CN112414735A - Seawater circulating cooling water dynamic simulation test device - Google Patents

Seawater circulating cooling water dynamic simulation test device Download PDF

Info

Publication number
CN112414735A
CN112414735A CN202011290976.9A CN202011290976A CN112414735A CN 112414735 A CN112414735 A CN 112414735A CN 202011290976 A CN202011290976 A CN 202011290976A CN 112414735 A CN112414735 A CN 112414735A
Authority
CN
China
Prior art keywords
water
cooling
communicated
pipeline
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011290976.9A
Other languages
Chinese (zh)
Inventor
刘欣
刘玮
郑斐斐
黄茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011290976.9A priority Critical patent/CN112414735A/en
Publication of CN112414735A publication Critical patent/CN112414735A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

The invention discloses a dynamic simulation test device for seawater circulating cooling water, wherein an outlet of a heat exchange tube in a simulation condenser is communicated with an inlet of a water distributor in a simulation cooling tower sequentially through a corrosion monitoring tube and a bypass online monitoring device; a cooling pipe is arranged in the water collecting tank, a cooling medium input pipeline is communicated with an inlet of the cooling pipe, and a cooling medium output pipeline is communicated with an outlet of the cooling pipe; the bottom of the simulation condenser is provided with the electric heater, the inner side of the top of the simulation condenser is provided with the second temperature measuring instrument, the temperature measuring instrument is connected with the second temperature measuring instrument and the electric heater, and the device can simulate the operation of the seawater circulating cooling water system more accurately.

Description

Seawater circulating cooling water dynamic simulation test device
Technical Field
The invention belongs to the technical field of power generation, and relates to a dynamic simulation test device for seawater circulating cooling water.
Background
Coastal power plants mostly adopt seawater as a cooling water source. Domestic power plants using seawater as cooling water mostly adopt a straight-flow process. In order to alleviate the contradiction between the increasing shortage of fresh water resources and the increase of industrial water demand and reduce the thermal pollution caused by the discharge of cooling water, the seawater direct-current cooling process gradually develops to a seawater circulating cooling process. The seawater has complex components, wherein the content of corrosive ions such as chloride ions and scaling ions such as calcium ions is high, and the seawater has multiple biological species, thus being easy to form biological fouling to cause biological fouling. Therefore, the operation control of the circulating cooling water process using seawater is more complicated than that of fresh water.
Before the seawater circulating cooling process is put into operation formally, the control parameters such as the dosage of the scale and corrosion inhibitor, the acid addition amount, the dosage of the bactericide, the dosing period and the like are generally determined preliminarily by a small dynamic simulation test. In the dynamic simulation test process, indexes such as conductivity, alkalinity, bacterial and algal quantity and the like are manually analyzed and detected regularly, and dosing and pollution discharge are adjusted in real time according to the detection result. Such a dynamic simulation test stand has the following problems:
1) the manual analysis results have hysteresis and cannot reflect the measurement results in time. If the concentration multiplying power exceeds the standard, the pollution discharge or the dosage cannot be found and adjusted in time;
2) the quality of personnel can affect the test result;
3) the temperature of the simulation test bed cannot be accurately controlled, so that the fouling thermal resistance cannot be accurately monitored.
It is not always feasible to construct an improved dynamic simulation test device to accurately simulate the operation of a seawater circulating cooling water system.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a dynamic simulation test device for seawater circulating cooling water, which can simulate the operation of a seawater circulating cooling water system more accurately.
In order to achieve the purpose, the dynamic simulation test device for the seawater circulating cooling water comprises a simulation condenser, a corrosion monitoring pipe, a bypass online monitoring device, a simulation cooling tower, a water collecting tank, a water pump, a pump outlet valve, a flowmeter, a pollution discharge adjusting system, a cooling medium input pipeline, a cooling medium output pipeline and a temperature controller;
an outlet of a heat exchange tube in the simulated condenser is communicated with an inlet of a water distributor in the simulated cooling tower through a corrosion monitoring tube and a bypass online monitoring device in sequence, an axial flow fan and a filler are arranged in the simulated cooling tower, wherein the axial flow fan is positioned above the water distributor, the filler is positioned below the water distributor, a water collecting tank is positioned below the simulated cooling tower, an outlet at the bottom of the water collecting tank is communicated with the inlet of the heat exchange tube in the simulated condenser through a water pump, a pump outlet valve and a flowmeter, and a pollution discharge regulating system is communicated with a pipeline between the pump outlet valve and the flowmeter;
a cooling pipe is arranged in the water collecting tank, a cooling medium input pipeline is communicated with an inlet of the cooling pipe, and a cooling medium output pipeline is communicated with an outlet of the cooling pipe;
the inlet and the outlet of the heat exchange tube are respectively provided with a first temperature measuring instrument, the bottom of the simulation condenser is provided with an electric heater, and the inner side of the top of the simulation condenser is provided with a second temperature measuring instrument, wherein the temperature measuring instruments are connected with the second temperature measuring instruments and the electric heater.
And a water drain valve is arranged at a water drain port at the bottom of the simulation condenser.
The bypass on-line monitoring device comprises a conductivity probe, a pH probe and a biomass monitoring probe.
The sewage discharge regulating system comprises a flowmeter, a needle valve and a water collecting end enclosure which are connected in sequence.
The water collecting tank is characterized by further comprising a bypass pipeline, one end of the bypass pipeline is communicated with a pipeline between the pump outlet valve and the flowmeter, the other end of the bypass pipeline is communicated with an inlet of the water collecting tank, and a bypass valve is arranged on the bypass pipeline.
The blowdown adjusting system is connected with the bypass pipeline.
A liquid level switch is arranged in the water collecting tank, an outlet of the replenishing water tank is communicated with an inlet of the water collecting tank through an electromagnetic valve, and the liquid level switch is connected with the electromagnetic valve.
The invention has the following beneficial effects:
the dynamic simulation test device for seawater circulating cooling water is characterized in that when the dynamic simulation test device for seawater circulating cooling water is in specific operation, an electric heater is started to heat test water in a heat exchange pipe, the test water is heated to a preset temperature and then sent into a water distributor, then sprayed onto a filler through the water distributor and finally enters a water collecting tank, water in the water collecting tank enters the heat exchange pipe again, the circulation is repeated in the same way, when the concentration ratio meets the requirement, pollution discharge is started through a pollution discharge adjusting system, so that the dynamic simulation for seawater circulating cooling water is realized, in addition, in the test process, the temperatures at the inlet and the outlet of the heat exchange pipe are detected through two first temperature detectors, the temperature inside a simulated condenser is detected through a second temperature detector, the water conductivity, the pH value and the biological sludge amount are monitored in real time through a bypass online monitoring device, the corrosion condition is detected through a corrosion monitoring pipe, and various problems, so as to improve the accuracy of the simulation experiment and save manual testing.
Drawings
FIG. 1 is a schematic structural diagram of the present invention.
Fig. 2 is a schematic view of a heat exchange tube.
Wherein, 1 is a temperature controller, 2 is a second temperature detector, 3 is a water drain valve, 4 is an electric heater, 5 is a first temperature detector, 6 is a heat exchange pipe, 7 is a simulation condenser, 8 is a corrosion monitoring pipe, 9 is a bypass online monitoring device, 10 is an axial flow fan, 11 is a water distributor, 12 is a cooling tower, 13 is a filler, 14 is a supplementary water tank, 15 is an electromagnetic valve, 16 is a water collecting tank, 17 is a liquid level switch, 18 is a cooling pipe, 19 is a pollution discharge regulating system, 20 is a bypass valve, 21 is a water pump, 22 is a pump outlet valve, and 23 is a flowmeter.
Detailed Description
The invention is described in further detail below with reference to the accompanying drawings:
referring to fig. 1, the dynamic simulation test device for seawater circulating cooling water according to the present invention includes a simulated condenser 7, a corrosion monitoring pipe 8, a bypass on-line monitoring device 9, a simulated cooling tower 12, a water collecting tank 16, a water pump 21, a pump outlet valve 22, a flow meter 23, a pollution discharge regulating system 19, a cooling medium input pipeline, a cooling medium output pipeline, and a temperature controller 1; an outlet of a heat exchange tube 6 in the simulated condenser 7 is communicated with an inlet of a water distributor 11 in a simulated cooling tower 12 through a corrosion monitoring tube 8 and a bypass online monitoring device 9 in sequence, an axial flow fan 10 and a filler 13 are arranged in the simulated cooling tower 12, wherein the axial flow fan 10 is positioned above the water distributor 11, the filler 13 is positioned below the water distributor 11, a water collecting tank 16 is positioned below the simulated cooling tower 12, an outlet at the bottom of the water collecting tank 16 is communicated with the inlet of the heat exchange tube 6 in the simulated condenser 7 through a water pump 21, a pump outlet valve 22 and a flowmeter 23, and a sewage discharge adjusting system 19 is communicated with a pipeline between the pump outlet valve 22 and the flowmeter 23; a cooling pipe 18 is arranged in the water collecting tank 16, a cooling medium input pipeline is communicated with an inlet of the cooling pipe 18, and a cooling medium output pipeline is communicated with an outlet of the cooling pipe 18; the inlet and the outlet of the heat exchange tube 6 are provided with first temperature measuring instruments 5, the bottom of the simulation condenser 7 is provided with an electric heater 4, the inner side of the top of the simulation condenser 7 is provided with a second temperature measuring instrument 2, and the temperature control instrument 1 is connected with the second temperature measuring instrument 2 and the electric heater 4.
A water drain valve 3 is arranged at a water drain outlet at the bottom of the simulation condenser 7; the bypass online monitoring device 9 comprises a conductivity probe, a pH probe and a biomass monitoring probe; the sewage discharge regulating system 19 comprises a flow meter, a needle valve and a water collecting end enclosure which are connected in sequence.
The invention also comprises a bypass pipeline, one end of the bypass pipeline is communicated with a pipeline between the pump outlet valve 22 and the flowmeter 23, the other end of the bypass pipeline is communicated with the inlet of the water collecting tank 16, a bypass valve 20 is arranged on the bypass pipeline, and the pollution discharge adjusting system 19 is connected with the bypass pipeline; a liquid level switch 17 is arranged in the water collecting tank 16, an outlet of the replenishing water tank 14 is communicated with an inlet of the water collecting tank 16 through an electromagnetic valve 15, and the liquid level switch 17 is connected with the electromagnetic valve 15.
Specifically, the simulation condenser 7 is an electric heating water tank made of 316L materials, a connector with the diameter of 25mm is reserved inside the simulation condenser and can be connected with the heat exchange tube 6, the maximum connection number is 9, and the length of each connection is 1000 mm. The flow chart of the cooling water in the heat exchange tube 6 is shown in fig. 2, 8 electric heaters 4 with power of 6 and 1.5kw and 2 and 1.0kw are installed inside the simulated condenser 7, and the test water inside the heat exchange tube 6 can be continuously heated under the control of the temperature controller 1, so that the temperature of the high-temperature side of the outlet of the heat exchange tube 6 is ensured to be stable, and the temperature of the outlet of the condenser tube is enabled to reach 38-43 ℃. The temperature at the inlet and the outlet of the heat exchange tube 6 is detected by the two first temperature detectors 5, and the temperature inside the simulation condenser 7 is detected by the second temperature detector 2.
The simulated cooling tower 12 is a small hyperbolic cooling tower, which primarily serves to enhance evaporation and heat dissipation, and has a height of about 1.8m, a maximum diameter of about 1.0m, and a minimum diameter of about 0.8 m. Its internal filling is about 0.3m during operation3The filler 13 is used for strengthening heat exchange, and the upper part of the filler 13 is provided with a mother-branch pipe type water distributor 11.
The water collecting tank 16 is made of polytetrafluoroethylene and has a volume of 1.0m3The water volume 400L is maintained during operation.
The water pump 21 is a seawater corrosion resistant polytetrafluoroethylene circulating pump with a lining with a rated flow of 8m3H, the maximum lift is 32 m.
The flowmeter 23 is an organic glass rotameter, and the rotor is made of a non-metallic material.
The corrosion monitoring tube 8 is a plexiglass tube with a diameter of phi 20, phi 30 and phi 40 for dynamic coupon testing of materials at different flow rates.
The material of supplementary water tank 14 is polytetrafluoroethylene, and solenoid valve 15 is installed to the exit of supplementary water tank 14, and solenoid valve 15 cooperates with the liquid level switch 17 in the header tank 16 and realizes real-time moisturizing, guarantees that the inside water level of header tank 16 is stable.
The sewage discharge regulating system 19 comprises a flow meter, a needle valve and a water collecting end socket which are sequentially communicated, and the sewage discharge amount can be accurately regulated by controlling the opening degree of the needle valve, so that the stability of the concentration ratio of circulating water is ensured.
The cooling pipe 18 in the water collection tank 16 is a titanium pipe, and low-temperature cooling water is arranged inside the cooling pipe 18 and used for reducing the temperature of circulating cooling water in the water collection tank 16.
The bypass online monitoring device 9 is used for monitoring the water conductivity, pH and biological sludge amount in real time in the circulating water running process.
During testing, test water is added into the dynamic test system until the water volume meets the requirement, the water pump 21 is started, and the flow of circulating water is adjusted at the required flow rate; starting the electric heater 4, controlling the water temperature at the outlet of the heat exchange tube 6 by adopting the temperature controller 1, and automatically and continuously supplementing water to keep the volume of the system water unchanged; test water enters the simulated condenser 7 for heat exchange, then is sprayed into a filler 13 in the simulated cooling tower 12 through the water distributor 11 for heat dissipation and cooling, and then flows into a water collecting tank 16 below. The circulation is repeated, when the concentration ratio meets the requirement, the sewage discharge is started through the sewage discharge adjusting system 19, the flow of the sewage discharge is adjusted, the concentration ratio is kept stable in the required range, and the experiment enters a stable working condition stage to operate for more than 15 days.

Claims (7)

1. A dynamic simulation test device for seawater circulating cooling water is characterized by comprising a simulation condenser (7), a corrosion monitoring pipe (8), a bypass online monitoring device (9), a simulation cooling tower (12), a water collecting tank (16), a water pump (21), a pump outlet valve (22), a flowmeter (23), a sewage discharge adjusting system (19), a cooling medium input pipeline, a cooling medium output pipeline and a temperature controller (1);
an outlet of a heat exchange tube (6) in the simulated condenser (7) is communicated with an inlet of a water distributor (11) in a simulated cooling tower (12) through a corrosion monitoring tube (8) and a bypass online monitoring device (9) in sequence, an axial flow fan (10) and a filler (13) are arranged in the simulated cooling tower (12), wherein the axial flow fan (10) is positioned above the water distributor (11), the filler (13) is positioned below the water distributor (11), a water collecting tank (16) is positioned below the simulated cooling tower (12), an outlet at the bottom of the water collecting tank (16) is communicated with an inlet of the heat exchange tube (6) in the simulated condenser (7) through a water pump (21), a pump outlet valve (22) and a flowmeter (23), and a pollution discharge regulating system (19) is communicated with a pipeline between the pump outlet valve (22) and the flowmeter (23);
a cooling pipe (18) is arranged in the water collecting tank (16), a cooling medium input pipeline is communicated with an inlet of the cooling pipe (18), and a cooling medium output pipeline is communicated with an outlet of the cooling pipe (18);
the inlet and the outlet of the heat exchange tube (6) are respectively provided with a first temperature measuring instrument (5), the bottom of the simulation condenser (7) is provided with an electric heater (4), the inner side of the top of the simulation condenser (7) is provided with a second temperature measuring instrument (2), and the temperature measuring instrument (1) is connected with the second temperature measuring instrument (2) and the electric heater (4).
2. The dynamic simulation test device for seawater circulating cooling water according to claim 1, wherein a water drain valve (3) is arranged at a water drain outlet at the bottom of the simulated condenser (7).
3. The dynamic simulation test device for seawater circulation cooling water according to claim 1, wherein the bypass online monitoring device (9) comprises a conductivity probe, a pH probe and a biomass monitoring probe.
4. The dynamic simulation test device for seawater circulating cooling water according to claim 1, wherein the blowdown adjusting system (19) comprises a flow meter, a needle valve and a water collecting end enclosure which are connected in sequence.
5. The dynamic simulation test device for seawater circulation cooling water according to claim 1, further comprising a bypass pipeline, wherein one end of the bypass pipeline is communicated with a pipeline between the pump outlet valve (22) and the flowmeter (23), the other end of the bypass pipeline is communicated with an inlet of the water collection tank (16), and the bypass pipeline is provided with a bypass valve (20).
6. The dynamic simulation test device for seawater circulation cooling water according to claim 5, wherein the blowdown adjusting system (19) is connected with a bypass pipe.
7. The dynamic simulation test device for seawater circulating cooling water according to claim 1, wherein a liquid level switch (17) is arranged in the water collecting tank (16), an outlet of the replenishing water tank (14) is communicated with an inlet of the water collecting tank (16) through an electromagnetic valve (15), and the liquid level switch (17) is connected with the electromagnetic valve (15).
CN202011290976.9A 2020-11-17 2020-11-17 Seawater circulating cooling water dynamic simulation test device Pending CN112414735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011290976.9A CN112414735A (en) 2020-11-17 2020-11-17 Seawater circulating cooling water dynamic simulation test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011290976.9A CN112414735A (en) 2020-11-17 2020-11-17 Seawater circulating cooling water dynamic simulation test device

Publications (1)

Publication Number Publication Date
CN112414735A true CN112414735A (en) 2021-02-26

Family

ID=74831620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011290976.9A Pending CN112414735A (en) 2020-11-17 2020-11-17 Seawater circulating cooling water dynamic simulation test device

Country Status (1)

Country Link
CN (1) CN112414735A (en)

Similar Documents

Publication Publication Date Title
CN100578399C (en) Circulating cooling water purification re-utilization automatic monitoring system
CN104502532B (en) Chemical system circularly-cooling sea water treatment agent device for evaluating performance and method
CN105953840A (en) Dual-channel industrial circulating cooling water dynamic simulation teat bench
CN104502556A (en) Performance evaluation device and method for seawater circulating cooling water treating agent for electric power system
CN214040667U (en) Seawater circulating cooling water dynamic simulation test device
CN112098461B (en) Flue gas introducing method online water dew point acid dew point measuring device
CN201190120Y (en) Automatic monitoring apparatus for purification and re-use of recirculated cooling water
CN106950145A (en) Suitable for the dynamic experiment method and apparatus of recirculating cooling water system pipeline scale
CN111392878A (en) Circulating water quality effect on-line monitoring and automatic dosing system
CN208361916U (en) A kind of open cycle cooling water system
CN207488284U (en) Heat exchanger is simulated in intelligent electrical heating
CN114487028A (en) Method and device for improving pH on-line measurement accuracy of low-conductivity water sample
CN112414735A (en) Seawater circulating cooling water dynamic simulation test device
CN107941886A (en) A kind of real-time redox monitoring device of Power Plant Feedwater system and application process
CN218435151U (en) Fluorescent tracing method medicine adding device
CN115078670B (en) Water vapor simulation test device and method for power plant
WO2022193737A1 (en) Intelligent control system and method for circulating cooling water system
CN209727481U (en) A kind of recirculated water dynamic simulation tester based on gravimetric method control concentration rate
CN111540492B (en) Comprehensive flowing water corrosion test device and method for one-loop and two-loop linkage operation
US2358163A (en) Apparatus for automatically indicating the electrical conductivity of liquids
CN212301527U (en) Pipe wall induced residual chlorine attenuation coefficient measuring device
CN114019122A (en) Dynamic simulation device for industrial circulating cooling water
CN111562350A (en) Device and method for measuring attenuation coefficient of residual chlorine induced by pipe wall
CN112214044A (en) Circulating water automatic control system and method based on total amount control
CN206057237U (en) A kind of high-temperature condensation water PH measuring systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination