CN112391403B - Application of TGW10 gene in improvement of crop grain type traits - Google Patents

Application of TGW10 gene in improvement of crop grain type traits Download PDF

Info

Publication number
CN112391403B
CN112391403B CN201910745321.7A CN201910745321A CN112391403B CN 112391403 B CN112391403 B CN 112391403B CN 201910745321 A CN201910745321 A CN 201910745321A CN 112391403 B CN112391403 B CN 112391403B
Authority
CN
China
Prior art keywords
gene
tgw10
rice
gly
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910745321.7A
Other languages
Chinese (zh)
Other versions
CN112391403A (en
Inventor
罗小金
杨金水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Jinxin Biotechnology Co ltd
Original Assignee
Suzhou Jinxin Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Jinxin Biotechnology Co ltd filed Critical Suzhou Jinxin Biotechnology Co ltd
Priority to CN201910745321.7A priority Critical patent/CN112391403B/en
Publication of CN112391403A publication Critical patent/CN112391403A/en
Application granted granted Critical
Publication of CN112391403B publication Critical patent/CN112391403B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Abstract

The invention belongs to the technical field of gene editing, relates to a method for improving grain shape traits, and particularly relates to application of a rice TGW10 (ground grain weight 10) gene in the aspect of improving rice grain length traits. The invention utilizes CRISPR/Cas9 technology to edit thousand-grain weight gene TGW10 from japonica rice Nipponbare (O.sativa.) at fixed points so as to improve the grain type character of rice. The cloned negative regulation grain type gene TGW10 encodes an RBP containing two RRMs, belongs to the RBP-J type, and regulates grain length by limiting the length of rice glume cells; knocking out the RBP-J gene using CRISPR/Cas9 technology results in cell elongation and enlargement, thereby increasing grain weight.

Description

Application of TGW10 gene in improvement of crop grain type traits
Technical Field
The invention belongs to the technical field of gene editing, relates to a method for improving grain shape traits, and particularly relates to application of a rice TGW10 (ground grain weight 10) gene in the aspect of improving rice grain length traits.
Background
The literature states that rice is one of the major food crops in the world, more than half of the world population has rice as staple food, and scientists expect food demand to double in 2050. In the past 50 years, the rice yield has been greatly increased due to the discovery of semi-dwarf lines and the development of hybrid rice. However, in some regions, including china, the loss of farmable fields and the further increase in population make it appear that the increase in rice production is still standing and even severely food-deficient, and researchers in this field have focused on and met the ever-increasing food demand by exploring new genetic resources and developing more efficient research and application strategies.
Research shows that the rice yield is mainly determined by effective tillering number, grain number per ear, thousand-grain weight and setting percentage, wherein the thousand-grain weight character is mainly influenced by grain length, grain width, grain thickness and filling percentage. Meanwhile, the rice grain type is also an important quality character, and has important market value for the shape of rice in different regions. Currently, northern china, japan, korea and korea prefer short round rice, while southern china, the united states and southeast asia prefer long and thin rice; these yield traits are all Quantitative Traits (QTL) and are controlled by several genes with different effects and are also influenced by the surrounding growth environment. In recent years, some rice grain type QTL have been researched and cloned, but the QTL is rarely widely applied by breeding workers.
The prior art discloses a method for separating and cloning positive control yield character genes, which generally adopts a positioning and cloning technology, then adopts a constitutive expression vector or a tissue specificity expression vector to introduce target genes into target varieties, and for negative control genes, RNAi interference or CRISPR/Cas9 is used for knocking out the target genes so as to obtain the improvement of specific economic characters or stress resistance characters of crops. The RBPs discovered at present mainly comprise domains such as RNA Recognition Motifs (RRMs), K homology domains, zinc fingers, DEAD/DEAH boxes, pulimio/FBF domains, and pentatricopeptide repeat domains, and the domains play an important role in regulating gene transcription and post-transcriptional processing. In plants, RBPs have modular glycine, arginine and serine rich accessory domains and a series of choreographies exist. RBP plays an important role in metabolic pathways such as mRNA synthesis, maturation, transport, signal localization and stability. Cytoplasmic mRNA is processed synthetically in the nucleus, while cis-and trans-acting factors regulate mRNA localization, stability and translation. The trans-acting factor contains RBP, binds to related mRNA and other interacting factors, forms a ribosomal protein complex and is finally exported to the cytoplasm. Although the complex is dynamic, some RBP modules recruited in the nucleus of the cell still interact with mRNA, and research has found that the biological feature can be found at the translation site; this is the reason for heterogeneous ribosomal proteins, and RBPs can be involved in one or more of the processing of nuclear and cytoplasmic RNA, including splicing, maintenance, localization, and translation of RNA. In fact, many RBPs have been reported to have multiple roles within the cell, and such functional diversity is dependent to some extent on the number of RNA-binding domains involved.
At present, no report about the participation of plant RBP-J gene in the formation of yield traits and the improvement of the yield traits is available.
Based on the current situation of the prior art, the inventors of the present application intend to provide a method for improving the grain shape trait, and particularly relate to the application of the TGW10 (rice TGW 10) gene in rice in improving the grain length trait.
The research team clones a gene TGW10 for negatively regulating the rice grain type from Nipponbare by a reverse genetics method, and after the TGW10 gene is knocked out, grains grow and thousand seed weight increases. This gene, which results in the coding of an RNA binding protein RBP (RNA binding protein), named RBP-J, is located on chromosome 10, and has the gene number LOC _ Os10g33230, and is named TGW10 (bound grain weight 10) according to its function.
The negative regulation grain type gene TGW10 cloned by the application codes an RBP containing two RRMs, belongs to the RBP-J type, and regulates grain length by limiting the length of rice glume cells; knocking out the RBP-J gene using CRISPR/Cas9 technology results in cell elongation and enlargement, thereby increasing grain weight.
Disclosure of Invention
The invention aims to provide a method for improving grain type traits based on the current state of the prior art, in particular to application of a rice TGW10 (wheat grain weight 10) gene in improving the grain type traits of crops, especially in improving the grain length traits of rice.
The invention clones a gene TGW10 for negatively regulating the rice grain type from Nipponbare by a reverse genetics method, and after the TGW10 gene is knocked out, grains grow and thousand kernel weight increases. This gene results in the coding of an RNA binding protein RBP (RNA binding protein), specifically named RBP-J, located on chromosome 10, with the gene number LOC _ Os10g33230, which is designated TGW10 (located grain weight 10) according to its function.
The negative regulation grain type gene TGW10 cloned by the application codes an RBP containing two RRMs, belongs to the RBP-J type, and regulates grain length by limiting the length of rice glume cells; knocking out the RBP-J gene using CRISPR/Cas9 technology results in cell elongation and enlargement, thereby increasing grain weight.
In particular, the method comprises the following steps of,
the application of the rice TGW10 gene in the aspect of improving the rice grain type character is characterized in that the CRISPR/Cas9 technology is used for editing the TGW10 gene in Nipponbare (Nipponbare) japonica rice varieties at fixed points so as to improve the rice grain type character.
In the invention, japonica rice Nipponbare (Nipponbare) is used as a gene editing receptor, and a CRISPR/Cas9-TGW10 fixed-point editing vector is constructed for transformation to obtain a TGW 10-knocked gene editing plant.
More specifically, the present invention is to provide a novel,
in the present invention, it is included that,
1) TGW10 gene and protein structure composition
The Rice TGW10 gene, the accession number of Rice Genome Annotation Project (Rice Genome Annotation Project) website is LOC _ Os10g33230, the full length of the accession gene sequence is 5338bp, and the sequence is shown as SEQ.ID NO 1; the full-length CDS consists of 2 exons, the normally coded cDNA has the length of 1395bp, and the sequence is shown as SEQ.ID NO 2; codes 465 amino acids, and the sequence is shown in SEQ.ID NO3;
the structure of the gene and the protein coded by the gene are as follows:
the structure of the rice TGW10 gene is shown in figure 1, and the structure of the protein is shown in figure 2;
2) Construction of TGW10 gene knockout vector CRSPR/Cas9-TGW10
Constructing a rice U6 promoter of a CRISPR/Cas9 vector BGK032 by using a first exon 20bp of a TGW10 gene from japonica rice Nipponbare as a target sequence to obtain a CRISPR/Cas9-TGW10 knockout vector of the TGW10 gene (the vector construction is shown in figure 3);
3) CRISPR/Cas9-TGW10 transformation experiment
After shelling and disinfecting mature Nipponbare seeds, inoculating the seeds on a dedifferentiation plant tissue culture medium to induce callus, after inducing the callus for 2-3 weeks, adopting an agrobacterium transformation method to introduce CRISPR/Cas9-TGW10 plasmid DNA into agrobacterium EH105 competent cells, transforming the callus by using a dip dyeing method, transferring the transformed callus to an MS culture medium added with 30ppm hygromycin after co-culture for continuous culture for 3-4 weeks to screen a resistant cell line, and then transferring the screened cell line to a differentiation culture medium to induce sprouting and rooting;
4) Transplanting of transformation-treated test-tube plantlets and molecular detection of transformed plant progeny
Transplanting the transformed test-tube plantlet of Nipponbare into the field, extracting DNA from leaves in the tillering stage, performing molecular detection by adopting PCR amplification technology, and obtaining a positive T0 generation plant in 2016 summer; in 2016, breeding in Hainan island to obtain transgenic T1 generation, and obtaining 5 strains in total;
5) PCR sequencing detection of knock-out Nipponbare (Nipponbare) plants
Whether the target allele TGW10 is knocked out in Nipponbare (Nipponbare) or not, sequencing primers are designed on two sides of a target region, PCR sequencing is carried out, and the detection result of knocked-out offspring is shown in figure 4;
6) TGW10 knock-out line T 2 Survey and statistics of generation population yield traits
T-knockout of TGW10 2 The generation lines are planted in a test field of a university of Compound Dan, 30 lines are planted in each line of 3 lines, the row spacing is 6 inches multiplied by 6 inches, the three times are repeated, and simultaneously, japonica rice Nipponbare (Nipponbare) parent control is established. The grain length, grain width and grain thickness of 20 individual plants of each strain are counted in the maturation period, the average value is calculated, and the statistical results are shown in table 1:
TABLE 1
Line of plants Grain length (mm) Grain width (mm) Particle thickness (mm)
rbp-j-1 8.027±0.150 2.980±0.231 2.105±0.056
rbp-j-2 8.102±0.201 3.043±0.145 2.105±0.010
rbp-j-3 8.031±0.113 3.054±0.102 2.186±0.076
Nipponbare 7.300±0.195 3.255±0.135 2.230±0.102
The changes of the rice TGW10 knockout plant in the traits of grain length, grain width and grain thickness are shown in FIG. 4.
According to the field survey and the seed test data, compared with the control, the grain length of the TGW10 knockout Nipponbare (Nipponbare) line is better than that of the control, and the grain length is increased by about 10.32%.
The invention provides an application of a rice TGW10 (wheat grain weight 10) gene in the aspect of improving the rice grain length property, which has the advantages that: editing thousand grain weight gene TGW10 in Nipponbare (O.sativa.) at fixed points by CRISPR/Cas9 technology to improve the grain type character of rice; according to the invention, the grain length is regulated by limiting the length of the rice glume cells, and RBP-J genes are knocked out by using a CRISPR/Cas9 technology, so that the cells are elongated and enlarged, and thus the grain weight is increased.
Drawings
FIG. 1 shows the structure of TGW10 gene of rice.
FIG. 2 shows the protein structure of rice TGW10 gene.
FIG. 3 is the structure diagram of rice TGW10 gene knock-out vector.
FIG. 4 genotype and phenotype comparison of TGW10 knock-out lines.
FIG. 5 comparison of the phenotype of the whole strain of TGW10 knock-out strain.
FIG. 6 is the result of genetic transformation, wherein
1) Is callus induction and subculture, including induction day one: induction for one week: callus subculture;
2) Is an agrobacterium culture, comprising, dark culture at 28 ℃ for 2 days and co-culture 1: co-culturing 2;
4) Is a screening culture, including screening day 1; screening day 10; screening day 15; screening for 21 days;
5) Is regeneration of differentiation, including, day 1 of differentiation: day 7 of differentiation; day 15 of differentiation; day 25 of differentiation;
6) Is the rooting of the seedling.
Detailed Description
Example 1
1. Vector construction
1. Designing a gRNA target sequence: selecting a target sequence CCGCCTACGGCGACGTCTCCCAG (an identification sequence is 20bp, and a red CCG is a PAM sequence), and synthesizing Oligo according to the following steps;
UP:5‘-TGTGTGCCTACGGCGACGTCTCCCAG
LOW:5’–AAACGGATGCCGCTGCAGAGGGTCCA
2. preparation of Oligo dimer: dissolving the synthesized Oligo in water to 10 μ M, mixing according to the following reaction system, heating at 95 ℃ for 3 minutes, and then slowly reducing to 20 ℃ at about 0.2 ℃/second;
Figure BDA0002165367230000051
Figure BDA0002165367230000061
3. construction of Oligo dimers into CRISPR/Cas vector: mixing the components on ice according to the following reaction system, and reacting for 1 hour at room temperature (20 ℃) after uniformly mixing;
Figure BDA0002165367230000062
4. and (3) transforming escherichia coli: adding 5 μ l of the reaction solution into at least 50 μ l of competent cells, mixing, and standing in ice bath for 30min (without shaking, keeping standing strictly); gently taking out, thermally shocking at 42 ℃ for 60 seconds, and immediately placing on ice for 2 minutes; adding 500. Mu.l of SOB/LB, and culturing at 37 ℃ and 200rpm for 1 hour; coating a proper amount of bacterial liquid on an LB (lysogeny Broth) plate containing kanamycin, and inverting at 37 ℃ for overnight culture;
2. genetic transformation
1) Callus induction and subculture
Selecting mature rice seeds (preferably newly harvested seeds in the same year), peeling glumes, pouring into a 50ml centrifuge tube, adding 75% ethanol for disinfection for 1min, pouring off the ethanol, washing with sterile water once, pouring off, adding 30% sodium hypochlorite for disinfection for 20min, pouring off the sodium hypochlorite, and washing with sterile water for 5-6 times. Absorbing excessive water with a liquid-transfering gun (which can be dried with sterilized filter paper), transferring the seeds to an induction culture medium, wherein 20-25 seeds are placed in each dish;
the callus can be directly transformed by the protoembryo after growing out, small particles growing beside the protoembryo can be picked to a new induction culture medium for subculture, and can be transformed when growing to a proper size; the results are shown in fig. 6, including induction day one: induction for one week: callus subculture:
2) Agrobacterium culture
Agrobacterium EHA105 containing the gene vector of interest was streaked on plates containing the corresponding antibiotic and cultured in the dark at 28 ℃ for 2 days, and the results are shown in FIG. 6, including co-culture 1: co-culturing 2;
3) Infection with Agrobacterium
Preparing AAM staining solution, adding AS (1000 times dilution), selecting enough callus with good callus state, bright yellow color, mellow and hard texture, and diameter of granule of about 3mm, washing off Agrobacterium on the plate by sucking AAM with pipette, adjusting thallus concentration to OD 600 0.3-0.5, namely the agrobacterium suspension for co-culturing and transforming rice.
Selecting enough amount of callus (good callus state, bright yellow color, mellow and hard texture, and proper particle diameter of about 3 mm) and placing into a 100ml sterile triangular flask, adding appropriate amount of Agrobacterium suspension (enough bacterial liquid is ensured to contact with the material), standing at room temperature for 20min, and shaking. Pouring out the bacteria solution, placing the callus on sterile filter paper, absorbing the redundant bacteria solution, immediately transferring to a solid co-culture medium paved with a layer of sterile filter paper, and culturing for 3 days at 26 ℃ in the dark;
4) Screening culture
Cleaning the callus after 3 days of co-culture, namely, sowing the callus on the co-culture medium into a sterilized triangular flask by using a 1ml blue gun head, adding sterile water to wash the two sides of the sterilized triangular flask, washing the sterilized flask once by using sterile water containing 500ul/L carbenicillin for the third time, transferring the callus onto sterile filter paper after absorbing excessive water by using a liquid transfer gun, blowing the water on the callus by using wind of an ultra-clean bench, controlling the blowing time to be about 30min, transferring the callus onto a screening culture medium after the callus is dried for screening culture under the condition of 28-30 ℃, carrying out dark culture, and carrying out screening for 3-4 weeks; the results are shown in fig. 6, including screening day 1: screening day 10; screening day 15;
screening for 21 days;
5) Differentiation and regeneration
After one month of screening, the color is bright yellow, and positive callus with the diameter of 1-2mm grows out, at the moment, the positive callus can be picked on a differentiation medium for differentiation and regeneration. Each differentiation dish was placed with 16 positive calli and placed in a 28-30 ℃ greenhouse for culture under illumination. Generally, green spots can emerge from the calluses in about 10 days, and seedlings can be differentiated in about 10 days; results are shown in fig. 6, including, day 1 of differentiation; day 7 of differentiation; day 15 of differentiation; day 25 of differentiation;
6) Rooting of seedlings
When the differentiated seedlings grow to about 2-3cm and have obvious root systems, the seedlings can be transferred to a rooting culture medium to grow, the rooting culture medium is poured into a higher bottle or tube, the rooted seedlings have enough space length and are cultured under the rooting culture condition of 28-30 ℃ in sterile illumination; results the results are shown in FIG. 6;
3. molecular identification
1. DNA extraction
2. PCR and electrophoresis
3. And (5) sequencing and analyzing.
Test results show that thousand grain weight gene TGW10 in Nipponbare (O.sativa.) can be edited at fixed points by CRISPR/Cas9 technology, and the grain type character of rice can be improved; the grain length is regulated by limiting the length of rice glume cells, and RBP-J genes are knocked out by using a CRISPR/Cas9 technology, so that the cells are elongated and enlarged, and the grain weight is increased.
Sequences related to the invention
SEQ ID NO.1: rice TGW10 gene full-length sequence
Figure BDA0002165367230000081
LOC_Os10g33230
ACCTCCCCTCCCCGACGCCGAAATCCCCCAAATTCCACCCCCGCCTCCTCCTCCTCCTCGCGTCGCGAGAGAATCCGAGGCGCGCGAGCGAGAGGAAGGAGAGAAGGTGAGAGCAGCGGCGGAGGGAGGAGATGGAGTCGGATCAGGGGAAGCTGTTCATCGGCGGCATCTCGTGGGAGACCACCGAGGAGAAGCTCCGCGACCACTTCGCCGCCTACGGCGACGTCTCCCAGGCCGCCGTCATGCGCGACAAGCTCACCGGCCGCCCCCGCGGCTTCGGCTTCGTCGTCTTCTCCGACCCTTCCTCCGTCGACGCCGCCCTCGTCGACCCCCACACCCTCGACGGCCGCACGGTATCCCCTCTCAAACCCTAGCGAATATTCGCGTTGGATTCCCTCCTCTCAAGGTTCGGTTCGGTTCGGTTTCGTAGGTTGATGTGAAGCGGGCGCTCTCGCGGGAGGAGCAGCAGGCCGCGAAGGCGGCGAACCCTAGCGCGGGGGGGAGGCACGCCTCCGGTGGGGGCGGTGGTGGGGGAGGCGCCGGTGGTGGTGGTGGTGGCGGCGGTGGTGACGCCGGCGGTGCGCGGACGAAGAAGATCTTCGTCGGCGGGCTGCCCTCCAACCTGACGGAGGACGAGTTCCGGCAGTACTTCCAGACCTACGGGGTCGTCACCGACGTCGTCGTCATGTACGACCAGAACACGCAGCGGCCGAGGGGGTTCGGGTTCATCACCTTCGACGCGGAGGACGCCGTTGACCGCGTGCTGCACAAGACCTTCCATGACCTGAGCGGGAAGATGGTGGAGGTGAAGCGCGCCCTGCCCAGGGAGGCCAACCCTGGCTCCGGCAGTGGTGGCCGTTCCATGGGAGGCGGCGGTGGGGGTTACCAGAGTAACAATGGGCCGAACTCCAATTCTGGGGGCTATGATAGCAGAGGTGACGCTAGCAGGTATGGTCAGGCGCAGCAGGGTAGTGGTGGTTATCCCGGTTATGGTGCTGGAGGATATGGTGCTGGTACGGTTGGTTATGGATATGGGCATGCTAACCCTGGAACTGCGTATGGGAATTATGGGGCTGGAGGATTTGGAGGTGTTCCTGCTGGGTATGGTGGGCATTATGGCAATCCAAATGCGCCTGGTTCAGGTTACCAGGGTGGTCCTCCAGGAGCAAACAGAGGACCATGGGGTGGTCAAGCTCCGTCTGGTTATGGCACTGGGAGTTATGGTGGCAATGCAGGCTATGCTGCTTGGAACAACTCTTCTGCTGGAGGTAATGCACCCACTAGTCAGGCCGCTGGTGCAGGCACAGGCTATGGGAGCCAGGGCTATGGATATGGTGGATATGGAGGAGATGCATCGTATGGTAATCATGGTGGATATGGGGGTTATGGAGGAAGGGGAGATGGTGCTGGCAATCCAGCTGCTGGCGGTGGATCTGGGTATGGTGCTGGCTATGGAAGCGGGAATGGCGGTTCTGGTTATCCAAATGCTTGGGCTGATCCTTCACAAGGTGGAGGGTTTGGGGCTTCAGTCAATGGAGTGTCTGAAGGCCAATCAAATTATGGCAGTGGTTATGGTGGTGTGCAACCTAGGGTTGCTCAGTAAATGAGGCCATTAGAGCATCTATGAGATGAACCAGCAAAATTGGGCAGTCTATGTATGTTGTGTTACCCTGGCCCCTCTGATTGCTTTTGGCCTCTTGAAGATCTCCCATTTGCTGGTTAAATCAGTATTTCTCCGGGTTGGAATGCTTGAACCTTTTGCGGCTTACTACTAGAATGTAGTCAATAACTAGCTTCTAGCTATACTATGGAGTAGCTGTATCTTGCGTAATGCTTTATTTAAGTTTAGCCTTATCTGTCGGTGTGCTTTGTCATGAGTGGAATTTCAGTTGCTTCGTCTCTAGTTTAAAGCTAGAGTAGCTTCACTACTTATGGACAACAAACTATCTAGTTGTACCTTTATTCTACAGAATCATATGTTTGTGGTTGACAGTAGTATTTATGCTGGATTGTGCTTTACCTGAATCTGAAATGTTCTATCTTTGGTTGTTTCTCTGTGGTGTGCTCTAGCTCACCTTGCAGTTAAGGTGCTGTTGCGTATTATTCCATTAATATTGATTGTAACAGATGACAATCCTCAAACTTCTATGCAGTGATAGAGGTGTTTTATACTGTAGCTGCTTCTAGCAGTAAGTTCAGGTGTAGTGCAAGTGCTTTTCATGTCATTGGAATGATATATCATTAAAGTATGTGGTCGAGCTATGAGTATGTTTCTGATATTTGGTATGTAGATGGATAAACAAGCATAGTAGAGGCAAACAATTAGCCCCTACCTGAAGCAATAAGAGCATATTAGCAGCAAGTTGGTAGCGCCAATTTCTAAGGTAGTATAGATACAGAGAAGTCTGTGATACTACTTGATGAATGAAATACAGGTAGAAACCATAGAGTAGAATACTCCAGGCATTTGGCAAGCAAAATAATCATCCTTCCTCGTACATTTCCTTTCTGTACAGGTTGGATGCGATGCCATTTCCTTTTAGAGCATGTCCAAGTGGGGCCTTTTGAATCAACTGCCTGGCTGCCTGAGAAATGGCAGAGACATCGACTGATTTTGCTTGATGGGCTGACGATTTCCAATCTTGAAGCATTTGACACAGAAAGCAAGCATCTTGTTTTTAAGCGCTTCATTTTCTGAAGGATCTTGTGCTGTGCAACAAGATGGTGGTATGTGGAATCATGTTTCACTTTCAGTTTTATTTGGAAAAGAAAAGCATTTTCACCATGGTACTTGTACCAGGAAAGTTGTTCAAGATGCTATCTGTCCTCATTTTCCGTTCAATTTAGTAAATGGTATATTATAGTTGAAAGAAAGCATTACCAGCTACCATAGGAAGTATTATGTTTTCATTCAAAATCTTGTCAATTTTGGCCAGAGTTCCATCCCCAATGTACAGATCGACAATGGTGAATTACTATCAGTTTAGTAAATAATAATAAATTAGAAGGTTTTTCAAAAGAATAATTCCATGATCTAATGTATGTTTTTACCTTTTTAGATACGCATATTTGCTAGTAAAACTAGTGATGAAAGTTGTGTCATGGAGATCTAGGAAAAGAACAACACTTGTATACCTAGAGGTGATGCATTTTTTGAAAATCTGTTTTACTGGCTTAACAAATTTAGTCACTAATAAAACTAGTGATGAAAGTTGTGTCATGGATTAGTGCACAAGTTTTGCAAACAGAATTTGGCTTAAACAAACAGTTTGGATGAGTAATTCCTTAACTTTTTCCCCTTATTTACTAAATTGATGAGCATGATTTAAGTTGTACTTACAGTCTTGCACACTGGCATGATGTTTTACAAGTTTTTGGAAGTACTGGAAACCTAGGATCCAATATCCTAGTTTGAGAAAACAACACTCATATTGCTTGTTCCTGTTAATAAGCCTGGGTAGCATGTTCATCGCTCAGCTATGCCTTGCTCGGTTGCTATTGTTGGATGGATAGAAGTGGAAAAAAGGGGGGGGAGGGAATCAGTCTATGATTATATACTTGTATGGTTCAATGTAGATTAAAATCCAAGGCTTTGACTTAAGGTTCCTACACTTATGTACTTCATTGCAAATTTAACTGTGCATATAGTACATTACTAGCCAAGGTAGTCAATACTCAATAGTATTATATATTTCTTCATATTGAATAAGGCTCGCTTCATAGCTTAACATATATGTACCACAATTTTATTGTCCACTACATTATATAGTACATAATCACAATTGCTTACCACTTGCTGTTTCTTGACTATTAAACTATTTAGATTAAAATGACCAATATTTTCTACCTTCTTTTGCAAATCAGTTTCATTACAGCACTTCTGTTAAACTAAAGGTATACTATAGGGTAGATTTAAGGTTATGTAGTTCTGTTTTGGCGTTTTGTTTGAACCAGTTGGATTAGTATTATGAATCCACATCCTTAGTTTATTTTATTGCAGAACACAAATAGTTGCATGGCTTATGCCTGTTGGAGTTAATAGGTGTTAAGGTAAAACATGTAAGTAAAAAAGGTTCTCCAGGACTTGCAATGATGCACCTGTACACTGGATCAATCTGATGGACCAGTATCTGACTTTAGAAATGACAATAACCACACTGATTTAGGAGACTCAAGAGTCAAGATATTTACTGGGTGGAGAGAGAAAACATTAGTGTTAGATTTAACGGCTAAGCTTTGTGTTTGCATTTAACCATTTGTAAATGTGAAAGCAATACTATTTTTGACAGAAAAATACAATTTTGATTAGTGTATCTCGCACGGTTAACTTGATTAAGATCTAAAATACTGCAACTTCATTTGTACTAACCATTAGATGATTTAGTTGCTCAGTGCCTGTTTGGGACTTCATGTGATATAATAACATAATATAACCAGATCGGCTTATATATTAACCTTGGAGCTCAATCACTAAGTCTTCTTCTGTATTATGACATGGATATTTGGAAATGACCAAGTGCAATTCGATTTACATGTTCTATTTATGCTATTTCTTGGTGTTGCTTTAAAACAACCATTTAAGTAATAGCTATGAGAAATAAATTAGTGCCACTTATTTTTCATGATTTTCAATATATTTTTTGCTTTGTTGCTGTCAAATCTCTTAGTAAACCTGATAAAGATATAAAATTAGAAATTTGACTGCAGATGCCATATATAGTGGATAGCTTTATTACCACACTGGTGCCAAGCAAACCAAGTCATAGTCAGCCAAACATCTTTGATATGTTTTTACTCGAGTATCTGAAATAACCAAACATTTTGGAGATATGTTATCATCATTCTATTGACCTCTTTGCATACCTTGTTTGCATGGTATCAATGCAATGGAATATGCCTTCGAGGACTTTGCTGAAAGATCACCTGCAAGTACATCAAAAATCAAGAGATGATTCTGGCCGCCATGTATTATGACCACAGTGACTCGTGCTCATCCAATATTCTTCGTTTCTCGTATCTTAATGGAAACCCTCACAGTAGCGTTGCCACCTTATATCGAAGGACAAGTTGTTTGAAGTTGGCTACCAATTGGTGCCCTACTTTACCAATTGTCAGATGGAAGGGTTGAGCGTACATTAATCTGGAGATGCTTATCGAGTTTGTTGCATGACAAGTCAATATATTCTATTGATGTGGCCAATATTTGCACGATATGATTTCTTGGCAAGTTTTAGTAACATTTTAACTCATTCTTCCAGACAATAGTGCAAATCGCCGAACTCTCTATTTTACTTGTTTTGTTGTCATGGATGAAAGGTTTGCAAGACTTTGTTCCAGA
SEQ ID NO.2: coding sequence of rice TGW10
Figure BDA0002165367230000101
LOC_Os10g33230
ATGGAGTCGGATCAGGGGAAGCTGTTCATCGGCGGCATCTCGTGGGAGACCACCGAGGAGAAGCTCCGCGACCACTTCGCCGCCTACGGCGACGTCTCCCAGGCCGCCGTCATGCGCGACAAGCTCACCGGCCGCCCCCGCGGCTTCGGCTTCGTCGTCTTCTCCGACCCTTCCTCCGTCGACGCCGCCCTCGTCGACCCCCACACCCTCGACGGCCGCACGGTTGATGTGAAGCGGGCGCTCTCGCGGGAGGAGCAGCAGGCCGCGAAGGCGGCGAACCCTAGCGCGGGGGGGAGGCACGCCTCCGGTGGGGGCGGTGGTGGGGGAGGCGCCGGTGGTGGTGGTGGTGGCGGCGGTGGTGACGCCGGCGGTGCGCGGACGAAGAAGATCTTCGTCGGCGGGCTGCCCTCCAACCTGACGGAGGACGAGTTCCGGCAGTACTTCCAGACCTACGGGGTCGTCACCGACGTCGTCGTCATGTACGACCAGAACACGCAGCGGCCGAGGGGGTTCGGGTTCATCACCTTCGACGCGGAGGACGCCGTTGACCGCGTGCTGCACAAGACCTTCCATGACCTGAGCGGGAAGATGGTGGAGGTGAAGCGCGCCCTGCCCAGGGAGGCCAACCCTGGCTCCGGCAGTGGTGGCCGTTCCATGGGAGGCGGCGGTGGGGGTTACCAGAGTAACAATGGGCCGAACTCCAATTCTGGGGGCTATGATAGCAGAGGTGACGCTAGCAGGTATGGTCAGGCGCAGCAGGGTAGTGGTGGTTATCCCGGTTATGGTGCTGGAGGATATGGTGCTGGTACGGTTGGTTATGGATATGGGCATGCTAACCCTGGAACTGCGTATGGGAATTATGGGGCTGGAGGATTTGGAGGTGTTCCTGCTGGGTATGGTGGGCATTATGGCAATCCAAATGCGCCTGGTTCAGGTTACCAGGGTGGTCCTCCAGGAGCAAACAGAGGACCATGGGGTGGTCAAGCTCCGTCTGGTTATGGCACTGGGAGTTATGGTGGCAATGCAGGCTATGCTGCTTGGAACAACTCTTCTGCTGGAGGTAATGCACCCACTAGTCAGGCCGCTGGTGCAGGCACAGGCTATGGGAGCCAGGGCTATGGATATGGTGGATATGGAGGAGATGCATCGTATGGTAATCATGGTGGATATGGGGGTTATGGAGGAAGGGGAGATGGTGCTGGCAATCCAGCTGCTGGCGGTGGATCTGGGTATGGTGCTGGCTATGGAAGCGGGAATGGCGGTTCTGGTTATCCAAATGCTTGGGCTGATCCTTCACAAGGTGGAGGGTTTGGGGCTTCAGTCAATGGAGTGTCTGAAGGCCAATCAAATTATGGCAGTGGTTATGGTGGTGTGCAACCTAGGGTTGCTCAGTAA
SEQ ID NO.3: amino acid sequence of rice TGW10
Figure BDA0002165367230000102
LOC_Os10g33230
MESDQGKLFIGGISWETTEEKLRDHFAAYGDVSQAAVMRDKLTGRPRGFGFVVFSDPSSVDAALVDPHTLDGRTVDVKRALSREEQQAAKAANPSAGGRHASGGGGGGGGAGGGGGGGGGDAGGARTKKIFVGGLPSNLTEDEFRQYFQTYGVVTDVVVMYDQNTQRPRGFGFITFDAEDAVDRVLHKTFHDLSGKMVEVKRALPREANPGSGSGGRSMGGGGGGYQSNNGPNSNSGGYDSRGDASRYGQAQQGSGGYPGYGAGGYGAGTVGYGYGHANPGTAYGNYGAGGFGGVPAGYGGHYGNPNAPGSGYQGGPPGANRGPWGGQAPSGYGTGSYGGNAGYAAWNNSSAGGNAPTSQAAGAGTGYGSQGYGYGGYGGDASYGNHGGYGGYGGRGDGAGNPAAGGGSGYGAGYGSGNGGSGYPNAWADPSQGGGFGASVNGVSEGQSNYGSGYGGVQPRVAQ*
Sequence listing
<110> Suzhou New Biotechnology Co., ltd
Application of <120> TGW10 gene in improvement of crop grain type traits
<130> 20190813
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5338
<212> DNA
<213> LOC_Os10g33230
<400> 1
acctcccctc cccgacgccg aaatccccca aattccaccc ccgcctcctc ctcctcctcg 60
cgtcgcgaga gaatccgagg cgcgcgagcg agaggaagga gagaaggtga gagcagcggc 120
ggagggagga gatggagtcg gatcagggga agctgttcat cggcggcatc tcgtgggaga 180
ccaccgagga gaagctccgc gaccacttcg ccgcctacgg cgacgtctcc caggccgccg 240
tcatgcgcga caagctcacc ggccgccccc gcggcttcgg cttcgtcgtc ttctccgacc 300
cttcctccgt cgacgccgcc ctcgtcgacc cccacaccct cgacggccgc acggtatccc 360
ctctcaaacc ctagcgaata ttcgcgttgg attccctcct ctcaaggttc ggttcggttc 420
ggtttcgtag gttgatgtga agcgggcgct ctcgcgggag gagcagcagg ccgcgaaggc 480
ggcgaaccct agcgcggggg ggaggcacgc ctccggtggg ggcggtggtg ggggaggcgc 540
cggtggtggt ggtggtggcg gcggtggtga cgccggcggt gcgcggacga agaagatctt 600
cgtcggcggg ctgccctcca acctgacgga ggacgagttc cggcagtact tccagaccta 660
cggggtcgtc accgacgtcg tcgtcatgta cgaccagaac acgcagcggc cgagggggtt 720
cgggttcatc accttcgacg cggaggacgc cgttgaccgc gtgctgcaca agaccttcca 780
tgacctgagc gggaagatgg tggaggtgaa gcgcgccctg cccagggagg ccaaccctgg 840
ctccggcagt ggtggccgtt ccatgggagg cggcggtggg ggttaccaga gtaacaatgg 900
gccgaactcc aattctgggg gctatgatag cagaggtgac gctagcaggt atggtcaggc 960
gcagcagggt agtggtggtt atcccggtta tggtgctgga ggatatggtg ctggtacggt 1020
tggttatgga tatgggcatg ctaaccctgg aactgcgtat gggaattatg gggctggagg 1080
atttggaggt gttcctgctg ggtatggtgg gcattatggc aatccaaatg cgcctggttc 1140
aggttaccag ggtggtcctc caggagcaaa cagaggacca tggggtggtc aagctccgtc 1200
tggttatggc actgggagtt atggtggcaa tgcaggctat gctgcttgga acaactcttc 1260
tgctggaggt aatgcaccca ctagtcaggc cgctggtgca ggcacaggct atgggagcca 1320
gggctatgga tatggtggat atggaggaga tgcatcgtat ggtaatcatg gtggatatgg 1380
gggttatgga ggaaggggag atggtgctgg caatccagct gctggcggtg gatctgggta 1440
tggtgctggc tatggaagcg ggaatggcgg ttctggttat ccaaatgctt gggctgatcc 1500
ttcacaaggt ggagggtttg gggcttcagt caatggagtg tctgaaggcc aatcaaatta 1560
tggcagtggt tatggtggtg tgcaacctag ggttgctcag taaatgaggc cattagagca 1620
tctatgagat gaaccagcaa aattgggcag tctatgtatg ttgtgttacc ctggcccctc 1680
tgattgcttt tggcctcttg aagatctccc atttgctggt taaatcagta tttctccggg 1740
ttggaatgct tgaacctttt gcggcttact actagaatgt agtcaataac tagcttctag 1800
ctatactatg gagtagctgt atcttgcgta atgctttatt taagtttagc cttatctgtc 1860
ggtgtgcttt gtcatgagtg gaatttcagt tgcttcgtct ctagtttaaa gctagagtag 1920
cttcactact tatggacaac aaactatcta gttgtacctt tattctacag aatcatatgt 1980
ttgtggttga cagtagtatt tatgctggat tgtgctttac ctgaatctga aatgttctat 2040
ctttggttgt ttctctgtgg tgtgctctag ctcaccttgc agttaaggtg ctgttgcgta 2100
ttattccatt aatattgatt gtaacagatg acaatcctca aacttctatg cagtgataga 2160
ggtgttttat actgtagctg cttctagcag taagttcagg tgtagtgcaa gtgcttttca 2220
tgtcattgga atgatatatc attaaagtat gtggtcgagc tatgagtatg tttctgatat 2280
ttggtatgta gatggataaa caagcatagt agaggcaaac aattagcccc tacctgaagc 2340
aataagagca tattagcagc aagttggtag cgccaatttc taaggtagta tagatacaga 2400
gaagtctgtg atactacttg atgaatgaaa tacaggtaga aaccatagag tagaatactc 2460
caggcatttg gcaagcaaaa taatcatcct tcctcgtaca tttcctttct gtacaggttg 2520
gatgcgatgc catttccttt tagagcatgt ccaagtgggg ccttttgaat caactgcctg 2580
gctgcctgag aaatggcaga gacatcgact gattttgctt gatgggctga cgatttccaa 2640
tcttgaagca tttgacacag aaagcaagca tcttgttttt aagcgcttca ttttctgaag 2700
gatcttgtgc tgtgcaacaa gatggtggta tgtggaatca tgtttcactt tcagttttat 2760
ttggaaaaga aaagcatttt caccatggta cttgtaccag gaaagttgtt caagatgcta 2820
tctgtcctca ttttccgttc aatttagtaa atggtatatt atagttgaaa gaaagcatta 2880
ccagctacca taggaagtat tatgttttca ttcaaaatct tgtcaatttt ggccagagtt 2940
ccatccccaa tgtacagatc gacaatggtg aattactatc agtttagtaa ataataataa 3000
attagaaggt ttttcaaaag aataattcca tgatctaatg tatgttttta cctttttaga 3060
tacgcatatt tgctagtaaa actagtgatg aaagttgtgt catggagatc taggaaaaga 3120
acaacacttg tatacctaga ggtgatgcat tttttgaaaa tctgttttac tggcttaaca 3180
aatttagtca ctaataaaac tagtgatgaa agttgtgtca tggattagtg cacaagtttt 3240
gcaaacagaa tttggcttaa acaaacagtt tggatgagta attccttaac tttttcccct 3300
tatttactaa attgatgagc atgatttaag ttgtacttac agtcttgcac actggcatga 3360
tgttttacaa gtttttggaa gtactggaaa cctaggatcc aatatcctag tttgagaaaa 3420
caacactcat attgcttgtt cctgttaata agcctgggta gcatgttcat cgctcagcta 3480
tgccttgctc ggttgctatt gttggatgga tagaagtgga aaaaaggggg gggagggaat 3540
cagtctatga ttatatactt gtatggttca atgtagatta aaatccaagg ctttgactta 3600
aggttcctac acttatgtac ttcattgcaa atttaactgt gcatatagta cattactagc 3660
caaggtagtc aatactcaat agtattatat atttcttcat attgaataag gctcgcttca 3720
tagcttaaca tatatgtacc acaattttat tgtccactac attatatagt acataatcac 3780
aattgcttac cacttgctgt ttcttgacta ttaaactatt tagattaaaa tgaccaatat 3840
tttctacctt cttttgcaaa tcagtttcat tacagcactt ctgttaaact aaaggtatac 3900
tatagggtag atttaaggtt atgtagttct gttttggcgt tttgtttgaa ccagttggat 3960
tagtattatg aatccacatc cttagtttat tttattgcag aacacaaata gttgcatggc 4020
ttatgcctgt tggagttaat aggtgttaag gtaaaacatg taagtaaaaa aggttctcca 4080
ggacttgcaa tgatgcacct gtacactgga tcaatctgat ggaccagtat ctgactttag 4140
aaatgacaat aaccacactg atttaggaga ctcaagagtc aagatattta ctgggtggag 4200
agagaaaaca ttagtgttag atttaacggc taagctttgt gtttgcattt aaccatttgt 4260
aaatgtgaaa gcaatactat ttttgacaga aaaatacaat tttgattagt gtatctcgca 4320
cggttaactt gattaagatc taaaatactg caacttcatt tgtactaacc attagatgat 4380
ttagttgctc agtgcctgtt tgggacttca tgtgatataa taacataata taaccagatc 4440
ggcttatata ttaaccttgg agctcaatca ctaagtcttc ttctgtatta tgacatggat 4500
atttggaaat gaccaagtgc aattcgattt acatgttcta tttatgctat ttcttggtgt 4560
tgctttaaaa caaccattta agtaatagct atgagaaata aattagtgcc acttattttt 4620
catgattttc aatatatttt ttgctttgtt gctgtcaaat ctcttagtaa acctgataaa 4680
gatataaaat tagaaatttg actgcagatg ccatatatag tggatagctt tattaccaca 4740
ctggtgccaa gcaaaccaag tcatagtcag ccaaacatct ttgatatgtt tttactcgag 4800
tatctgaaat aaccaaacat tttggagata tgttatcatc attctattga cctctttgca 4860
taccttgttt gcatggtatc aatgcaatgg aatatgcctt cgaggacttt gctgaaagat 4920
cacctgcaag tacatcaaaa atcaagagat gattctggcc gccatgtatt atgaccacag 4980
tgactcgtgc tcatccaata ttcttcgttt ctcgtatctt aatggaaacc ctcacagtag 5040
cgttgccacc ttatatcgaa ggacaagttg tttgaagttg gctaccaatt ggtgccctac 5100
tttaccaatt gtcagatgga agggttgagc gtacattaat ctggagatgc ttatcgagtt 5160
tgttgcatga caagtcaata tattctattg atgtggccaa tatttgcacg atatgatttc 5220
ttggcaagtt ttagtaacat tttaactcat tcttccagac aatagtgcaa atcgccgaac 5280
tctctatttt acttgttttg ttgtcatgga tgaaaggttt gcaagacttt gttccaga 5338
<210> 2
<211> 1395
<212> DNA
<213> LOC_Os10g33230
<400> 2
atggagtcgg atcaggggaa gctgttcatc ggcggcatct cgtgggagac caccgaggag 60
aagctccgcg accacttcgc cgcctacggc gacgtctccc aggccgccgt catgcgcgac 120
aagctcaccg gccgcccccg cggcttcggc ttcgtcgtct tctccgaccc ttcctccgtc 180
gacgccgccc tcgtcgaccc ccacaccctc gacggccgca cggttgatgt gaagcgggcg 240
ctctcgcggg aggagcagca ggccgcgaag gcggcgaacc ctagcgcggg ggggaggcac 300
gcctccggtg ggggcggtgg tgggggaggc gccggtggtg gtggtggtgg cggcggtggt 360
gacgccggcg gtgcgcggac gaagaagatc ttcgtcggcg ggctgccctc caacctgacg 420
gaggacgagt tccggcagta cttccagacc tacggggtcg tcaccgacgt cgtcgtcatg 480
tacgaccaga acacgcagcg gccgaggggg ttcgggttca tcaccttcga cgcggaggac 540
gccgttgacc gcgtgctgca caagaccttc catgacctga gcgggaagat ggtggaggtg 600
aagcgcgccc tgcccaggga ggccaaccct ggctccggca gtggtggccg ttccatggga 660
ggcggcggtg ggggttacca gagtaacaat gggccgaact ccaattctgg gggctatgat 720
agcagaggtg acgctagcag gtatggtcag gcgcagcagg gtagtggtgg ttatcccggt 780
tatggtgctg gaggatatgg tgctggtacg gttggttatg gatatgggca tgctaaccct 840
ggaactgcgt atgggaatta tggggctgga ggatttggag gtgttcctgc tgggtatggt 900
gggcattatg gcaatccaaa tgcgcctggt tcaggttacc agggtggtcc tccaggagca 960
aacagaggac catggggtgg tcaagctccg tctggttatg gcactgggag ttatggtggc 1020
aatgcaggct atgctgcttg gaacaactct tctgctggag gtaatgcacc cactagtcag 1080
gccgctggtg caggcacagg ctatgggagc cagggctatg gatatggtgg atatggagga 1140
gatgcatcgt atggtaatca tggtggatat gggggttatg gaggaagggg agatggtgct 1200
ggcaatccag ctgctggcgg tggatctggg tatggtgctg gctatggaag cgggaatggc 1260
ggttctggtt atccaaatgc ttgggctgat ccttcacaag gtggagggtt tggggcttca 1320
gtcaatggag tgtctgaagg ccaatcaaat tatggcagtg gttatggtgg tgtgcaacct 1380
agggttgctc agtaa 1395
<210> 3
<211> 464
<212> PRT
<213> LOC_Os10g33230
<400> 3
Met Glu Ser Asp Gln Gly Lys Leu Phe Ile Gly Gly Ile Ser Trp Glu
1 5 10 15
Thr Thr Glu Glu Lys Leu Arg Asp His Phe Ala Ala Tyr Gly Asp Val
20 25 30
Ser Gln Ala Ala Val Met Arg Asp Lys Leu Thr Gly Arg Pro Arg Gly
35 40 45
Phe Gly Phe Val Val Phe Ser Asp Pro Ser Ser Val Asp Ala Ala Leu
50 55 60
Val Asp Pro His Thr Leu Asp Gly Arg Thr Val Asp Val Lys Arg Ala
65 70 75 80
Leu Ser Arg Glu Glu Gln Gln Ala Ala Lys Ala Ala Asn Pro Ser Ala
85 90 95
Gly Gly Arg His Ala Ser Gly Gly Gly Gly Gly Gly Gly Gly Ala Gly
100 105 110
Gly Gly Gly Gly Gly Gly Gly Gly Asp Ala Gly Gly Ala Arg Thr Lys
115 120 125
Lys Ile Phe Val Gly Gly Leu Pro Ser Asn Leu Thr Glu Asp Glu Phe
130 135 140
Arg Gln Tyr Phe Gln Thr Tyr Gly Val Val Thr Asp Val Val Val Met
145 150 155 160
Tyr Asp Gln Asn Thr Gln Arg Pro Arg Gly Phe Gly Phe Ile Thr Phe
165 170 175
Asp Ala Glu Asp Ala Val Asp Arg Val Leu His Lys Thr Phe His Asp
180 185 190
Leu Ser Gly Lys Met Val Glu Val Lys Arg Ala Leu Pro Arg Glu Ala
195 200 205
Asn Pro Gly Ser Gly Ser Gly Gly Arg Ser Met Gly Gly Gly Gly Gly
210 215 220
Gly Tyr Gln Ser Asn Asn Gly Pro Asn Ser Asn Ser Gly Gly Tyr Asp
225 230 235 240
Ser Arg Gly Asp Ala Ser Arg Tyr Gly Gln Ala Gln Gln Gly Ser Gly
245 250 255
Gly Tyr Pro Gly Tyr Gly Ala Gly Gly Tyr Gly Ala Gly Thr Val Gly
260 265 270
Tyr Gly Tyr Gly His Ala Asn Pro Gly Thr Ala Tyr Gly Asn Tyr Gly
275 280 285
Ala Gly Gly Phe Gly Gly Val Pro Ala Gly Tyr Gly Gly His Tyr Gly
290 295 300
Asn Pro Asn Ala Pro Gly Ser Gly Tyr Gln Gly Gly Pro Pro Gly Ala
305 310 315 320
Asn Arg Gly Pro Trp Gly Gly Gln Ala Pro Ser Gly Tyr Gly Thr Gly
325 330 335
Ser Tyr Gly Gly Asn Ala Gly Tyr Ala Ala Trp Asn Asn Ser Ser Ala
340 345 350
Gly Gly Asn Ala Pro Thr Ser Gln Ala Ala Gly Ala Gly Thr Gly Tyr
355 360 365
Gly Ser Gln Gly Tyr Gly Tyr Gly Gly Tyr Gly Gly Asp Ala Ser Tyr
370 375 380
Gly Asn His Gly Gly Tyr Gly Gly Tyr Gly Gly Arg Gly Asp Gly Ala
385 390 395 400
Gly Asn Pro Ala Ala Gly Gly Gly Ser Gly Tyr Gly Ala Gly Tyr Gly
405 410 415
Ser Gly Asn Gly Gly Ser Gly Tyr Pro Asn Ala Trp Ala Asp Pro Ser
420 425 430
Gln Gly Gly Gly Phe Gly Ala Ser Val Asn Gly Val Ser Glu Gly Gln
435 440 445
Ser Asn Tyr Gly Ser Gly Tyr Gly Gly Val Gln Pro Arg Val Ala Gln
450 455 460

Claims (2)

1. The application of the rice TGW10 gene in increasing the grain length character of rice seeds is knocked out, wherein the TGW10 gene in Nipponbare of japonica rice varieties is edited at fixed points by using a CRISPR/Cas9 technology to increase the grain length character of the rice seeds;
the amino acid sequence of the TGW10 gene is shown in SEQ ID NO. 3.
2. The use of claim 1, wherein Nipponbare of japonica rice variety is used as a gene editing receptor, and a CRISPR/Cas9-TGW10 site-specific editing vector is constructed for transformation to obtain a TGW 10-knocked-out gene editing plant.
CN201910745321.7A 2019-08-13 2019-08-13 Application of TGW10 gene in improvement of crop grain type traits Active CN112391403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910745321.7A CN112391403B (en) 2019-08-13 2019-08-13 Application of TGW10 gene in improvement of crop grain type traits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910745321.7A CN112391403B (en) 2019-08-13 2019-08-13 Application of TGW10 gene in improvement of crop grain type traits

Publications (2)

Publication Number Publication Date
CN112391403A CN112391403A (en) 2021-02-23
CN112391403B true CN112391403B (en) 2023-01-06

Family

ID=74601185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910745321.7A Active CN112391403B (en) 2019-08-13 2019-08-13 Application of TGW10 gene in improvement of crop grain type traits

Country Status (1)

Country Link
CN (1) CN112391403B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045638A (en) * 2004-08-16 2013-04-17 克罗普迪塞恩股份有限公司 Plants having improved growth characteristics and method for making the same

Also Published As

Publication number Publication date
CN112391403A (en) 2021-02-23

Similar Documents

Publication Publication Date Title
CN114369599B (en) Long-chain non-coding RNA gene for increasing rice yield and application thereof
CN112626084B (en) Strawberry MYB transcription factor FvMYB24 gene, expression protein and application
CN112725351A (en) Application of gene OsWRKY43 in resisting bacterial blight of rice
KR101201436B1 (en) A black waxy giant embryo rice plant &#39;Milyang 263&#39; harboring giant embryonic gene and breeding method thereof
CN107573411B (en) Application of wheat TaZIM1-7A protein in regulation and control of crop heading period
CN114134159B (en) Application of rice gene OsWOX3B in regulation and control of root morphology
CN115820659A (en) Application of C2H2 type zinc finger protein gene HSTL in regulation and control of rice heading time
CN112391403B (en) Application of TGW10 gene in improvement of crop grain type traits
CN113774043B (en) Related protein for controlling rice glume color character and coding gene thereof
CN116064568A (en) Alfalfa MsASG166 gene and application thereof in improving drought tolerance of plants
US20230175007A1 (en) A plant fertility-associated protein and its application thereof
JP2000078987A (en) Anthogenesis-controlling gene and method for controlling anthogenesis
CN113913440A (en) Application of GhD1119 gene in regulating and controlling blossoming of upland cotton
CN102321633B (en) Pleiotropic gene for controlling vegetative growth and development of floral organs of rice and application thereof
CN117305266B (en) Gene OsBDG1 related to rice stress resistance and application of coded protein thereof
CN112608371B (en) Pleiotropic gene SbSnf4 and application thereof in improving sugar content and biological yield of sorghum stalks
CN116042696B (en) Application of cymbidium MIR156a gene in regulating and controlling plant fruit development
CN116574701B (en) Histone demethylase SlJMJ10, coding gene thereof and application thereof in regulating and controlling tomato fruit size
CN112322627B (en) Application of OsZFP1 gene in controlling drought resistance of rice
CN116254288B (en) Application of cymbidium MIR156b gene in regulating and controlling flowering time of plants
CN110003317B (en) Application of eISHO 4G2 protein in regulation and control of ABA tolerance of plants
CN102492703B (en) Application of OsSRK1 gene in controls of length and width of rice leaves
CN117660485A (en) Application of Arabidopsis ERF012 gene in regulation of seed germination
CN117802153A (en) Application of SlBIW gene in regulation and control of tomato fruit shape
CN116121267A (en) Rice Os11g0229500 gene and encoding protein and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant