CN112396067A - 点云数据采样方法、装置及电子设备 - Google Patents

点云数据采样方法、装置及电子设备 Download PDF

Info

Publication number
CN112396067A
CN112396067A CN202110066220.4A CN202110066220A CN112396067A CN 112396067 A CN112396067 A CN 112396067A CN 202110066220 A CN202110066220 A CN 202110066220A CN 112396067 A CN112396067 A CN 112396067A
Authority
CN
China
Prior art keywords
point cloud
sampling
point
distance
cloud data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110066220.4A
Other languages
English (en)
Other versions
CN112396067B (zh
Inventor
杨林
韩志华
杜一光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Zhitu Technology Co Ltd
Original Assignee
Suzhou Zhitu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Zhitu Technology Co Ltd filed Critical Suzhou Zhitu Technology Co Ltd
Priority to CN202110066220.4A priority Critical patent/CN112396067B/zh
Publication of CN112396067A publication Critical patent/CN112396067A/zh
Application granted granted Critical
Publication of CN112396067B publication Critical patent/CN112396067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请提供了一种点云数据采样方法、装置及电子设备,方法包括:获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值;通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值;基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点云数量达到预设阈值,将当前点云采样集确定为目标点云采样集。本申请能够增加前景点的采样,在保证实时性的基础上提升感知性能。

Description

点云数据采样方法、装置及电子设备
技术领域
本申请涉及智能驾驶技术领域,尤其是涉及一种点云数据采样方法、装置及电子设备。
背景技术
随着3D传感器技术(激光雷达,RGB-D摄像头,多目摄像头等)的快速发展和成本降低,越来越多的自动驾驶设备开始把3D传感器作为必备的感知传感器。相比传统的2D传感器(如彩色摄像头),3D传感器能够获取交通环境中丰富的几何位置信息,提升无人驾驶车辆的感知性能,进而使自动驾驶设备的安全性和高效性都得到保证。其中,基于从激光雷达获取的三维点云数据和机器学习(神经网络)的方法,对交通环境进行目标检测,跟踪,分割等,是自动驾驶环境感知的重要组成部分。
当前行业内最前沿的感知方案依赖基于点的深度学习方法(如Pointnet++,PointSIFT,KPConv,RS-CNN,RandLA-Net等)提取特征,以保证原始点云信息的完整和提取特征的鲁棒性。此类方法分为三步:1)从原始点云中选取关键点,2)在关键点一定范围内选取一定数量的相邻点,对这些局部区域的点进行特征提取和聚合,3)重复1)和2)多次,形成层级的特征提取和聚合操作,从而将感知范围覆盖到整个点云范围。
其中,在步骤1)中,传统点云采样算法,如FPS(Farthest Point Sampling),IDIS(Inverse Density Importance Sampling),RS(Random Sampling)等能够保证实时性,但均是基于特定的几何规则的点云采样,往往追求覆盖整个点云范围,由于在自动驾驶场景下点云中背景点占绝大多数,传统的采样方法会大量采样背景点,从而影响整体感知性能。
发明内容
本申请的目的在于提供一种点云数据采样方法、装置及电子设备,基于神经网络提取的点特征值,及点的三维坐标值确定的点与点之间的距离,对原始点云数据进行循环点采样,能够增加前景点的采样,在保证实时性的基础上提升感知性能。
第一方面,本申请实施例提供一种点云数据采样方法,方法包括:获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值;通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值;基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。
进一步的,上述基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集的步骤,包括:从原始点云数据中选定初始采样点,将添加有初始采样点的点云采样集作为当前点云采样集,循环执行以下采样步骤:计算原始点云数据中,除当前点云采样集中的点外的其它点分别与当前点云采样集间的第一距离;将多个第一距离中的最大值对应的点作为目标采样点;利用目标采样点更新当前点云采样集;其中,第一距离为基于三维坐标值和特征值分别计算得到的点与点之间的几何距离和特征距离确定的。
进一步的,上述特征距离可以通过以下任一距离计算公式计算得到:欧式距离计算公式、高斯距离计算公式、曼哈顿距离计算公式、余弦距离计算公式。
进一步的,上述计算原始点云数据中,除当前点云采样集中的点外的其它点分别与当前点云采样集间的第一距离的步骤,包括:将原始点云数据中,除当前点云采样集中的点外的其它点分别作为当前点,均执行以下步骤:计算当前点与当前点云采样集中点之间的第二距离;基于第二距离确定当前点与当前点云采样集间的第一距离。
进一步的,上述计算当前点与当前点云采样集中点之间的第二距离的步骤,包括:获取当前点和当前点云采样集中点分别对应的三维坐标值和特征值;根据当前点和当前点云采样集中点分别对应的三维坐标值,计算点与点之间的几何距离;根据当前点和当前点云采样集中点分别对应的特征值,计算点与点之间的特征距离;计算几何距离和特征距离的加权和,得到当前点与当前点云采样集中点之间的第二距离。
进一步的,上述基于第二距离确定当前点与当前点云采样集间的第一距离的步骤,包括:如果第二距离为一个,将第二距离确定为当前点与当前点云采样集间的第一距离;如果第二距离包括多个,将多个第二距离中的最小值确定为当前点与当前点云采样集间的第一距离。
进一步的,上述通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值的步骤,包括:将原始点云数据输入预设神经网络进行预测,得到原始点云数据中每个点对应的特征值。
第二方面,本申请实施例还提供一种点云数据采样装置,装置包括:点云获取模块,用于获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值;特征提取模块,用于通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值;采样集确定模块,用于基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。
第三方面,本申请实施例还提供一种电子设备,包括处理器和存储器,存储器存储有能够被处理器执行的计算机可执行指令,处理器执行计算机可执行指令以实现上述第一方面所述的方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现上述第一方面所述的方法。
本申请实施例提供的点云数据采样方法、装置及电子设备中,获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值;通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值;基于每个点分别对应的三维坐标值和特征值所确定的两两点间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。本申请实施例基于神经网络提取的点特征值,及点的三维坐标值确定的点与点之间的距离,对原始点云数据进行循环点采样,能够增加前景点的采样,在保证实时性的基础上提升感知性能。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种点云数据采样方法的流程图;
图2为本申请实施例提供的一种原始点云数据示意图;
图3为本申请实施例提供的一种特征点云数据示意图;
图4为本申请实施例提供的一种两点间距离示意图;
图5为本申请实施例提供的一种两点间距离公式示意图;
图6为本申请实施例提供的一种点与采样集间距离示意图;
图7为本申请实施例提供的一种点与采样集间距离公式示意图;
图8为本申请实施例提供的一种目标点云采样集中点的示意图;
图9为本申请实施例提供的一种点云数据采样装置的结构框图;
图10为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,传统点云采样算法,如FPS、IDIS、RS等能够保证实时性,但均是基于特定的几何规则的点云采样,往往追求覆盖整个点云范围,由于在自动驾驶场景下点云中背景点占绝大多数,传统的采样方法会大量采样背景点,从而影响整体感知性能。
基于此,本申请实施例提供一种点云数据采样方法、装置及电子设备,基于神经网络提取的点特征值,及点的三维坐标值确定的点与点之间的距离,对原始点云数据进行点采样,能够增加前景点的采样,在保证实时性的基础上提升感知性能。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种点云数据采样方法进行详细介绍。
图1为本申请实施例提供的一种点云数据采样方法的流程图,该方法具体包括以下步骤:
步骤S102,获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值。
上述目标对象可以是各种车辆,或者也可以是行人、电线杆之类的目标检测对象。通过激光雷达对目标对象进行扫描得到的点云数据中会携带有各个点对应的三维坐标值,如(x、y、z)。参见图2所示的原始点云数据示意图,图中大灰点为前景图像,即目标对象对应的点,小灰点为背景图像对应的点。
步骤S104,通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值。
在获取到目标对象的原始点云数据后,进一步通过预设神经网络对原始点云数据进行特征提取,这里的特征提取过程可以通过不同的预设神经网络实现,比如PointNet,Pointnet++,PointSIFT,KPConv,RS-CNN,RandLA-Net等。比如,将上述图2中所示的原始点云数据输入预设神经网络进行预测,得到原始点云数据中每个点对应的特征值,进行特征提取后,将每个点得到的特征值叠加于图2对应的点中,得到如图3所示的特征点云示意图,图中显示的为叠加有特征值的点,大灰点和小灰点均变为一半浅灰,一半深灰。如图2和图3中所示,图中包含一个待感知的前景物体(即上述目标对象),一辆车和一些并不关心的背景点,地面点。
步骤S106,基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。
通过上述每个点分别对应的三维坐标值和特征值可以确定出两点间的距离,具体的,可以通过两点分别对应的三维坐标值,计算出两点间的几何距离,可以通过两点分别对应的特征值,计算出两点间的特征距离,求取上述几何距离和特征距离的加权和,即可确定出两点间的距离。
基于上述原始点云数据中,点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,比如,先选取一个初始点加入当前点云采样集中,然后根据其它点与该当前点云采样集间的距离,找到距离该当前点云采样集最远的点,点与该当前点云采样集间的距离的计算过程也依赖于点与点间的距离,可以通过找到的最远点不断地更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。
本申请实施例提供的点云数据采样方法中,基于神经网络提取的点特征值,及点的三维坐标值确定的点与点之间的距离,对原始点云数据进行循环点采样,能够增加前景点的采样,在保证实时性的基础上提升感知性能。
为了更多地采样到前景中的点,本申请实施例采用以下循环采样方式进行点采样:
从原始点云数据中选定初始采样点,将添加有初始采样点的点云采样集作为当前点采样集,循环执行以下采样步骤:
(1)计算原始点云数据中,除当前点云采样集中的点外的其它点分别与当前点云采样集间的第一距离;其中,第一距离为基于三维坐标值和特征值分别计算得到的点与点之间的几何距离和特征距离确定的。
(2)将多个第一距离中的最大值对应的点作为目标采样点;
(3)利用目标采样点更新当前点云采样集;
上述初始采样点的选择可以随机从原始点云数据中选择,可以是原始点云数据中的任意一个点。上述特征距离可以通过以下任一距离计算公式计算得到:欧式距离计算公式、高斯距离计算公式、曼哈顿距离计算公式、余弦距离计算公式。
上述步骤(1)计算原始点云数据中,除当前点云采样集中的点外的其它点分别与当前点云采样集间的第一距离的步骤,可以通过以下方式实现:
将原始点云数据中,除当前点云采样集中的点外的其它点分别作为当前点,均执行以下步骤:
1)计算当前点与当前点云采样集中点之间的第二距离。
具体的,获取当前点和当前点云采样集中点分别对应的三维坐标值和特征值;根据当前点和当前点云采样集中点分别对应的三维坐标值,计算两点间的几何距离;根据当前点和当前点云采样集中点分别对应的特征值,计算两点间的特征距离;计算几何距离和特征距离的加权和,得到当前点与当前点云采样集中点之间的第二距离。
2)基于第二距离确定当前点与当前点云采样集间的第一距离。
如果第二距离为一个,将第二距离确定为当前点与当前点云采样集间的第一距离;如果第二距离包括多个,将多个第二距离中的最小值确定为当前点与当前点云采样集间的第一距离。
下面以图3所示的特征点云图为例,对循环点采样过程进行详细的说明:图3中点 可表示为:
Figure DEST_PATH_IMAGE001
其中,n为原始点云数据中点的数目。
Figure DEST_PATH_IMAGE002
为某一个点i的信息,
Figure DEST_PATH_IMAGE003
为经过神经网络学习到 的m维特征。此时当前点云采样集
Figure DEST_PATH_IMAGE004
后续计算两个点第一点k1和第二点k2间的距离,可通过下式进行计算:
Figure DEST_PATH_IMAGE005
其中,
Figure DEST_PATH_IMAGE006
表示第一点k1和第二点k2之间的距离;
Figure DEST_PATH_IMAGE007
为权重参数,
Figure DEST_PATH_IMAGE008
表示第一点k1 和第二点k2的特征距离;
Figure DEST_PATH_IMAGE009
表示第一点k1和第二点k2之间几何距离;
Figure DEST_PATH_IMAGE010
分别表示 第一点k1和第二点k2的特征值;
Figure DEST_PATH_IMAGE011
表示第一点k1三维坐标值;
Figure DEST_PATH_IMAGE012
表 示第二点k2的三维坐标值。
1.选取起始点(即初始采样点k0)以及第一个最远点k1。
如图4所示,方便观看并未画出所有表示距离的线段。从点云数据中随机或者指定一个 点
Figure DEST_PATH_IMAGE013
加入当前点云采样集中
Figure DEST_PATH_IMAGE014
。计算其他所有点到
Figure DEST_PATH_IMAGE015
的距离
Figure DEST_PATH_IMAGE016
。 其中
Figure DEST_PATH_IMAGE017
由特征距离
Figure DEST_PATH_IMAGE018
和几何距离
Figure DEST_PATH_IMAGE019
所决定,如图5所示,特征距离包括但不限于欧式 距离,高斯距离,曼哈顿距离,余弦距离等,这里以余弦距离为例:
Figure DEST_PATH_IMAGE020
其中,
Figure DEST_PATH_IMAGE021
Figure DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
Figure DEST_PATH_IMAGE024
为权重参数,人为设定。表示偏重使用特征距离或者几何距离作为采样标准。
Figure DEST_PATH_IMAGE025
中选出距离最大的点k1,将
Figure DEST_PATH_IMAGE026
加入当前点云采样集中
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE028
2.由于此时当前点云采样集
Figure DEST_PATH_IMAGE029
中有一个以上的点,从点云数据剩余点中采 样时,考虑某一点
Figure DEST_PATH_IMAGE030
到采样集
Figure DEST_PATH_IMAGE031
的距离为
Figure DEST_PATH_IMAGE032
,如图6,图7所示,
Figure DEST_PATH_IMAGE033
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE036
Figure DEST_PATH_IMAGE037
Figure DEST_PATH_IMAGE038
为权重参数,人为设定,表示偏重使用特征距离或者几何距离作为采样标准。
计算所有剩余点到当前点云采样集
Figure DEST_PATH_IMAGE039
的距离
Figure DEST_PATH_IMAGE040
,找 到最远点
Figure DEST_PATH_IMAGE041
加入采样集中
Figure DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE043
3.重复步骤2,直至采样点数满足要求,如图8所示。
本申请实施例提供的点云数据采样方法,相比传统的点云采样算法,该方法使用神经网络的语义特征作和几何距离同时作为采样依据,使得采样不仅要满足几何意义上足够远,还要保证语义特征上足够远。从而筛除大量语义特征相似的背景点,保留自动驾驶环境下,更重要的代表待测目标的前景点,提升检测性能。相比其他基于学习的采样算法,该方法使用的特征来自于原本的特征提取网络,无需额外增加神经网络结构和学习任务。同时算法总体逻辑和传统FPS基本一致,从而相比其他基于学习的采样算法,节省了资源,保证了实时性。
第二方面,本申请实施例还提供一种点云数据采样装置,参见图9所示,该装置包括:点云获取模块92,用于获取目标对象的原始点云数据;原始点云数据为通过激光雷达对目标对象进行扫描得到的点云数据;原始点云数据中每个点对应有三维坐标值;特征提取模块94,用于通过预设神经网络对原始点云数据进行特征提取,得到原始点云数据中每个点对应的特征值;采样集确定模块96,用于基于每个点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对原始点云数据进行循环点采样,以不断更新当前点云采样集,直到当前点云采样集对应的采样点数量达到预设阈值,将当前点云采样集确定为目标点云采样集。
进一步的,上述采样集确定模块96还用于:从原始点云数据中选定初始采样点,以初始采样点作为当前点采样集,循环执行以下采样步骤:计算原始点云数据中,除当前点云采样集中的点外的其它点分别与当前点云采样集间的第一距离;将多个第一距离中的最大值对应的点作为目标采样点;利用目标采样点更新当前点云采样集;其中,第一距离为基于三维坐标值和特征值分别计算得到的点与点之间的几何距离和特征距离确定的。
进一步的,上述特征距离可以通过以下任一距离计算公式计算得到:欧式距离计算公式、高斯距离计算公式、曼哈顿距离计算公式、余弦距离计算公式。
进一步的,上述采样集确定模块96还用于:将原始点云数据中,除当前点云采样集中的点外的其它点分别作为当前点,均执行以下步骤:计算当前点与当前点云采样集中点之间的第二距离;基于第二距离确定当前点与当前点云采样集间的第一距离。
进一步的,上述采样集确定模块96还用于:获取当前点和当前点云采样集中点分别对应的三维坐标值和特征值;根据当前点和当前点云采样集中点分别对应的三维坐标值,计算点与点之间的几何距离;根据当前点和当前点云采样集中点分别对应的特征值,计算点与点之间的特征距离;计算几何距离和特征距离的加权和,得到当前点与当前点云采样集中点之间的第二距离。
进一步的,上述采样集确定模块96还用于:如果第二距离为一个,将第二距离确定为当前点与当前点云采样集间的第一距离;如果第二距离包括多个,将多个第二距离中的最小值确定为当前点与当前点云采样集间的第一距离。
进一步的,上述特征提取模块94还用于:将原始点云数据输入预设神经网络进行预测,得到原始点云数据中每个点对应的特征值。
本申请实施例提供的点云数据采样装置,其实现原理及产生的技术效果和前述点云数据采样方法实施例相同,为简要描述,点云数据采样装置的实施例部分未提及之处,可参考前述点云数据采样方法实施例中相应内容。
本申请实施例还提供了一种电子设备,如图10所示,为该电子设备的结构示意图,其中,该电子设备包括处理器101和存储器100,该存储器100存储有能够被该处理器101执行的计算机可执行指令,该处理器101执行该计算机可执行指令以实现上述方法。
在图10示出的实施方式中,该电子设备还包括总线102和通信接口103,其中,处理器101、通信接口103和存储器100通过总线102连接。
其中,存储器100可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口103(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。总线102可以是ISA(IndustryStandard Architecture,工业标准体系结构)总线、PCI(Peripheral ComponentInterconnect,外设部件互连标准)总线或EISA(Extended Industry StandardArchitecture,扩展工业标准结构)总线等。所述总线102可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。
处理器101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器101可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DigitalSignal Processor,简称DSP)、专用集成电路(Application Specific IntegratedCircuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器101读取存储器中的信息,结合其硬件完成前述实施例的方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令在被处理器调用和执行时,该计算机可执行指令促使处理器实现上述方法,具体实现可参见前述方法实施例,在此不再赘述。
本申请实施例所提供的方法、装置和电子设备的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本申请的范围。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

1.一种点云数据采样方法,其特征在于,所述方法包括:
获取目标对象的原始点云数据;所述原始点云数据为通过激光雷达对所述目标对象进行扫描得到的点云数据;所述原始点云数据中每个点对应有三维坐标值;
通过预设神经网络对所述原始点云数据进行特征提取,得到所述原始点云数据中每个点对应的特征值;
基于每个所述点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对所述原始点云数据进行循环点采样,以不断更新当前点云采样集,直到所述当前点云采样集对应的采样点数量达到预设阈值,将所述当前点云采样集确定为目标点云采样集。
2.根据权利要求1所述的方法,其特征在于,基于每个所述点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对所述原始点云数据进行循环点采样,以不断更新当前点云采样集的步骤,包括:
从所述原始点云数据中选定初始采样点,将添加有所述初始采样点的点云采样集作为当前点云采样集,循环执行以下采样步骤:
计算所述原始点云数据中,除所述当前点云采样集中的点外的其它点分别与所述当前点云采样集间的第一距离;将多个第一距离中的最大值对应的点作为目标采样点;利用所述目标采样点更新所述当前点云采样集;其中,所述第一距离为基于三维坐标值和特征值分别计算得到的点与点之间的几何距离和特征距离确定的。
3.根据权利要求2所述的方法,其特征在于,所述特征距离可以通过以下任一距离计算公式计算得到:欧式距离计算公式、高斯距离计算公式、曼哈顿距离计算公式、余弦距离计算公式。
4.根据权利要求2所述的方法,其特征在于,计算所述原始点云数据中,除所述当前点云采样集中的点外的其它点分别与所述当前点云采样集间的第一距离的步骤,包括:
将所述原始点云数据中,除所述当前点云采样集中的点外的其它点分别作为当前点,均执行以下步骤:
计算所述当前点与所述当前点云采样集中点之间的第二距离;
基于所述第二距离确定所述当前点与所述当前点云采样集间的第一距离。
5.根据权利要求4所述的方法,其特征在于,计算所述当前点与所述当前点云采样集中点之间的第二距离的步骤,包括:
获取所述当前点和所述当前点云采样集中点分别对应的三维坐标值和特征值;
根据所述当前点和所述当前点云采样集中点分别对应的三维坐标值,计算点与点之间的几何距离;
根据所述当前点和所述当前点云采样集中点分别对应的特征值,计算点与点之间的特征距离;
计算所述几何距离和特征距离的加权和,得到所述当前点与所述当前点云采样集中点之间的第二距离。
6.根据权利要求4所述的方法,其特征在于,基于所述第二距离确定所述当前点与所述当前点云采样集间的第一距离的步骤,包括:
如果所述第二距离为一个,将所述第二距离确定为所述当前点与所述当前点云采样集间的第一距离;
如果所述第二距离包括多个,将多个第二距离中的最小值确定为所述当前点与所述当前点云采样集间的第一距离。
7.根据权利要求1所述的方法,其特征在于,通过预设神经网络对所述原始点云数据进行特征提取,得到所述原始点云数据中每个点对应的特征值的步骤,包括:
将所述原始点云数据输入所述预设神经网络进行预测,得到所述原始点云数据中每个点对应的特征值。
8.一种点云数据采样装置,其特征在于,所述装置包括:
点云获取模块,用于获取目标对象的原始点云数据;所述原始点云数据为通过激光雷达对所述目标对象进行扫描得到的点云数据;所述原始点云数据中每个点对应有三维坐标值;
特征提取模块,用于通过预设神经网络对所述原始点云数据进行特征提取,得到所述原始点云数据中每个点对应的特征值;
采样集确定模块,用于基于每个所述点分别对应的三维坐标值和特征值所确定的点与点之间的距离,对所述原始点云数据进行循环点采样,以不断更新当前点云采样集,直到所述当前点云采样集对应的采样点数量达到预设阈值,将所述当前点云采样集确定为目标点云采样集。
9.一种电子设备,其特征在于,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机可执行指令,所述处理器执行所述计算机可执行指令以实现权利要求1至7任一项所述的方法。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被处理器调用和执行时,计算机可执行指令促使处理器实现权利要求1至7任一项所述的方法。
CN202110066220.4A 2021-01-19 2021-01-19 点云数据采样方法、装置及电子设备 Active CN112396067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110066220.4A CN112396067B (zh) 2021-01-19 2021-01-19 点云数据采样方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110066220.4A CN112396067B (zh) 2021-01-19 2021-01-19 点云数据采样方法、装置及电子设备

Publications (2)

Publication Number Publication Date
CN112396067A true CN112396067A (zh) 2021-02-23
CN112396067B CN112396067B (zh) 2021-05-18

Family

ID=74625379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110066220.4A Active CN112396067B (zh) 2021-01-19 2021-01-19 点云数据采样方法、装置及电子设备

Country Status (1)

Country Link
CN (1) CN112396067B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674425A (zh) * 2021-10-25 2021-11-19 深圳市信润富联数字科技有限公司 点云采样方法、装置、设备及计算机可读存储介质
CN116246121A (zh) * 2023-05-12 2023-06-09 山东科技大学 一种基于改进最远点采样的点云数据处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106934346A (zh) * 2017-01-24 2017-07-07 北京大学 一种目标检测性能优化的方法
CN109711410A (zh) * 2018-11-20 2019-05-03 北方工业大学 一种三维物体快速分割和识别方法、装置及系统
CN110807439A (zh) * 2019-11-12 2020-02-18 银河水滴科技(北京)有限公司 检测障碍物的方法及装置
CN110991468A (zh) * 2019-12-13 2020-04-10 深圳市商汤科技有限公司 三维目标检测和智能行驶方法、装置、设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106934346A (zh) * 2017-01-24 2017-07-07 北京大学 一种目标检测性能优化的方法
CN109711410A (zh) * 2018-11-20 2019-05-03 北方工业大学 一种三维物体快速分割和识别方法、装置及系统
CN110807439A (zh) * 2019-11-12 2020-02-18 银河水滴科技(北京)有限公司 检测障碍物的方法及装置
CN110991468A (zh) * 2019-12-13 2020-04-10 深圳市商汤科技有限公司 三维目标检测和智能行驶方法、装置、设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张秀君: "显著性目标分割模型及其应用", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674425A (zh) * 2021-10-25 2021-11-19 深圳市信润富联数字科技有限公司 点云采样方法、装置、设备及计算机可读存储介质
CN116246121A (zh) * 2023-05-12 2023-06-09 山东科技大学 一种基于改进最远点采样的点云数据处理方法
CN116246121B (zh) * 2023-05-12 2023-08-11 山东科技大学 一种基于改进最远点采样的点云数据处理方法

Also Published As

Publication number Publication date
CN112396067B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN109255352B (zh) 目标检测方法、装置及系统
CN111160379B (zh) 图像检测模型的训练方法及装置、目标检测方法及装置
US11393256B2 (en) Method and device for liveness detection, and storage medium
CN112396068B (zh) 点云数据的处理方法、装置及电子设备
CN112396067B (zh) 点云数据采样方法、装置及电子设备
CN109191513B (zh) 基于全局优化的电力设备立体匹配方法
JP6111745B2 (ja) 車輌検知方法及び装置
CN108960115B (zh) 基于角点的多方向文本检测方法
CN111242925B (zh) 针对ct影像数据的目标检测方法、装置及电子设备
CN113935428A (zh) 基于图像识别的三维点云聚类识别方法及系统
JP6426441B2 (ja) 密度計測装置、密度計測方法、およびプログラム
CN112489063A (zh) 图像分割方法、图像分割模型的训练方法和装置
CN110610202A (zh) 一种图像处理方法及电子设备
CN110807461B (zh) 一种目标位置检测方法
CN114419599A (zh) 障碍物识别方法、装置及电子设备
KR20170106823A (ko) 부분적인 깊이 맵에 기초하여 관심 객체를 식별하는 영상 처리 장치
CN112990009A (zh) 基于端到端的车道线检测方法、装置、设备及存储介质
CN111860623A (zh) 基于改进ssd神经网络的统计树木数量的方法及系统
CN114898306B (zh) 一种检测目标朝向的方法、装置及电子设备
CN108615025B (zh) 家居环境下门识别定位方法、系统以及机器人
CN116012712A (zh) 基于物体通用特征的目标检测方法、装置、设备及介质
CN112949571A (zh) 识别年龄的方法、年龄识别模型的训练方法和装置
KR101305732B1 (ko) 비디오 검색을 위한 블록 생성 방법 및 이를 통해 생성된 블록을 기초로 한 질의 처리 방법
CN113569877B (zh) 点云数据处理方法、装置及电子设备
CN115063594B (zh) 一种基于自动驾驶的特征提取方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant