CN112397644B - A kind of phase-change material, phase-change storage unit and preparation method thereof - Google Patents
A kind of phase-change material, phase-change storage unit and preparation method thereof Download PDFInfo
- Publication number
- CN112397644B CN112397644B CN201910753993.2A CN201910753993A CN112397644B CN 112397644 B CN112397644 B CN 112397644B CN 201910753993 A CN201910753993 A CN 201910753993A CN 112397644 B CN112397644 B CN 112397644B
- Authority
- CN
- China
- Prior art keywords
- phase
- change material
- layer
- phase change
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012782 phase change material Substances 0.000 title claims abstract description 124
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000003860 storage Methods 0.000 title description 9
- 239000000463 material Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 14
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 9
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims abstract description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 77
- 238000004544 sputter deposition Methods 0.000 claims description 29
- 239000012790 adhesive layer Substances 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 19
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- 238000000231 atomic layer deposition Methods 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 10
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 5
- 150000002736 metal compounds Chemical class 0.000 claims description 5
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 50
- 238000002425 crystallisation Methods 0.000 abstract description 19
- 230000008025 crystallization Effects 0.000 abstract description 19
- 230000014759 maintenance of location Effects 0.000 abstract description 17
- FAWGZAFXDJGWBB-UHFFFAOYSA-N antimony(3+) Chemical compound [Sb+3] FAWGZAFXDJGWBB-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000004913 activation Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011232 storage material Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 4
- 229910001215 Te alloy Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 102100029862 Sulfotransferase 1E1 Human genes 0.000 description 2
- 101710083456 Sulfotransferase 1E1 Proteins 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101000585348 Rattus norvegicus Estrogen sulfotransferase, isoform 3 Proteins 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/023—Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/026—Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Abstract
Description
技术领域technical field
本发明属于微电子技术领域,涉及一种相变材料、相变存储单元及其制备方法。The invention belongs to the technical field of microelectronics, and relates to a phase-change material, a phase-change storage unit and a preparation method thereof.
背景技术Background technique
相变存储器(PCM)是近年来技术发展迅速的一种非挥发性半导体存储器。与传统的存储器相比,它具有尺寸微缩性强、读写速度快、高数据保持力、功耗低、循环寿命长及抗辐照性能优异等优点。因此,相变存储器成为各类新型存储技术中有力的竞争者,极其有望替代闪存Flash+DRAM技术,成为下一代非挥发存储器的主流存储技术,因而拥有广阔的市场前景。同时,其在普通存储器达不到的一些领域可产生新的应用,如空间、航天技术和军事领域。Phase change memory (PCM) is a non-volatile semiconductor memory whose technology has developed rapidly in recent years. Compared with traditional memory, it has the advantages of strong size miniaturization, fast read and write speed, high data retention, low power consumption, long cycle life and excellent radiation resistance. Therefore, phase change memory has become a strong competitor in various new storage technologies, and it is extremely expected to replace Flash+DRAM technology and become the mainstream storage technology of the next generation of non-volatile memory, so it has a broad market prospect. At the same time, it can generate new applications in some fields where ordinary memory cannot reach, such as space, aerospace technology and military fields.
相变存储器的应用基于其中的相变材料在电脉冲信号操作下高、低电阻之间的可逆转换来实现“0”和“1”的写和擦。相变存储器的核心是相变存储介质材料,传统的相变材料主要是Ge2Sb2Te5,由于其良好的综合性能,其已经被广泛应用于相变光盘和相变存储器中。但该材料依然存在一些问题:1)结晶温度较低,热稳定性不好,数据保持力得不到保证,面临着数据丢失的危险。例如在汽车电子领域,对存储器件可服役的温度要求高于120℃,而Ge2Sb2Te5能够提供的10年可靠数据保存的工作温度仅为85℃左右;2)相变速度较低,有研究表明基于Ge2Sb2Te5的相变存储器实现稳定SET操作的电脉冲至少为百纳秒量级,而实现稳定RESET操作的电脉冲也需要20ns,无法满足动态随机存储器的速度要求;3)密度变化过大,在结晶之后,密度变化率达到了6%,不利于器件的可靠性。The application of phase change memory is based on the reversible conversion between high and low resistance of the phase change material under the operation of electric pulse signal to realize the writing and erasing of "0" and "1". The core of phase change memory is the phase change storage medium material. The traditional phase change material is mainly Ge 2 Sb 2 Te 5 , which has been widely used in phase change optical discs and phase change memory due to its good comprehensive performance. However, there are still some problems with this material: 1) The crystallization temperature is low, the thermal stability is not good, the data retention cannot be guaranteed, and it faces the danger of data loss. For example, in the field of automotive electronics, the serviceable temperature of storage devices is required to be higher than 120°C, while Ge 2 Sb 2 Te 5 can provide 10-year reliable data storage at only about 85°C; 2) The phase change speed is low , some studies have shown that the electrical pulse for a phase change memory based on Ge 2 Sb 2 Te 5 to achieve a stable SET operation is at least on the order of hundreds of nanoseconds, and the electrical pulse to achieve a stable RESET operation also needs 20 ns, which cannot meet the speed requirements of DRAM. ; 3) The density change is too large. After crystallization, the density change rate reaches 6%, which is not conducive to the reliability of the device.
因此,如何寻求一种高速、高数据保持力、低密度变化率的相变薄膜材料,使其具有宽温域工作范围,成为本领域技术人员亟待解决的一个重要技术问题。Therefore, how to find a phase-change thin film material with high speed, high data retention, and low density change rate, so that it has a wide temperature range, has become an important technical problem to be solved urgently by those skilled in the art.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种相变材料、相变存储单元及其制备方法,用于解决现有技术中Ge2Sb2Te5等相变材料由于结晶温度较低、热稳定性不好使得数据保持力得不到保证,面临着数据丢失的问题,以及相变材料结晶前后密度变化率过高导致器件可靠性较低及相变速度低,无法满足动态随机存储器速度要求的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a phase change material, a phase change memory unit and a preparation method thereof, which are used to solve the problem of crystallization of Ge 2 Sb 2 Te 5 and other phase change materials in the prior art. Low temperature and poor thermal stability make the data retention not guaranteed, facing the problem of data loss, and the high density change rate of the phase change material before and after crystallization leads to low device reliability and low phase change speed, which cannot meet the requirements The question of DRAM speed requirements.
为实现上述目的及其他相关目的,本发明提供一种相变材料,所述相变材料包括铒元素、锑元素及碲元素,所述相变材料的化学式为ErxSbyTez,其中,x、y、z均指元素的原子组分,且满足0<x/(x+y+z)≤2/9,1/3≤z/y≤3/2。To achieve the above object and other related objects, the present invention provides a phase change material, the phase change material includes erbium element, antimony element and tellurium element, the chemical formula of the phase change material is Er x Sb y Tez , wherein, x, y, and z all refer to atomic components of elements, and satisfy 0<x/(x+y+z)≤2/9, 1/3≤z/y≤3/2.
可选地,所述ErxSbyTez中,满足1/100≤x/(x+y+z)≤1/9,1/3≤z/y≤3/2。Optionally, in the Er x Sb y Te z , 1/100≤x/(x+y+z)≤1/9, 1/3≤z/y≤3/2 are satisfied.
可选地,所述ErxSbyTez中,满足0.01≤x≤0.35,y=2,z=1。Optionally, in the Er x Sb y Te z , 0.01≤x≤0.35, y=2, z=1 are satisfied.
可选地,所述ErxSbyTez中,满足0.03≤x≤0.3,y=2,z=1。Optionally, in the Er x Sb y Te z , 0.03≤x≤0.3, y=2, z=1 are satisfied.
可选地,所述ErxSbyTez中,满足0.05≤x≤0.25,y=2,z=1。Optionally, in the Er x Sb y Te z , 0.05≤x≤0.25, y=2, z=1 are satisfied.
本发明还提供一种相变存储器单元,所述相变存储器单元包括一相变材料层,所述相变材料层的材质包括如上任意一项所述的相变材料。The present invention also provides a phase-change memory unit, which includes a phase-change material layer, and the material of the phase-change material layer includes the phase-change material described in any one of the above.
可选地,所述相变材料层的厚度范围是40nm-200nm。Optionally, the thickness of the phase change material layer ranges from 40nm to 200nm.
可选地,所述相变存储器单元还包括一下电极层、一粘合层及一引出电极层,所述相变材料层设置于所述下电极层上,所述粘合层设置于所述相变材料层上,所述引出电极层设置于所述粘合层上。Optionally, the phase-change memory unit further includes a lower electrode layer, an adhesive layer, and an extraction electrode layer, the phase-change material layer is disposed on the lower electrode layer, and the adhesive layer is disposed on the On the phase change material layer, the extraction electrode layer is disposed on the adhesive layer.
可选地,所述下电极层、所述粘合层及所述引出电极层的材质分别包括W、Pt、Au、Ti、Al、Ag、Cu及Ni中的至少一种,或其中至少一种的氮化物或氧化物。Optionally, the materials of the lower electrode layer, the adhesive layer and the extraction electrode layer respectively include at least one of W, Pt, Au, Ti, Al, Ag, Cu and Ni, or at least one of them species of nitrides or oxides.
本发明还提供一种相变材料的制备方法,采用磁控溅射法、化学气相沉积法、原子层沉积法及电子束蒸镀法中的任意一种制备如上任意一项所述的相变材料。The present invention also provides a preparation method of a phase change material, using any one of the magnetron sputtering method, chemical vapor deposition method, atomic layer deposition method and electron beam evaporation method to prepare the phase change material described in any one of the above Material.
可选地,按照所述相变材料的化学式ErxSbyTez采用Er单质靶和SbyTez合金靶共溅射制备所述相变材料。Optionally, the phase change material is prepared by co-sputtering an Er simple substance target and an Sby Tez alloy target according to the chemical formula Er x Sby Tez of the phase change material.
可选地,采用所述Er单质靶和所述SbyTez合金靶共溅射过程中,本底真空度小于3.0×10-4Pa,溅射气体包括氩气,溅射压强范围是0.40Pa~0.45Pa,溅射温度范围是1℃~80℃,溅射时间范围是10分钟~30分钟。Optionally, during co-sputtering with the Er elemental target and the Sby Tez alloy target, the background vacuum degree is less than 3.0×10 -4 Pa, the sputtering gas includes argon, and the sputtering pressure range is 0.40 Pa to 0.45Pa, the sputtering temperature range is 1°C to 80°C, and the sputtering time range is 10 minutes to 30 minutes.
本发明还提供一种相变存储器单元的制备方法,包括以下步骤:The present invention also provides a preparation method of a phase change memory unit, comprising the following steps:
形成一下电极层;Form an electrode layer;
形成一相变材料层于所述下电极层上,所述相变材料层的材质包括如上任意一项所述的相变材料;forming a phase-change material layer on the lower electrode layer, the material of the phase-change material layer includes the phase-change material described in any one of the above;
形成一粘合层于所述相变材料层上,forming an adhesive layer on the phase change material layer,
形成一引出电极层于所述粘合层上。An extraction electrode layer is formed on the adhesive layer.
可选地,形成所述下电极层、所述粘合层及所述引出电极层的方法分别包括溅射法、蒸发法、化学气相沉积法、等离子体增强化学气相沉积法、低压化学气相沉积法、金属化合物气相沉积法、分子束外延法、原子气相沉积法以及原子层沉积法中的任意一种;形成所述相变材料层的方法包括磁控溅射法、化学气相沉积法、原子层沉积法及电子束蒸镀法中的任意一种。Optionally, the methods for forming the lower electrode layer, the adhesive layer and the extraction electrode layer respectively include sputtering, evaporation, chemical vapor deposition, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition method, metal compound vapor deposition method, molecular beam epitaxy method, atomic vapor deposition method and atomic layer deposition method; the method of forming the phase change material layer includes magnetron sputtering method, chemical vapor deposition method, atomic Any one of the layer deposition method and the electron beam evaporation method.
如上所述,本发明的ErxSbyTez相变材料可以通过调节Er元素的含量得到不同结晶温度、电阻率和结晶激活能的存储材料,且该体系相变材料相变前后电阻差值大,具有非常强的可调性,从而可以根据实际所需提供特定的性能。其中,Er0.17Sb2Te在具有较好的数据保持力的同时,将其应用于相变存储器中器件单元时还具有较快的操作速度和较好的循环次数,可见其是用于制备相变存储器的合适存储介质材料。本发明的ErxSbyTez相变材料,与传统的Ge2Sb2Te5相比,具有更好的热稳定性,更强的数据保持力,更快的结晶速度,更低的密度变化率。并且本发明提供的相变材料的制备方法工艺简单,便于精确控制材料成分。As mentioned above, the Er x Sb y Te z phase change material of the present invention can obtain storage materials with different crystallization temperature, resistivity and crystallization activation energy by adjusting the content of Er element, and the resistance difference before and after the phase change of the system phase change material Large, with very strong adjustability, which can provide specific performance according to actual needs. Among them, Er 0.17 Sb 2 Te not only has better data retention, but also has faster operation speed and better cycle times when it is applied to the device unit in the phase change memory. It can be seen that it is used to prepare phase change memory. Suitable storage medium material for variable memory. Compared with the traditional Ge 2 Sb 2 Te 5 , the Er x Sb y Tez phase change material of the present invention has better thermal stability, stronger data retention, faster crystallization speed, and lower density rate of change. Moreover, the preparation method of the phase change material provided by the invention is simple in process and convenient for precise control of material components.
附图说明Description of drawings
图1显示为Sb2Te及本发明提供的不同组分的ErxSbyTez相变材料的电阻-温度关系图。Fig. 1 shows the resistance-temperature relationship diagram of Sb 2 Te and Er x Sb y Tez phase change materials with different compositions provided by the present invention.
图2显示为Sb2Te及本发明提供的不同组分的ErxSbyTez相变材料的数据保持能力计算结果图。Fig. 2 is a diagram showing the calculation results of data retention capacity of Sb 2 Te and Er x Sby Tez phase change materials with different compositions provided by the present invention.
图3显示为本发明提供的采用Er0.17Sb2Te相变材料的相变存储器的拟合密度变化率图。Fig. 3 shows the fitted density change rate diagram of the phase change memory using the Er 0.17 Sb 2 Te phase change material provided by the present invention.
图4显示为本发明提供的采用Er0.17Sb2Te相变材料的相变存储器的电阻-电压关系图。Fig. 4 shows the resistance-voltage relationship diagram of the phase change memory using the Er 0.17 Sb 2 Te phase change material provided by the present invention.
图5显示为本发明提供的采用Er0.17Sb2Te相变材料的相变存储器的疲劳性能图。Fig. 5 shows the fatigue performance diagram of the phase change memory using the Er 0.17 Sb 2 Te phase change material provided by the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 5. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
实施例一Embodiment one
本实施例中提供一种相变材料,所述相变材料包括铒(Er)元素、锑(Sb)元素及碲(Te)元素,所述相变材料的化学式为ErxSbyTez,其中,x、y、z均指元素的原子组分,且满足0<x/(x+y+z)≤2/9,1/3≤z/y≤3/2。In this embodiment, a phase change material is provided. The phase change material includes erbium (Er) element, antimony (Sb) element and tellurium (Te) element. The chemical formula of the phase change material is Er x Sb y Te z , Wherein, x, y, and z all refer to atomic components of elements, and satisfy 0<x/(x+y+z)≤2/9, 1/3≤z/y≤3/2.
具体的,所述ErxSbyTez中,Er、Sb及Te三种元素的含量可以调节,以得到不同结晶温度、电阻率和结晶激活能的存储材料。例如,所述ErxSbyTez可以进一步满足1/100≤x/(x+y+z)≤1/9,1/3≤z/y≤3/2。Specifically, in the Er x Sb y Tez , the contents of Er, Sb and Te can be adjusted to obtain storage materials with different crystallization temperatures, resistivities and crystallization activation energies. For example, the Er x Sb y Te z may further satisfy 1/100≤x/(x+y+z)≤1/9, 1/3≤z/y≤3/2.
作为示例,所述ErxSbyTez中,Te与Sb的原子组分比z/y为1/2,且当y=2,z=1时,Er的组分满足0.01≤x≤0.35。当然,Er的原子组分也可进一步满足0.03≤x≤0.3,或进一步满足0.05≤x≤0.25。As an example, in the Er x Sb y Te z , the atomic composition ratio z/y of Te and Sb is 1/2, and when y=2, z=1, the composition of Er satisfies 0.01≤x≤0.35 . Of course, the atomic composition of Er may further satisfy 0.03≤x≤0.3, or further satisfy 0.05≤x≤0.25.
作为示例,所述相变材料以薄膜形式存在,且薄膜厚度范围是40nm~200nm。As an example, the phase change material exists in the form of a thin film, and the thickness of the thin film ranges from 40 nm to 200 nm.
请参阅图1,显示为Sb2Te及不同组分的ErxSbyTez相变材料的电阻-温度关系图。本实施例中,提供了三种不同组分的ErxSbyTez相变材料,分别为Er0.05Sb2Te、Er0.17Sb2Te、Er0.25Sb2Te。Please refer to Figure 1, which shows the resistance-temperature relationship diagram of Sb 2 Te and Er x Sb y Te z phase change materials with different compositions. In this embodiment, three Er x Sb y Tez phase change materials with different compositions are provided, namely Er 0.05 Sb 2 Te, Er 0.17 Sb 2 Te, and Er 0.25 Sb 2 Te.
需要说明的是,本实施例中,不仅将ErxSbyTez相变材料与Sb2Te进行了对比,还与Ge2Sb2Te5(简称GST)进行了对比。由于GST目前的研究数据已很详细,故本实施例中及以下实施例中其相关数据未图示。It should be noted that, in this embodiment, the Er x Sb y Tez phase change material is not only compared with Sb 2 Te, but also compared with Ge 2 Sb 2 Te 5 (GST for short). Since the current research data of GST are very detailed, the relevant data in this embodiment and the following embodiments are not shown.
从图1中可以看出,ErxSbyTez相变材料的结晶温度可以调节在190~240℃之间,较Sb2Te(约150℃)和Ge2Sb2Te5(约150℃,未图示)有显著的提高。It can be seen from Figure 1 that the crystallization temperature of Er x Sb y Te z phase change materials can be adjusted between 190 and 240°C, which is higher than that of Sb 2 Te (about 150°C) and Ge 2 Sb 2 Te 5 (about 150°C , not shown) has a significant increase.
另外,可看出ErxSbyTez相变存储材料的高低阻值随着Er含量的增加而增加,其结晶温度随着Er含量的增加而增大。因此可以通过调节Er的含量来控制Er-Sb-Te相变材料的结晶温度。In addition, it can be seen that the high and low resistance values of the Er x Sby Tez phase change memory material increase with the increase of Er content, and its crystallization temperature increases with the increase of Er content. Therefore, the crystallization temperature of Er-Sb-Te phase change materials can be controlled by adjusting the content of Er.
请参阅图2,显示为Sb2Te及不同组分的ErxSbyTez相变材料的数据保持能力计算结果图。本实施例中,提供了三种不同组分的ErxSbyTez相变材料,分别为Er0.05Sb2Te(记为样品EST-1)、Er0.17Sb2Te(记为样品EST-2)、Er0.25Sb2Te(记为样品EST-3)。由图2可以看出,ErxSbyTez相变材料的10年数据保持温度随着Er含量的增加而增加。同时,可以看出ErxSbyTez材料体系的10年数据保持力相比Sb2Te和Ge2Sb2Te5(未图示)有很大的提高。其中,Er0.25Sb2Te的数据保持力高达138℃。因此,ErxSbyTez相变材料的热稳定性和数据保持力可以通过调节Er的含量来进行优化。Please refer to Figure 2, which shows the calculation results of data retention capabilities of Sb 2 Te and Er x Sb y Te z phase change materials with different components. In this example, three Er x Sb y Tez phase change materials with different components are provided, namely Er 0.05 Sb 2 Te (referred to as sample EST-1), Er 0.17 Sb 2 Te (referred to as sample EST-1). 2), Er 0.25 Sb 2 Te (denoted as sample EST-3). It can be seen from Figure 2 that the 10-year data retention temperature of Er x Sb y Te z phase change materials increases with the increase of Er content. At the same time, it can be seen that the 10-year data retention of the Er x Sb y Tez material system is greatly improved compared with Sb 2 Te and Ge 2 Sb 2 Te 5 (not shown). Among them, the data retention of Er 0.25 Sb 2 Te is as high as 138 °C. Therefore, the thermal stability and data retention of Er x Sb y Tez phase change materials can be optimized by adjusting the content of Er.
由上可见,本实施例的ErxSbyTez相变材料在电脉冲作用下存在至少两个稳定的电阻态,在电脉冲信号操作下能够实现高低阻值的可逆转换,且在没有电脉冲信号操作下阻值保持不变,是用于制备相变存储器的合适存储介质材料。同时,该ErxSbyTez相变材料的十年数据保持力较强,相对于传统的相变材料具有更好的热稳定性,更强的数据保持力。It can be seen from the above that the Er x Sb y Tez phase change material of this embodiment has at least two stable resistance states under the action of electric pulses, and can realize reversible conversion of high and low resistance values under the operation of electric pulse signals, and can be reversible without electric pulses. The resistance value remains unchanged under pulse signal operation, and it is a suitable storage medium material for preparing phase change memory. At the same time, the Er x Sby Tez phase change material has a strong ten-year data retention, and has better thermal stability and stronger data retention than traditional phase change materials.
实施例二Embodiment two
本实施例中提供一种相变存储器单元,所述相变存储器单元包括一相变材料层,所述相变材料层的材质包括实施例一中所述的ErxSbyTez相变材料。This embodiment provides a phase-change memory unit, the phase-change memory unit includes a phase-change material layer, the material of the phase-change material layer includes the Er x Sb y Tez phase-change material described in
作为示例,所述相变材料层的厚度范围是40nm-200nm。As an example, the thickness range of the phase change material layer is 40nm-200nm.
作为示例,所述相变存储器单元还包括一下电极层、一粘合层及一引出电极层,所述相变材料层设置于所述下电极层上,所述粘合层设置于所述相变材料层上,所述引出电极层设置于所述粘合层上。所述粘合层用于增加所述上电极层与相变材料之间的结合程度,且粘合层材料要求化学性能稳定,在较高的温度范围内不与相变材料发生反应。所述引出电极层的作用在于保护所述相变材料层,并在器件进行电学测试的时候作为上电极。As an example, the phase change memory unit further includes a lower electrode layer, an adhesive layer and an extraction electrode layer, the phase change material layer is disposed on the lower electrode layer, and the adhesive layer is disposed on the phase On the variable material layer, the extraction electrode layer is disposed on the adhesive layer. The adhesive layer is used to increase the degree of bonding between the upper electrode layer and the phase-change material, and the material of the adhesive layer requires stable chemical properties and does not react with the phase-change material in a relatively high temperature range. The role of the extraction electrode layer is to protect the phase change material layer and serve as an upper electrode when the device is under electrical testing.
作为示例,所述下电极层、所述粘合层及所述引出电极层的材质分别包括W、Pt、Au、Ti、Al、Ag、Cu及Ni中的至少一种,或其中至少一种的氮化物或氧化物。本实施例中,所述引出电极层的材质优选为Al,所述粘合层的材质优选为TiN。As an example, the materials of the lower electrode layer, the adhesive layer and the extraction electrode layer respectively include at least one of W, Pt, Au, Ti, Al, Ag, Cu and Ni, or at least one of them nitrides or oxides. In this embodiment, the material of the extraction electrode layer is preferably Al, and the material of the adhesive layer is preferably TiN.
需要指出的是,若采用的引出电极层的材质本身就与相变材料的结合强度很高,且在加热的过程中不与相变材料反应,也可以不需要粘合层,或认为粘合层与引出电极层的材质相同。It should be pointed out that if the material of the extraction electrode layer itself has a high bonding strength with the phase change material, and does not react with the phase change material during the heating process, the adhesive layer may not be required, or the adhesive layer may be considered The layer is made of the same material as that of the extraction electrode layer.
请参阅图3,显示为采用Er0.17Sb2Te相变材料的相变存储器的拟合密度变化率图,所述相变存储器中包含多个相变存储单元,所述相变存储单元中,采用所述Er0.17Sb2Te相变材料的相变材料层的厚度为40nm,通过计算拟合,其在结晶后,密度变化率有2.4%。对比于Ge2Sb2Te5相变材料的6%密度变化率,已经有了很大的改善,有利于进一步提高器件的可靠性。Please refer to FIG. 3 , which shows a fitted density change rate diagram of a phase-change memory using Er 0.17 Sb 2 Te phase-change material. The phase-change memory contains multiple phase-change memory cells. In the phase-change memory cells, The thickness of the phase-change material layer using the Er 0.17 Sb 2 Te phase-change material is 40 nm, and through calculation and fitting, the density change rate after crystallization is 2.4%. Compared with the 6% density change rate of the Ge 2 Sb 2 Te 5 phase change material, it has been greatly improved, which is conducive to further improving the reliability of the device.
需要说明的是,与Sb2Te及Ge2Sb2Te5相比,Er0.05Sb2Te、Er0.25Sb2Te相变材料的密度变化率同样均有降低(未图示)。因此,Er掺杂的ErxSbyTez材料体系的对于器件可靠性有很大的提高。It should be noted that, compared with Sb 2 Te and Ge 2 Sb 2 Te 5 , the density change rates of Er 0.05 Sb 2 Te and Er 0.25 Sb 2 Te phase change materials are also reduced (not shown). Therefore, the Er x Sb y Tez material system of Er doping can greatly improve the device reliability.
请参阅图4,显示为采用Er0.17Sb2Te相变材料的相变存储器的电阻-电压关系图。可见,在电脉冲作用下,所述相变存储器实现可逆相变。测试所用的电压脉冲为70纳秒、50纳秒、30纳秒和10纳秒。在70纳秒的电脉冲下,可以得到相变存储器分别在1.3V和2.7V实现“擦”(高阻变低阻)和“写”(低阻变高阻)操作。Please refer to FIG. 4 , which shows a resistance-voltage relationship diagram of a phase change memory using Er 0.17 Sb 2 Te phase change material. It can be seen that under the action of electric pulses, the phase change memory realizes reversible phase change. The voltage pulses used for the test were 70 ns, 50 ns, 30 ns and 10 ns. Under the electrical pulse of 70 nanoseconds, the phase change memory can be obtained to realize "erase" (high resistance to low resistance) and "write" (low resistance to high resistance) operation at 1.3V and 2.7V respectively.
值得注意的是,ErxSbyTez材料制备成的相变存储单元器件可在短至10纳秒的电脉冲下实现“擦写”操作,该操作速度远快于Ge2Sb2Te5材料百纳秒量级的操作速度。其中,采用Er0.17Sb2Te相变材料的相变存储器在10纳秒的电脉冲下,单元器件的“擦”与“写”的操作电压分别为2.3V和4.0V。It is worth noting that the phase-change memory cell device made of Er x Sb y Tez material can realize "erasing and writing" operation under the electric pulse as short as 10 nanoseconds, which is much faster than Ge 2 Sb 2 Te 5 The operating speed of the material is on the order of hundreds of nanoseconds. Among them, for the phase change memory using Er 0.17 Sb 2 Te phase change material, under the electric pulse of 10 nanoseconds, the operating voltages of "erase" and "write" of the unit device are 2.3V and 4.0V respectively.
需要说明的是,采用Er0.05Sb2Te、Er0.17Sb2Te、Er0.25Sb2Te的相变存储单元器件的擦写速度都能达到10ns,但是其窗口RESET电压有所不同,分别为4.9V(Er0.05Sb2Te)、4.1V(Er0.17Sb2Te)、5.5V(Er0.25Sb2Te)。而三个组分的器件分别在晶态电阻的差别不大的情况下,RESET电压越高,其功耗就越高。可见,相较于Er0.05Sb2Te与Er0.25Sb2Te,采用Er0.17Sb2Te相变材料的器件具有更低的功耗。It should be noted that the erasing and writing speeds of phase-change memory cell devices using Er 0.05 Sb 2 Te, Er 0.17 Sb 2 Te, and Er 0.25 Sb 2 Te can all reach 10 ns, but their window RESET voltages are different, which are 4.9 V (Er 0.05 Sb 2 Te), 4.1V (Er 0.17 Sb 2 Te), 5.5V (Er 0.25 Sb 2 Te). However, the devices with three components have little difference in crystal resistance, the higher the RESET voltage, the higher the power consumption. It can be seen that compared with Er 0.05 Sb 2 Te and Er 0.25 Sb 2 Te, the device using Er 0.17 Sb 2 Te phase change material has lower power consumption.
请参阅图5,显示为采用Er0.17Sb2Te相变材料的相变存储器的疲劳性能图。可见,该器件无疲劳地反复擦写次数达到1.0×105次,高低阻态均具有较稳定的阻值,保证了器件应用所需的可靠性。Please refer to FIG. 5 , which shows the fatigue performance diagram of the phase change memory using Er 0.17 Sb 2 Te phase change material. It can be seen that the device can be repeatedly erased and written 1.0×10 5 times without fatigue, and both high and low resistance states have relatively stable resistance values, which ensures the reliability required for device applications.
需要说明的是,采用Er0.05Sb2Te相变材料或Er0.25Sb2Te相变材料的相变存储器的擦写循环次数均接近5×104次,相对较低于采用Er0.17Sb2Te相变材料的相变存储器。It should be noted that the number of erasing and writing cycles of the phase change memory using Er 0.05 Sb 2 Te phase change material or Er 0.25 Sb 2 Te phase change material is close to 5×10 4 times, which is relatively lower than that of using Er 0.17 Sb 2 Te Phase change memory of phase change material.
本实施例的相变存储单元采用了ErxSbyTez相变材料,使得相变存储器具有较快的操作速度、较好的循环次数与较高的稳定性,更低的密度变化率能够进一步提高器件的可靠性。其中,Er0.17Sb2Te的综合性能更优,具有更快的擦写速度与更多的循环次数。The phase change memory cell of the present embodiment adopts Er x Sby Tez phase change material, makes phase change memory have faster operation speed, better number of cycles and higher stability, lower density change rate can Further improve the reliability of the device. Among them, Er 0.17 Sb 2 Te has better overall performance, faster erasing and writing speed and more cycle times.
实施例三Embodiment three
本实施例中提供一种相变材料的制备方法,用于制备实施例一中所述的ErxSbyTez相变材料。This example provides a method for preparing a phase change material, which is used to prepare the Er x Sby Tez phase change material described in Example 1.
具体的,可以采用磁控溅射法、化学气相沉积法、原子层沉积法及电子束蒸镀法中的任意一种所述ErxSbyTez相变材料。本实施例中,优选采用磁控溅射法制备所述ErxSbyTez相变材料,可以更方便地调节ErxSbyTez相变材料中三种元素的含量,以得到不同结晶温度、电阻率和结晶激活能的存储材料。Specifically, any one of the Er x Sb y Tez phase change material in magnetron sputtering, chemical vapor deposition, atomic layer deposition and electron beam evaporation can be used. In this embodiment, the Er x Sby Tez phase change material is preferably prepared by magnetron sputtering, which can more conveniently adjust the contents of the three elements in the Er x Sby Tez phase change material to obtain different crystals. Storage materials for temperature, resistivity and crystallization activation energy.
作为示例,按照所述相变材料的化学式ErxSbyTez采用Er单质靶和SbyTez合金靶共溅射制备所述相变材料。As an example, the phase change material is prepared by co-sputtering an Er simple substance target and an Sby Tez alloy target according to the chemical formula Er x Sby Tez of the phase change material.
本实施例中,采用所述Er单质靶和Sb2Te合金靶共溅射制备ErxSb2Te相变材料。In this embodiment, the Er x Sb 2 Te phase change material is prepared by co-sputtering with the Er simple substance target and the Sb 2 Te alloy target.
作为示例,所述Er单质靶采用射频电源,且射频电源的溅射功率范围是5W~15W。所述Sb2Te合金靶采用射频电源,且射频电源的溅射功率为20W。通过调节Er单质靶的功率,得到三种组分的ErxSb2Te相变材料:Er0.05Sb2Te、Er0.17Sb2Te、Er0.25Sb2Te。当然,在其它实施例中,所述Sb2Te合金靶所采用的溅射功率也可为其它值,例如在10W-30W范围内,此处不应过分限制本发明的保护范围。As an example, the Er simple substance target uses a radio frequency power supply, and the sputtering power range of the radio frequency power supply is 5W-15W. The Sb 2 Te alloy target uses a radio frequency power supply, and the sputtering power of the radio frequency power supply is 20W. By adjusting the power of Er simple substance target, three components of Er x Sb 2 Te phase change materials were obtained: Er 0.05 Sb 2 Te, Er 0.17 Sb 2 Te, Er 0.25 Sb 2 Te. Of course, in other embodiments, the sputtering power used by the Sb 2 Te alloy target can also be other values, for example, in the range of 10W-30W, and the protection scope of the present invention should not be overly limited here.
作为示例,在共溅射工程中,本底真空度小于3.0×10-4Pa,溅射气体包括氩气,溅射压强范围是0.40Pa~0.45Pa,溅射温度范围是1℃~80℃,溅射时间范围是10分钟~30分钟。通过调节溅射时间可以得到不同厚度的相变材料层。As an example, in the co-sputtering project, the background vacuum is less than 3.0×10 -4 Pa, the sputtering gas includes argon, the sputtering pressure ranges from 0.40Pa to 0.45Pa, and the sputtering temperature ranges from 1°C to 80°C , the sputtering time range is 10 minutes to 30 minutes. Phase change material layers with different thicknesses can be obtained by adjusting the sputtering time.
实施例四Embodiment four
本实施例中提供一种相变存储器单元的制备方法,包括以下步骤:In this embodiment, a method for preparing a phase-change memory cell is provided, including the following steps:
S1:形成一下电极层;S1: Form an electrode layer;
S2:形成一相变材料层于所述下电极层上,所述相变材料层的材质包括实施例一中所述的相变材料;S2: forming a phase-change material layer on the lower electrode layer, the material of the phase-change material layer includes the phase-change material described in
S3:形成一粘合层于所述相变材料层上,S3: forming an adhesive layer on the phase change material layer,
S4:形成一引出电极层于所述粘合层上。S4: forming an extraction electrode layer on the adhesive layer.
作为示例,可以采用溅射法、蒸发法、化学气相沉积法、等离子体增强化学气相沉积法、低压化学气相沉积法、金属化合物气相沉积法、分子束外延法、原子气相沉积法以及原子层沉积法中的任意一种来制备所述下电极层。所述下电极层的材质可以包括W、Pt、Au、Ti、Al、Ag、Cu及Ni中的至少一种,也可以是其中至少一种的氮化物或氧化物。本实施例中,所述下电极层的材质优选采用W。As examples, sputtering, evaporation, chemical vapor deposition, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, metal compound vapor deposition, molecular beam epitaxy, atomic vapor deposition, and atomic layer deposition can be employed. any one of the methods to prepare the lower electrode layer. The material of the bottom electrode layer may include at least one of W, Pt, Au, Ti, Al, Ag, Cu and Ni, or may be at least one of nitride or oxide. In this embodiment, the material of the lower electrode layer is preferably W.
作为示例,可以采用磁控溅射法、化学气相沉积法、原子层沉积法及电子束蒸镀法中的任意一种来制备所述相变材料层。本实施例中,优选采用磁控溅射法制备所述ErxSbyTez相变材料,可以更方便地调节ErxSbyTez相变材料中三种元素的含量,以得到不同结晶温度、电阻率和结晶激活能的存储材料。通过调节溅射时间可以得到不同厚度的相变材料层。As an example, any one of magnetron sputtering, chemical vapor deposition, atomic layer deposition and electron beam evaporation can be used to prepare the phase change material layer. In this embodiment, the Er x Sby Tez phase change material is preferably prepared by magnetron sputtering, which can more conveniently adjust the contents of the three elements in the Er x Sby Tez phase change material to obtain different crystals. Storage materials for temperature, resistivity and crystallization activation energy. Phase change material layers with different thicknesses can be obtained by adjusting the sputtering time.
作为示例,可以采用溅射法、蒸发法、化学气相沉积法、等离子体增强化学气相沉积法、低压化学气相沉积法、金属化合物气相沉积法、分子束外延法、原子气相沉积法以及原子层沉积法中的任意一种来制备所述粘合层。所述粘合层用于增强所述相变材料层与所述引出电极层之间的结合力,其材质可以包括W、Pt、Au、Ti、Al、Ag、Cu及Ni中的至少一种,也可以是其中至少一种的氮化物或氧化物。本实施例中,所述粘合层的材质优选采用TiN材料。As examples, sputtering, evaporation, chemical vapor deposition, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, metal compound vapor deposition, molecular beam epitaxy, atomic vapor deposition, and atomic layer deposition can be employed. Any one of the methods to prepare the adhesive layer. The adhesive layer is used to enhance the bonding force between the phase change material layer and the extraction electrode layer, and its material may include at least one of W, Pt, Au, Ti, Al, Ag, Cu and Ni , can also be at least one of the nitrides or oxides. In this embodiment, the material of the adhesive layer is preferably TiN material.
作为示例,可以采用溅射法、蒸发法、化学气相沉积法、等离子体增强化学气相沉积法、低压化学气相沉积法、金属化合物气相沉积法、分子束外延法、原子气相沉积法以及原子层沉积法中的任意一种来制备所述引出电极层。所述引出电极层的材质可以包括W、Pt、Au、Ti、Al、Ag、Cu及Ni中的至少一种,也可以是其中至少一种的氮化物或氧化物。本实施例中,所述下电极层的材质优选采用Al。As examples, sputtering, evaporation, chemical vapor deposition, plasma enhanced chemical vapor deposition, low pressure chemical vapor deposition, metal compound vapor deposition, molecular beam epitaxy, atomic vapor deposition, and atomic layer deposition can be employed. Any one of the methods to prepare the extraction electrode layer. The material of the extraction electrode layer may include at least one of W, Pt, Au, Ti, Al, Ag, Cu and Ni, or may be at least one of nitride or oxide. In this embodiment, the material of the lower electrode layer is preferably Al.
综上所述,本发明的ErxSbyTez相变材料可以通过调节Er元素的含量得到不同结晶温度、电阻率和结晶激活能的存储材料,且该体系相变材料相变前后电阻差值大,具有非常强的可调性,从而可以根据实际所需提供特定的性能。其中,Er0.17Sb2Te在具有较好的数据保持力的同时,将其应用于相变存储器中器件单元时还具有较快的操作速度和较好的循环次数,可见其是用于制备相变存储器的合适存储介质材料。本发明的ErxSbyTez相变材料,与传统的Ge2Sb2Te5相比,具有更好的热稳定性,更强的数据保持力,更快的结晶速度,更低的密度变化率。并且本发明提供的相变材料的制备方法工艺简单,便于精确控制材料成分。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the Er x Sb y Te z phase change material of the present invention can obtain storage materials with different crystallization temperature, resistivity and crystallization activation energy by adjusting the content of Er element, and the resistance difference before and after the phase change of the system phase change material is The value is large and has very strong adjustability, so that specific performance can be provided according to actual needs. Among them, Er 0.17 Sb 2 Te not only has better data retention, but also has faster operation speed and better cycle times when it is applied to the device unit in the phase change memory. It can be seen that it is used to prepare phase change memory. Suitable storage medium material for variable memory. Compared with the traditional Ge 2 Sb 2 Te 5 , the Er x Sb y Tez phase change material of the present invention has better thermal stability, stronger data retention, faster crystallization speed, and lower density rate of change. Moreover, the preparation method of the phase change material provided by the invention is simple in process and convenient for precise control of material components. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910753993.2A CN112397644B (en) | 2019-08-15 | 2019-08-15 | A kind of phase-change material, phase-change storage unit and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910753993.2A CN112397644B (en) | 2019-08-15 | 2019-08-15 | A kind of phase-change material, phase-change storage unit and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112397644A CN112397644A (en) | 2021-02-23 |
CN112397644B true CN112397644B (en) | 2023-07-14 |
Family
ID=74601954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910753993.2A Active CN112397644B (en) | 2019-08-15 | 2019-08-15 | A kind of phase-change material, phase-change storage unit and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112397644B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023377A (en) * | 2003-07-03 | 2005-01-27 | Mitsubishi Materials Corp | Sputtering target for phase-change-recording film, and phase-change-recording film having high electrical resistance formed by using the sputtering target |
CN103794224A (en) * | 2014-01-27 | 2014-05-14 | 华中科技大学 | Non-volatile logic device and logic operation method based on phase-change magnetic materials |
CN105514266A (en) * | 2015-12-03 | 2016-04-20 | 江苏理工学院 | Rare earth doped Sb-based phase thinned film material and film preparation method |
CN106229409A (en) * | 2016-09-26 | 2016-12-14 | 江苏理工学院 | A kind of Er Se Sb nano phase change thin-film material and its preparation method and application |
CN106960907A (en) * | 2017-02-28 | 2017-07-18 | 宁波大学 | A kind of rare earth Er doping Ge2Sb2Te5Phase transiting storing thin-film material and preparation method thereof |
CN107768516A (en) * | 2016-08-22 | 2018-03-06 | 中国科学院上海微系统与信息技术研究所 | Y Sb Te phase-change materials, phase-changing memory unit and preparation method thereof |
CN108899417A (en) * | 2018-07-02 | 2018-11-27 | 中国科学院上海微系统与信息技术研究所 | Ta-Sb-Te phase-change material, phase-changing memory unit and preparation method thereof |
CN110061131A (en) * | 2019-04-23 | 2019-07-26 | 中国科学院上海微系统与信息技术研究所 | A kind of phase-change material, phase-change memory cell and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004085167A1 (en) * | 2003-03-24 | 2006-06-29 | 松下電器産業株式会社 | Information recording medium and manufacturing method thereof |
TWI365914B (en) * | 2003-07-03 | 2012-06-11 | Mitsubishi Materials Corp | Phase change recording film having high electrical resistance and sputtering target for forming phase change recording film |
-
2019
- 2019-08-15 CN CN201910753993.2A patent/CN112397644B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005023377A (en) * | 2003-07-03 | 2005-01-27 | Mitsubishi Materials Corp | Sputtering target for phase-change-recording film, and phase-change-recording film having high electrical resistance formed by using the sputtering target |
CN103794224A (en) * | 2014-01-27 | 2014-05-14 | 华中科技大学 | Non-volatile logic device and logic operation method based on phase-change magnetic materials |
CN105514266A (en) * | 2015-12-03 | 2016-04-20 | 江苏理工学院 | Rare earth doped Sb-based phase thinned film material and film preparation method |
CN107768516A (en) * | 2016-08-22 | 2018-03-06 | 中国科学院上海微系统与信息技术研究所 | Y Sb Te phase-change materials, phase-changing memory unit and preparation method thereof |
CN106229409A (en) * | 2016-09-26 | 2016-12-14 | 江苏理工学院 | A kind of Er Se Sb nano phase change thin-film material and its preparation method and application |
CN106960907A (en) * | 2017-02-28 | 2017-07-18 | 宁波大学 | A kind of rare earth Er doping Ge2Sb2Te5Phase transiting storing thin-film material and preparation method thereof |
CN108899417A (en) * | 2018-07-02 | 2018-11-27 | 中国科学院上海微系统与信息技术研究所 | Ta-Sb-Te phase-change material, phase-changing memory unit and preparation method thereof |
CN110061131A (en) * | 2019-04-23 | 2019-07-26 | 中国科学院上海微系统与信息技术研究所 | A kind of phase-change material, phase-change memory cell and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Ge_2Sb_2Te_5薄膜相变行为及其对光存储特性影响;张庆瑜等;《大连理工大学学报》;20071115(第06期);全文 * |
One-step phase transition and thermal stability improvement of Ge2Sb2Te5 films by erbium-doping;Ting Gu等;《Vacuum》;20170906;第145卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112397644A (en) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101582485B (en) | Doping modified phase change material and phase change storage unit containing same and preparation method thereof | |
CN110061131B (en) | Phase change material, phase change storage unit and preparation method thereof | |
CN102227015B (en) | Phase transition storage material and preparation method thereof | |
CN102134698B (en) | Al-Sb-Te series phase change material for phase change memory and preparation method thereof | |
CN106611814B (en) | Phase change material for phase change memory and preparation method thereof | |
CN106299113A (en) | Ge Sb Se phase-change material, phase-changing memory unit and preparation method thereof | |
CN102361063B (en) | Thin film material for phase change memory and preparation method thereof | |
CN108899417A (en) | Ta-Sb-Te phase-change material, phase-changing memory unit and preparation method thereof | |
CN110148668B (en) | Al-Sc-Sb-Te phase-change material, phase-change memory unit and preparation method thereof | |
CN105047816A (en) | A kind of Cr-doped Ge2Sb2Te5 phase change material, phase change memory unit and preparation method thereof | |
CN111320145A (en) | A phase change material, a phase change memory unit and a method for making the same | |
CN110635033A (en) | A kind of B-Sb-Te phase change material, phase change memory unit and preparation method thereof | |
CN108922960A (en) | Ge-Se-Sb composite material, 1S1R phase-changing memory unit and preparation method | |
CN102751435A (en) | Phase change storage material and preparation method thereof | |
CN101931049B (en) | Anti-fatigue phase change storage unit with low power consumption and preparation method thereof | |
CN111244271B (en) | Phase change material, phase change memory unit and preparation method thereof | |
CN105280814B (en) | A kind of phase-change memory cell and preparation method thereof | |
CN104328326B (en) | Zn-Sb-Se phase transiting storing thin-film material for phase transition storage | |
CN112397644B (en) | A kind of phase-change material, phase-change storage unit and preparation method thereof | |
CN103236495A (en) | Sn-Ge-Te (stannum-germanium-tellurium) film material for phase transition storages and preparation method of Sn-Ge-Te film material | |
CN104241527B (en) | V Sb Te phase-change material systems for phase transition storage and preparation method thereof | |
CN103050624B (en) | Ga-Ge-Sb-Te film material used for phase change memory | |
CN108110135A (en) | A kind of Al-Sb-Ge phase-change materials, phase-changing memory unit and preparation method thereof | |
CN102169958B (en) | Nanocomposite phase-change material, preparation method and application thereof in phase-change memory | |
CN101924180A (en) | Antimony-rich Si-Sb-Te chalcogenide phase-change materials for phase-change memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |