112417681A CN112417681A (zh) 2021-02-26
CN112417681B true CN112417681B (zh) 2022-03-22

Family

ID=74774382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011308496.0A Active CN112417681B (zh) 2020-11-19 2020-11-19 一种蒸汽发生器一二次侧对流换热系数分布的估计方法

Country Status (1)

Country Link
CN (1) CN112417681B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128679A (zh) * 1994-11-23 1996-08-14 林德股份公司 气液接触装置
CN106709133A (zh) * 2016-11-16 2017-05-24 东南大学 基于神经网络曲面拟合的核电站堆芯温度场软测量方法
CN106709137A (zh) * 2016-11-16 2017-05-24 东南大学 基于多项式极大似然估计的核电站堆芯温度场软测量方法
CN107784156A (zh) * 2017-09-07 2018-03-09 中国船舶重工集团公司第七〇九研究所 核动力装置蒸汽排放系统参数的计算方法
CN108469744A (zh) * 2018-02-11 2018-08-31 东南大学 一种建立核电机组蒸汽发生器机理模型的方法及其系统
CN109783936A (zh) * 2019-01-15 2019-05-21 国网宁夏电力有限公司电力科学研究院 压水堆核电站核岛变工况蓄热增量的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128679A (zh) * 1994-11-23 1996-08-14 林德股份公司 气液接触装置
CN106709133A (zh) * 2016-11-16 2017-05-24 东南大学 基于神经网络曲面拟合的核电站堆芯温度场软测量方法
CN106709137A (zh) * 2016-11-16 2017-05-24 东南大学 基于多项式极大似然估计的核电站堆芯温度场软测量方法
CN107784156A (zh) * 2017-09-07 2018-03-09 中国船舶重工集团公司第七〇九研究所 核动力装置蒸汽排放系统参数的计算方法
CN108469744A (zh) * 2018-02-11 2018-08-31 东南大学 一种建立核电机组蒸汽发生器机理模型的方法及其系统
CN109783936A (zh) * 2019-01-15 2019-05-21 国网宁夏电力有限公司电力科学研究院 压水堆核电站核岛变工况蓄热增量的计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Extended state observer-based adaptive dynamic sliding mode control for power level of nuclear power plant》;jiuwu Hui等;《ELSEVIER》;20200831;全文 *
《蒸汽发生器二次侧汽液两相流数值模拟》;杨元龙等;《原子能科学技术》;20120131;第46卷(第1期);全文 *

Also Published As

Publication number Publication date
CN112417681A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Dumont et al. Mathematical modelling and design of an advanced once-through heat recovery steam generator
CN104834773B (zh) 一种直管式直流蒸汽发生器换热性能的仿真方法
Chung et al. Thermal hydraulic calculation in a passive residual heat removal system of the SMART-P plant for forced and natural convection conditions
Bahmanyar et al. A performance analysis of vertical steam generator using an entropy generation method
Vallée et al. Counter-current flow limitation in a model of the hot leg of a PWR—Comparison between air/water and steam/water experiments
CN112417676B (zh) 基于核电蒸汽发生器分布参数模型的关键变量估计方法
Liu et al. Development and assessment of a new CHF mechanistic model for subcooled and low quality flow boiling
Zeng et al. Numerical study on the enhanced heat transfer characteristics of steam generator with axial economizer
Xu et al. A one-dimensional code of double-coupled passive residual heat removal system for the swimming pool-type low-temperature heating reactor
CN112417681B (zh) 一种蒸汽发生器一二次侧对流换热系数分布的估计方法
Salari et al. Thermal-hydraulic optimization of a steam generator by entropy generation minimization and genetic algorithm method
Deghal Cheridi et al. Modeling and simulation of a natural circulation water-tube steam boiler
CN112417780B (zh) 蒸汽发生器二回路再循环水质量流量估计方法及系统
CN112380713B (zh) 一种蒸汽发生器倒u型管金属壁温度分布估计方法
Lee et al. Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis
CN112417782B (zh) 一种蒸汽发生器二回路工质循环倍率估计方法
CN112699523B (zh) 蒸汽发生器二回路工质汽化起始高度估计方法及装置
CN112417781B (zh) 核电蒸汽发生器出口饱和蒸汽质量流量估计方法及系统
CN112417680B (zh) 蒸汽发生器二回路工质质量气含率分布估计方法及系统
Ghazanfari et al. Drift flux modeling of the VVER-1000 horizontal nuclear steam generator
Bahmanyar et al. Applying second law of thermodynamic for optimization of horizontal steam generator
Jun et al. Validation of the TASS/SMR-S code for the core heat transfer model on the steady experimental conditions
Sun et al. Transient analysis and dynamic modeling of the steam generator water level for nuclear power plants
DOLGANOV et al. Advanced Natural Circulation Model in Evaporation Circuits of Thermosiphon Waste Heat Boilers
Xu et al. Validation of RELAP5/MOD3. 4 for Flashing-Induced Instabilities in a Natural Circulation Loop

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant