CN112397318B - 泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法 - Google Patents

泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法 Download PDF

Info

Publication number
CN112397318B
CN112397318B CN202011106322.6A CN202011106322A CN112397318B CN 112397318 B CN112397318 B CN 112397318B CN 202011106322 A CN202011106322 A CN 202011106322A CN 112397318 B CN112397318 B CN 112397318B
Authority
CN
China
Prior art keywords
foamed nickel
core
capacitor material
nanowire
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011106322.6A
Other languages
English (en)
Other versions
CN112397318A (zh
Inventor
唐少春
王建森
乔清山
张晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011106322.6A priority Critical patent/CN112397318B/zh
Publication of CN112397318A publication Critical patent/CN112397318A/zh
Application granted granted Critical
Publication of CN112397318B publication Critical patent/CN112397318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法。其特征在于,在水热条件下,泡沫镍的表层被硫化生成相互交织的Ni3S2纳米线网络层,然后通过液相反应在每一根纳米线的表面形成Cu(OH)2纳米片的包覆层,从而获得具有高比电容、高循环稳定性的负载Cu(OH)2@Ni3S2核壳纳米线电容材料。产物中纳米线长达毫米级,相互交织形成类网状结构,厚度极薄的纳米片直径约1μm。该制备方法简单易操作,反应溶液重复使用,成本较低且易规模化。

Description

泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备 方法
技术领域:
本发明涉及一种超级电容器材料的制备方法,其特征为,对泡沫镍在反应釜中进行水热反应进行硫化生成硫化镍纳米线,继而通过进一步的水热反应负载 Cu(OH)2纳米片,从而获得具有高比电容、高循环稳定性的Cu(OH)2@Ni3S2核壳纳米线复合电容材料。该制备方法简单,易于控制和规模化的优点。
背景技术:
近年来社会愈发重视能源使用过程中的环保问题,新能源在整体能源的比重不断提高。其中电能的储存需求越来越大,传统的铅蓄电池等具有生产过程中高能耗,高污染的问题。与其相比,超级电容器有着高功率密度、高循环稳定性及使用寿命长、安全等优点,正在不断占领电力储存领域的份额。对超级电容器而言,电极材料是决定超级电容器性能与成本的关键,电极材料的选择、设计与制备是高性能超级电容器研发的重点。
超级电容器电极材料主要有:碳材料、金属化合物和导电聚合物。其中金属化合物的研究已经较为详尽。由于具有多种氧化态,过渡金属氧化物被视作赝电容电容器的重要电极材料,但其弱导电性导致了器件的能量密度较低,差循环稳定性较差,因此,探索兼具高导电性和高稳定性的赝电容电极材料是当前该领域一直追求的目标。在进一步地对过渡金属硫化物进行研究的过程中发现:硫元素有着低于氧元素的电负性,并且随着制备过程中的阴离子交换使得材料带隙变窄,有助于性能地提升。此外,由于用硫代替氧可以得到更有弹性地结构,使得结构更加稳定,从而提高循环稳定性。而从结构上来说,纳米线-纳米片的复合异质结构可以在纳米线维持稳定性和导电性的同时,增加电容量。本研究重点分析了硫化物纳米线-纳米片异质结构的形成方法。
因此,本发明在保持硫化物纳米线的基础上引入了均匀分布的纳米片。以单质硫作为硫源,在泡沫镍上覆盖均匀的硫化镍纳米线,进而通过水热的方式,用硫酸铜以及六亚甲基四胺为原料,水热负载纳米片。其中,纳米线分布均匀且弯曲,编织成类似网状结构。纳米片直径约为1μm,厚度极薄。这种由纳米线-纳米片构成的复合结构有着较高的质量比电容和良好的稳定性。
发明内容:
本发明的目的:提出一种泡沫镍负载硫化物纳米线复合纳米片电容材料及其制备方法,并介绍其在超级电容器电极方面的应用。通过这种方法,我们设计并制备了由纳米线相互交织构建的网状结构。该材料同时具有高比表面积和高稳定性的优点,从而保证了材料较高的电容性能;然后引进了纳米片,保证了材料的高电容性能。最后,该制备方法原料便宜,制备方法简单,对环境友好,易于控制和规模化。
本发明的技术方案是:将适量硫粉溶于乙二胺和乙醇的混合液中,放入表面清洗处理过的泡沫镍后,一起转移到50mL的反应釜中,在恒定的温度下进行硫化反应,结束后将其取出用去离子洗涤后,在60℃下烘干,得到泡沫镍负载Ni3S2纳米线的中间产物;然后,将该中间产物放入包含硫酸铜和六亚甲基四胺的混合溶液中,在恒定温度下反应;最后,将样品取出后反复清洗,在60℃烘干得到最终产物。
作为最佳方案,泡沫镍基体为长方形,尺寸3cm×2cm,使用前用稀HCl进行清洗处理;制备中间产物所使用的硫粉用量为50~80mg,乙二胺和乙醇的混合液的体积为30~40mL。
作为最佳方案,制备泡沫镍负载Ni3S2纳米线的中间产物时,水热反应的温度为150~180℃,反应时间为4~8h,结束后将其取出用去离子洗涤后,在60℃下烘干。
作为最佳方案,制备最终产物时,硫酸铜和六亚甲基四胺的混合溶液体积为 35~45mL,溶解的五水硫酸铜质量为160~220mg,六亚甲基四胺的质量为60~ 80mg,反应温度为80~90℃之间的一个恒定温度,反应时间为4~6h。
作为最佳方案,制备最终产物过程水热反应结束后应当尽快将产物冷却洗涤,防止纳米片过度生长发生团簇。
本发明制得的这种泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合的新型电容材料,它是由Cu(OH)2纳米片均匀包覆Ni3S2纳米线的核壳结构组成;核壳纳米线均匀分布在泡沫镍骨架上,且单根纳米线之间相互交织,形成了网络状结构;可直接应用于超级电容器电极,无需粘结剂;与其它方法相比,本发明提出的制备方法无需任何添加剂或模板,原材料便宜,环境友好,且易于控制及规模化。
有益效果:
(1)本发明提出了一种制备高电容超级电容器电极的新方法。
(2)第一步反应的有机溶液可重复利用,环境友好。
(3)不需要使用模板或添加剂,通过水热反应就可制备出具有三维结构的电极材料。
(4)与其他方法相比,该制备方法具有以下优点:
①制备过程简单,操作方便,重复性高;
②环境友好,整个制备过程不对环境造成污染;
③成本较低,具有良好的工业化应用前景;
(5)在保持硫化物纳米线的基础上,引入提高电容的Cu(OH)2纳米片,保持了循环稳定性的同时,使材料的电容性能有了进一步的提升。
附图说明:
图1为中间产物以及最终产物的SEM图。
图2为实施例产物的XPS图谱。
图3为水热生长纳米片前后的性能对比图。
图4分别是电极材料的(a)循环伏安曲线;(b)恒电流充放电曲线;(c)不同电流密度下的质量比电容值;(d)组装成电容器样品后的恒电流充放电曲线。
具体实施方式:
本发明中制备泡沫镍负载硫化物纳米线复合纳米片电容材料的具体实施方式如下:
实施例1:
将适量的硫溶于32mL乙二胺乙醇混合物后,和泡沫镍一起放入反应釜中,加热到160℃,进行6个小时的硫化过程,洗涤后在60℃条件下烘干12h。然后将干燥好的样品和溶于40mL水中70mg的六亚甲基四胺,200mg五水硫酸铜一起,在90℃的条件下反应5小时,将样品在60℃烘干12h得到最终产物。
图1a及放大图1b是中间产物的SEM图。可以发现硫化镍纳米线均匀的分布在泡沫镍的骨架上,并且编制成较为紧密的网状形貌。高倍的SEM图像显示,单根管的直径约为1nm。图1c和放大图1d是最终产物的SEM图。可以看到纳米片均匀的分布在纳米线上。由SEM图像显示,纳米片单片直径约为1μm。
图2是制备产物的XPS图谱。
图3是负载Cu(OH)2纳米片前后的性能对比图。可以看出,在高电流密度下,极大的提升了比电容,在低电流密度下,电容也有较为明显的升高。
图4分别是电极材料的(a)循环伏安曲线;(b)恒电流充放电曲线;(c)不同电流密度下的质量比电容值;(d)组装成电容器样品后的恒电流充放电曲线。
图4a为样品在不同扫描速率下的循环伏安曲线(5到40mV s-1)。可以观察到明显的氧化峰和还原峰,这表明该电极材料具有赝电容特性。低扫描速率下的氧化还原峰表明,电极材料发生了强烈的氧化还原反应。随着扫描速率的增加,曲线形状并没有明显变化,同时循环伏安曲线依然保持原来的形状,这说明在高扫描速率下,该材料仍具有良好的电容性能。图4b是该材料在不同电流密度下的恒流充放电曲线,放电阶段中存在着明显的放电平台,这与循环伏安曲线的氧化还原峰相对应,表明具有良好的充放电可逆性。此外,放电过程的电压降很小,表明材料的内阻很小。曲线不是呈现直线形状,而是有明显的弯曲,证实了该电极表现出法拉第赝电容行为。图4c为不同电流密度下的比电容值,电极在电流密度为2mA cm-2时达到了1900F g-1的面电容值。图4d是组装成全固态器件后测试的恒电流充放电曲线,结果表明,利用该电极材料组装的电容器器件仍然有较好的电容特性。
实施例2:
五水硫酸铜用量为150mg,其他条件和实施例1相同。
实施例3:
五水硫酸铜用量为200mg,其他条件和实施例1相同。
实施例4:
五水硫酸铜用量为100mg,其他条件和实施例1相同。
实施例5:
水热反应结束后让反应釜自然冷却,其他条件和实施例1相同。

Claims (4)

1.一种泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料的制备方法,其特征在于,将适量硫粉溶于乙二胺和乙醇的混合液中,放入表面清洗处理过的泡沫镍后,一起转移到50mL的反应釜中,在恒定的温度下进行硫化反应,结束后将其取出用去离子洗涤后,在60℃下烘干,得到泡沫镍负载Ni3S2纳米线的中间产物;然后,将该中间产物放入包含硫酸铜和六亚甲基四胺的混合溶液中,在恒定温度下反应;最后,将样品取出后反复清洗,在60℃烘干得到最终产物;
制备中间产物所使用的硫粉用量为50~80mg,乙二胺和乙醇的混合液的体积为30~40mL;
制备泡沫镍负载Ni3S2纳米线的中间产物时,水热反应的温度为150~180℃,反应时间为4~8h;
制备最终产物时,硫酸铜和六亚甲基四胺的混合溶液体积为35~45mL,溶解的五水硫酸铜质量为160~220mg,六亚甲基四胺的质量为60~80mg,反应温度为80~90℃之间的一个恒定温度,反应时间为4~6h。
2.如权利要求1所述的泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料的制备方法,其特征在于,泡沫镍基体为长方形,尺寸3cm×2cm,使用前用稀HCl进行清洗处理。
3.如权利要求1所述的制备方法制备得到的泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料,其特征在于,所述复合电容材料是由Cu(OH)2纳米片均匀包覆Ni3S2纳米线的核壳结构组成;核壳纳米线均匀分布在泡沫镍骨架上,且单根纳米线之间相互交织,形成了网络状结构。
4.如权利要求3所述的泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料的应用,其特征在于,所述复合电容材料直接应用于超级电容器的电极。
CN202011106322.6A 2020-10-15 2020-10-15 泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法 Active CN112397318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011106322.6A CN112397318B (zh) 2020-10-15 2020-10-15 泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011106322.6A CN112397318B (zh) 2020-10-15 2020-10-15 泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112397318A CN112397318A (zh) 2021-02-23
CN112397318B true CN112397318B (zh) 2021-12-24

Family

ID=74596537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011106322.6A Active CN112397318B (zh) 2020-10-15 2020-10-15 泡沫镍负载Cu(OH)2@Ni3S2核壳纳米线复合电容材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112397318B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108437A1 (zh) * 2022-11-23 2024-05-30 苏州大学 一种原位硫化电沉积制备Pd/Ni3S2/NF纳米片阵列电极的方法及EHDC的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470626A (zh) * 2018-03-13 2018-08-31 中国科学院深圳先进技术研究院 电极材料及其制备方法
CN109659143B (zh) * 2018-11-23 2021-12-24 暨南大学 一种氢氧化镍/二硫化三镍/泡沫镍复合物及其制备方法与应用
CN110993368A (zh) * 2019-12-19 2020-04-10 华东理工大学 一种复合电极材料及制备方法、超级电容器
CN111540610B (zh) * 2020-05-09 2021-03-02 中南大学 一种用于超级电容器的电极材料及其制备方法和用途

Also Published As

Publication number Publication date
CN112397318A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Zhou et al. Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance
Zhong et al. Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance
Liu et al. Microwave synthesis of sodium nickel-cobalt phosphates as high-performance electrode materials for supercapacitors
Gong et al. A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors
Khalafallah et al. Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors
Liu et al. Ultrathin nanosheets-assembled NiCo2S4 nanocages derived from ZIF-67 for high-performance supercapacitors
Zhang et al. Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors
Anil Kumar et al. Influence of solvents in the preparation of cobalt sulfide for supercapacitors
Ye et al. Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Manohar et al. A brief review on Zn-based materials and nanocomposites for supercapacitor applications
CN105185606A (zh) 一种新型碱式碳酸钴-掺氮石墨烯复合电极材料的制备方法
Yang et al. Core–shell structured WS2@ Ni-Co-S composite and activated carbon derived from rose flowers as high-efficiency hybrid supercapacitor electrodes
Liu et al. CoNi layered double hydroxide anchored on N-doped carbon coated carbon nanotubes network with 3D Core-shell structure for all-solid-state supercapacitors
Jia et al. An in situ growth strategy of NiCo-MOF nanosheets with more activity sites for asymmetric supercapacitors
CN109411238B (zh) 一种层状双氢氧化物复合电极材料及其制备方法和用途
Li et al. An asymmetric supercapacitor based on a NiO/Co3O4@ NiCo cathode and an activated carbon anode
Lu et al. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors
Zhang et al. Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors
Li et al. Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors
Meghanathan et al. Metal-organic framework-derived Nickle Tellurideporous structured composites electrode materials for asymmetric supercapacitor application
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Lin et al. Prospect of Ni-related metal oxides for high-performance supercapacitor electrodes
Hu et al. Nanoscale nickel phosphide encapsulated in carbon microsphere from a spherical MOF toward high-performance supercapacitors
Yang et al. In-situ growth of KCu7S4@ CoMoO4 core-shell structure on Ni foam for high performance supercapacitor electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant