CN112412876B - 一种农业通风机叶片优化方法 - Google Patents

一种农业通风机叶片优化方法 Download PDF

Info

Publication number
CN112412876B
CN112412876B CN202011305479.1A CN202011305479A CN112412876B CN 112412876 B CN112412876 B CN 112412876B CN 202011305479 A CN202011305479 A CN 202011305479A CN 112412876 B CN112412876 B CN 112412876B
Authority
CN
China
Prior art keywords
blade
groove
agricultural
ventilator
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011305479.1A
Other languages
English (en)
Other versions
CN112412876A (zh
Inventor
丁涛
李松
王朝元
施正香
孔维双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202011305479.1A priority Critical patent/CN112412876B/zh
Publication of CN112412876A publication Critical patent/CN112412876A/zh
Application granted granted Critical
Publication of CN112412876B publication Critical patent/CN112412876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明属于机械应用领域,具体涉及一种农业通风机叶片优化方法。所述方法包括S1、旋转域叶片轴向切片处理;S2、叶片周向涡量分析;S3、农业通风机叶片仿生凹槽设计。本发明的农业通风机叶片优化方法,能够提高农业通风机流量,能够显著提高农业通风机的通风能效3%左右。

Description

一种农业通风机叶片优化方法
技术领域
本发明属于机械应用领域,具体涉及一种农业通风机叶片优化方法。
背景技术
现代化的温室设施农业和畜禽养殖业高速发展,农业通风的需求水平不断提高,农业通风机作为现代设施农业和畜禽养殖业重要的机械装备,得到了广泛的应用。农业通风机的运行特点是低压且大流量,存在流动损失大、通风能效偏低等问题。“吴宏,蒋洪德.燃气轮机压气机涡量动力学理论及分析方法[J].航空动力学报,2013,28(04):903-910.”运用涡量分析方法研究了燃气轮机多级轴流压气机的周向涡量分布,通过优化压气机结构改善了负周向涡量的分布,从而提高了压气机的效率;“郭继波,马宏伟.非光滑叶片对轴流风扇气动性能的影响[J].工程热物理学报,2007,28(3)406-408”研究发现,非光滑叶片的不同沟槽尺寸会该变风扇的气动性能。
截止目前,对于结合周向涡量分析的农业通风机叶片仿生设计未见报道。
发明内容
针对上述技术问题,本发明的目的是提供一种农业通风机叶片优化方法,通过涡量分析方法定位风机叶片负周向涡量聚集区域,有针对性地设计风机叶片表面凹槽,能够控制风机叶片表面周向涡量分布,进而影响风机叶片表面压力分布和流线分布,从而达到改善风机通风能效和风机流量的目的。
为了实现上述目的,本发明提供了如下技术方案:
一种农业通风机叶片优化方法,包括如下步骤:
S1、旋转域叶片轴向切片处理;
自风机叶轮轮毂所在的直角坐标系原点处开始,沿旋转轴Z轴正方向,每隔一定距离对叶片进行垂直于Z轴的切片处理,获得叶片的多个截面;所述直角坐标系为以轮毂中心为坐标原点,自轮毂所在平面建立X、Y轴,垂直于轮毂平面建立Z轴,且Z轴正方向与风机出流方向一致;
S2、叶片周向涡量分析;
根据叶片的多个截面,获得叶片的多个截面周向涡量分布云图,从而获得风机叶片周向涡量的位置及发展趋势;
S3、农业通风机叶片仿生凹槽设计;
S3.1、在靠近叶顶的叶片表面冲压初始叶片表面凹槽,所述初始叶片表面凹槽为以风机转轴为圆心的圆弧形,具有凹槽内半径R1、凹槽外半径R2和凹槽深度h;其中,初始叶片表面凹槽的冲压方向为自叶片吸力面至叶片压力面;
S3.2、重复步骤S1~步骤S2对设置了初始叶片表面凹槽的叶片的周向涡量进行分析;
S3.3、如果在叶片中部或靠近叶顶的第一负周向涡量区域面积占比大于1/20×S,则按照一定增幅逐步增大凹槽内半径R1和凹槽外半径R2,调整叶片表面凹槽;其中,凹槽内半径R1的增幅为1/100×R1,凹槽外半径R2的增幅为1/110~1/100×R2;其中,S为叶片吸力面面积,单位为mm2,R1为凹槽内半径,单位为mm,R2为凹槽外半径,单位为mm;然后重复步骤S3.2~S3.3,直至叶片中部或靠近叶顶的第一负周向涡量区域面积比第一次调整前的第一负周向涡量区域面积减小比例大于10%,且与第一次调整前相比,第一负周向涡量区域向叶根方向移动距离超过1/30×H;H为叶片高度,单位为mm,确定此时的叶片表面凹槽的凹槽内半径R1、凹槽外半径R2和凹槽深度h,完成叶片优化。
所述步骤S1中,每20mm对叶片进行垂直于Z轴的切片处理。
初始叶片表面凹槽的凹槽内半径R1=50%H,凹槽外半径R2=R1+kH;其中,H为叶片高度,单位为mm;k为常数项,k=1/30~1/20。
初始叶片表面凹槽的凹槽深度h为叶片厚度,单位为mm,不再改变。
所述方法能够将农业通风机的通风能效提高3%。
与现有技术相比,本发明的有益效果在于:
1)本发明的农业通风机叶片优化方法,能够提高农业通风机流量。
2)本发明的农业通风机叶片优化方法,能够显著提高农业通风机的通风能效3%左右。
附图说明
图1为本发明实施例的旋转域叶片轴向切片处理示意图;
图2a为本发明实施例的叶片Z0截面周向涡量分布云图;
图2b为本发明实施例的叶片Z1截面周向涡量分布云图;
图2c为本发明实施例的叶片Z2截面周向涡量分布云图;
图2d为本发明实施例的叶片Z3截面周向涡量分布云图;
图2e为本发明实施例的叶片Z4截面周向涡量分布云图;
图2f为本发明实施例的叶片Z5截面周向涡量分布云图;
图3a为本发明实施例的叶片凹槽内半径、外半径示意图;
图3b为本发明实施例的叶片凹槽深度示意图;
图4为本发明实施例的叶片凹槽设计示意图。
其中的附图标记为:
1 叶片Z3截面
2 叶片Z0截面
3 第一负周向涡量区域
4 第二负周向涡量区域
5 叶顶机壳
6 叶顶
7 叶根
8 叶片表面凹槽
R1 凹槽内半径
R2 凹槽外半径
h 凹槽深度
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
一种农业通风机叶片优化方法,包括如下步骤:
S1、旋转域叶片轴向切片处理;
周向涡量分布在整个旋转域空间内,对旋转域采用软件Tecplot 360EX 2017 R3进行轴向切片处理可以清晰地观察到叶片周围的周向涡量分布。
旋转域叶片轴向切片处理方法为:
自风机叶轮轮毂所在的直角坐标系原点处开始,沿旋转轴Z轴正方向,每20mm对叶片进行垂直于Z轴的切片处理,位于Z=0mm处的截面定义为Z0截面,位于Z=20mm处的截面定义为Z1截面,以此类推,获得叶片Z0~Z5截面。图1所示的截面为叶片Z0截面2和叶片Z3截面1。所述直角坐标系为以轮毂中心为坐标原点,自轮毂所在平面建立X、Y轴,垂直于轮毂平面建立Z轴,且Z轴正方向与风机出流方向一致。
S2、叶片周向涡量分析;
根据叶片Z0~Z5截面,获得叶片Z0~Z5截面周向涡量分布云图,从而获得风机叶片周向涡量的位置及发展趋势。
如图2a~图2f所示,叶片周向涡量分布由Z0~Z5截面展示,各截面包括叶片中部和靠近叶顶6的第一负周向涡量区域3和靠近叶根7的第二负周向涡量区域4。分析Z0~Z5截面周向涡量分布云图可知:
如图2a所示,当Z=0mm(Z0)时,在靠近根部7的第二负周向涡量区域4,存在少量聚集的负周向涡量;在叶片中部和靠近叶顶6的第一负周向涡量区域3,存在负周向涡量的峰值区域。
如图2b所示,当Z=20mm(Z1)时,靠近叶根7的第二负周向涡量区域4的负周向涡量有聚集趋势;在叶片中部和靠近叶顶6的第一负周向涡量区域3,负周向涡量的峰值区域有向叶顶6方向移动的趋势。
如图2c所示,Z=40mm(Z2)可以看出,靠近叶根7的第二负周向涡量区域4继续向叶顶6方向移动;叶片中部和靠近叶顶6的第一负周向涡量区域3的负周向涡量峰值区域持续向叶顶6方向移动。
如图2d所示,Z=60mm(Z3)时,靠近叶根7的第二负周向涡量区域4减小;叶片中部和靠近叶顶6的负周向涡量区域3的第一负周向涡量峰值区域大幅度向叶顶6方向移动。
如图2e,2f所示,Z=80、100mm(Z4、Z5)时,靠近叶根7的第二负周向涡量区域4继续减小;叶片中部和靠近叶顶6的第一负周向涡量区域3的负周向涡量峰值区域慢慢减小直至消失。
综合分析可知,所述各截面周向涡量分布云图能够较为清晰地展示风机叶片周向涡量的位置及发展趋势,为后续凹槽方案设计提供指导。
S3、农业通风机叶片仿生凹槽设计;
从增加总压流增益的角度,周向涡量高的负峰值区域应尽量靠近叶根7,以减小其对总压流的负贡献,提高风机的能效。通过设置叶片凹槽能有效改变叶片边界扰动速度的梯度分布,使涡核处更快地诱导出负周向涡量区,实现边界周向涡量区域的演化和发展可控,进而达到控制负周向涡量区域向叶根7方向移动的目的。具体过程如下:
S3.1、在靠近叶顶6的叶片表面冲压初始叶片表面凹槽,如图3a和图3b所示,所述初始叶片表面凹槽为以风机转轴为圆心的圆弧形,具有凹槽内半径R1、凹槽外半径R2和凹槽深度h;其中,初始叶片表面凹槽的冲压方向为自叶片吸力面至叶片压力面,凹槽内半径R1=50%H,凹槽外半径R2=R1+kH;其中,H为叶片高度,单位为mm;k为常数项,k=1/30~1/20;初始叶片表面凹槽的凹槽深度h=叶片厚度,单位为mm,不再改变。
S3.2、重复步骤S1~步骤S2对设置了初始叶片表面凹槽的叶片的周向涡量进行分析;
S3.3、如果在叶片中部或靠近叶顶的第一负周向涡量区域面积占比大于1/20×S,则按照一定增幅逐步增大凹槽内半径R1和凹槽外半径R2,调整叶片表面凹槽;其中,凹槽内半径R1的增幅为1/100×R1,凹槽外半径R2的增幅为1/110~1/100×R2;其中,S为叶片吸力面面积,单位为mm2;然后重复步骤S3.2~S3.3,直至叶片中部或靠近叶顶的第一负周向涡量区域面积比第一次调整前的第一负周向涡量区域面积减小比例大于10%,且与第一次调整前相比,第一负周向涡量区域向叶根7方向移动距离超过1/30×H;H为叶片高度,单位为mm,确定此时的叶片表面凹槽的凹槽内半径R1、凹槽外半径R2和凹槽深度h,完成叶片优化。
对实施例的叶片表面凹槽8,综合考虑叶片中部和靠近叶顶6的第一负周向涡量区域3和靠近叶跟7的第二负周向涡量区域4的分布位置,近叶顶6的负周向涡量聚集区域的绝对数值大,在风机运行和性能表现中起负主导作用,因此在靠近叶顶6的区域设计叶片表面凹槽,以控制靠近叶顶6的负周向涡量区域向叶根7移动。
图4为实施例的叶片表面凹槽设计示意图。叶片表面凹槽8的冲压方向为自叶片吸力面至叶片压力面,凹槽内半径R1为480.8mm,凹槽外半径R2为508.1mm,凹槽深度h为叶片厚度5mm。

Claims (5)

1.一种农业通风机叶片优化方法,其特征在于,该方法包括如下步骤:
S1、旋转域叶片轴向切片处理;
自风机叶轮轮毂所在的直角坐标系原点处开始,沿旋转轴Z轴正方向,每隔一定距离对叶片进行垂直于Z轴的切片处理,获得叶片的多个截面;所述直角坐标系为以轮毂中心为坐标原点,自轮毂所在平面建立X、Y轴,垂直于轮毂平面建立Z轴,且Z轴正方向与风机出流方向一致;
S2、叶片周向涡量分析;
根据叶片的多个截面,获得叶片的多个截面周向涡量分布云图,从而获得风机叶片周向涡量的位置及发展趋势;
S3、农业通风机叶片仿生凹槽设计;
S3.1、在靠近叶顶的叶片表面冲压初始叶片表面凹槽,所述初始叶片表面凹槽为以风机转轴为圆心的圆弧形,具有凹槽内半径R1、凹槽外半径R2和凹槽深度h;其中,初始叶片表面凹槽的冲压方向为自叶片吸力面至叶片压力面;
S3.2、重复步骤S1~步骤S2对设置了初始叶片表面凹槽的叶片的周向涡量进行分析;
S3.3、如果在叶片中部或靠近叶顶的第一负周向涡量区域面积占比大于1/20×S,则按照一定增幅逐步增大凹槽内半径R1和凹槽外半径R2,调整叶片表面凹槽;其中,凹槽内半径R1的增幅为1/100×R1,凹槽外半径R2的增幅为1/110~1/100×R2;其中,S为叶片吸力面面积,单位为mm2,R1为凹槽内半径,单位为mm,R2为凹槽外半径,单位为mm;然后重复步骤S3.2~S3.3,直至叶片中部或靠近叶顶的第一负周向涡量区域面积比第一次调整前的第一负周向涡量区域面积减小比例大于10%,且与第一次调整前相比,第一负周向涡量区域向叶根方向移动距离超过1/30×H;H为叶片高度,单位为mm,确定此时的叶片表面凹槽的凹槽内半径R1、凹槽外半径R2和凹槽深度h,完成叶片优化。
2.根据权利要求1所述的农业通风机叶片优化方法,其特征在于,所述步骤S1中,每20mm对叶片进行垂直于Z轴的切片处理。
3.根据权利要求1所述的农业通风机叶片优化方法,其特征在于,初始叶片表面凹槽的凹槽内半径R1=50%H,凹槽外半径R2=R1+kH;其中,H为叶片高度,单位为mm;k为常数项,k=1/30~1/20。
4.根据权利要求1所述的农业通风机叶片优化方法,其特征在于,初始叶片表面凹槽的凹槽深度h为叶片厚度,单位为mm,不再改变。
5.根据权利要求1所述的农业通风机叶片优化方法,其特征在于,所述方法能够将农业通风机的通风能效提高3%。
CN202011305479.1A 2020-11-20 2020-11-20 一种农业通风机叶片优化方法 Active CN112412876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011305479.1A CN112412876B (zh) 2020-11-20 2020-11-20 一种农业通风机叶片优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011305479.1A CN112412876B (zh) 2020-11-20 2020-11-20 一种农业通风机叶片优化方法

Publications (2)

Publication Number Publication Date
CN112412876A CN112412876A (zh) 2021-02-26
CN112412876B true CN112412876B (zh) 2021-05-25

Family

ID=74774241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011305479.1A Active CN112412876B (zh) 2020-11-20 2020-11-20 一种农业通风机叶片优化方法

Country Status (1)

Country Link
CN (1) CN112412876B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046269B (zh) * 2022-01-11 2022-05-03 中国航发上海商用航空发动机制造有限责任公司 轴流压气机的转子叶片及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571144A (zh) * 2008-12-10 2009-11-04 北京航空航天大学 压气机周向涡量通流设计方法
CN106934202A (zh) * 2015-12-31 2017-07-07 成都金景盛风科技有限公司 模拟风力叶片尾迹的数值方法
CN207634377U (zh) * 2017-11-03 2018-07-20 珠海格力电器股份有限公司 风叶组件、轴流风机及具有轴流风机的空调器
CN207961062U (zh) * 2018-02-01 2018-10-12 温岭市欧创机电有限公司 一种风机及其风叶
CN110043484A (zh) * 2019-03-07 2019-07-23 北航(四川)西部国际创新港科技有限公司 基于周向涡量通流设计的双级高负荷风扇设计方法
CN210423147U (zh) * 2019-07-02 2020-04-28 宁波吉毅电器有限公司 一种轴流扇叶及使用该轴流扇叶的暖风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571144A (zh) * 2008-12-10 2009-11-04 北京航空航天大学 压气机周向涡量通流设计方法
CN106934202A (zh) * 2015-12-31 2017-07-07 成都金景盛风科技有限公司 模拟风力叶片尾迹的数值方法
CN207634377U (zh) * 2017-11-03 2018-07-20 珠海格力电器股份有限公司 风叶组件、轴流风机及具有轴流风机的空调器
CN207961062U (zh) * 2018-02-01 2018-10-12 温岭市欧创机电有限公司 一种风机及其风叶
CN110043484A (zh) * 2019-03-07 2019-07-23 北航(四川)西部国际创新港科技有限公司 基于周向涡量通流设计的双级高负荷风扇设计方法
CN210423147U (zh) * 2019-07-02 2020-04-28 宁波吉毅电器有限公司 一种轴流扇叶及使用该轴流扇叶的暖风机

Also Published As

Publication number Publication date
CN112412876A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN112412876B (zh) 一种农业通风机叶片优化方法
CN107609243B (zh) 一种螺旋桨叶片的设计方法
EP2738392A3 (en) Fan blade for a turbofan gas turbine engine
EP2466121A3 (en) Wind turbine, aerodynamic assembly for use in a wind turbine, and method for assembling thereof
CN113449475B (zh) 一种燃气涡轮发动机进口压力畸变强度预测方法
CN111094758A8 (zh) 通风装置的叶轮叶片、叶轮、及轴流式通风装置、斜流式通风装置或径流式通风装置
CN202391808U (zh) 低噪音轴流风轮
EP2634087A2 (en) Airfoils for use in rotary machines
MY165777A (en) Wind turbine
EP2484913A3 (en) A turbomachine comprising an annular casing and a bladed rotor
CN104153820A (zh) 一种具有台阶型球面端壁的大子午扩张变几何涡轮
CN113557357A (zh) 风力涡轮机
EP2208859A3 (en) Steam turbine and cooling method thereof
CN102817873A (zh) 航空发动机压气机的梯状间隙结构
US20100325852A1 (en) Method and apparatus for providing rotor discs
EP2469024A1 (en) Gas turbine rotor and method for cooling thereof
EP2864619B1 (en) Turbomachine flow stability enhancement device control
US20050220606A1 (en) Method for producing the rotor of a drag vacuum pump and a rotor produced according to this method
CN101666329B (zh) 组合翼型的轴流风机叶片
Jeon et al. Effect of pitch angle and blade length on an axial flow fan performance
CN210949272U (zh) 一种小叶片独立设计的楔形整体式扩压器
BR9811367A (pt) Rotor de bomba e método
EP3557075B1 (en) Centrifugal fan blade and centrifugal fan
CN102536901A (zh) 车用涡轮增压器压气机进口弹性导叶调节装置
CN115544878A (zh) 叶片叶型的设计方法、叶片、风轮、风机及吸油烟设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant