CN112379373B - Space-borne SAR real-time imaging device - Google Patents
Space-borne SAR real-time imaging device Download PDFInfo
- Publication number
- CN112379373B CN112379373B CN202011053099.3A CN202011053099A CN112379373B CN 112379373 B CN112379373 B CN 112379373B CN 202011053099 A CN202011053099 A CN 202011053099A CN 112379373 B CN112379373 B CN 112379373B
- Authority
- CN
- China
- Prior art keywords
- target
- sar
- data
- imaging
- processing unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 105
- 238000012545 processing Methods 0.000 claims abstract description 71
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 238000013135 deep learning Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 36
- 238000013507 mapping Methods 0.000 claims description 25
- 230000010365 information processing Effects 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 11
- 239000013307 optical fiber Substances 0.000 claims description 9
- 238000007689 inspection Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000013139 quantization Methods 0.000 claims description 6
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000013144 data compression Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000011835 investigation Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 4
- 208000004350 Strabismus Diseases 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9005—SAR image acquisition techniques with optical processing of the SAR signals
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星载荷数据处理和平台控制技术领域,具体涉及一种星载SAR实时成像装置。The invention belongs to the technical field of satellite load data processing and platform control, and in particular relates to a space-borne SAR real-time imaging device.
背景技术Background technique
星载SAR具有空间分辨率高、覆盖面积大的特点,能够实现舰船目标的精确定位,且高分辨率SAR图像为舰船类型鉴别提供了可能,但舰船提取结果难以有效验证,使得目标提取和类型鉴别的性能无法有效提升。近年兴起的深度学习技术在目标分类、识别、视频分析以及自然语言处理等方面应用越来越广泛。借助深度学习技术,基于遥感影像的在轨目标检测和鉴别能够有效地提高卫星的使用效率,并及时发现陆地、海面显著性目标,相比于电子侦察手段具有抗干扰能力强、目标切片可译读性高、场景适应广泛等优点。Spaceborne SAR has the characteristics of high spatial resolution and large coverage area, which can realize the precise positioning of ship targets, and high-resolution SAR images provide the possibility for ship type identification, but it is difficult to effectively verify the ship extraction results, making the target The performance of extraction and type identification cannot be effectively improved. The deep learning technology emerging in recent years has been widely used in object classification, recognition, video analysis and natural language processing. With the help of deep learning technology, on-orbit target detection and identification based on remote sensing images can effectively improve the use efficiency of satellites, and timely discover land and sea salient targets. Compared with electronic reconnaissance methods, it has strong anti-interference ability and can translate target slice It has the advantages of high readability and wide scene adaptation.
北京交通大学王国栋的论文《高分辨率星载聚束式SAR的Deramp Chirp Scaling成像算法》提出了一种适用于高分辨星载聚束式合成孔径雷达(SAR)的Deramp ChirpScaling(DCS)算法。该算法结合了谱分析(SPECAN)算法和Chirp Scaling算法的优点,先采用具有固定多普勒调频率的deramp处理实现方位的粗聚焦,消除了星载聚束式SAR特有的方位频谱混迭现象,然后应用Chirp Scaling原理实现距离的精确聚焦,并补偿deramp处理引起的方位相位误差,实现方位精聚焦。该算法适用于宽测绘带高分辨率星载聚束式SAR的精确成像处理。Wang Guodong of Beijing Jiaotong University's paper "Deramp Chirp Scaling Imaging Algorithm for High-Resolution Spaceborne Spotlight SAR" proposed a Deramp ChirpScaling (DCS) algorithm suitable for high-resolution spaceborne spotlight synthetic aperture radar (SAR). This algorithm combines the advantages of spectral analysis (SPECAN) algorithm and Chirp Scaling algorithm. Firstly, the deramp processing with fixed Doppler modulation frequency is used to realize the coarse focusing of azimuth, which eliminates the azimuth spectrum aliasing phenomenon unique to spaceborne spotlight SAR. , and then apply the principle of Chirp Scaling to achieve precise focusing of the distance, and compensate the azimuth phase error caused by deramp processing to achieve fine azimuth focusing. The algorithm is suitable for accurate imaging processing of wide swath and high resolution spaceborne spotlight SAR.
中国科学院电子学研究所CN103323828A/B提出了一种超高分辨率星载SAR成像处理方法及装置。该发明建立星载SAR回波信号的二维频谱模型,通过将所述二维频谱模型与其对应的参考函数相乘,消除所述二维频谱模型中的在参考斜距处的距离徙动相位项和高阶耦合相位项,对消除处理后的信号作距离向逆傅里叶变换,通过插值的方式校正所述二维频谱模型中的残留距离徙动量,最后通过方位压缩方式消除所述二维频谱模型的方位调制相位项,得到聚焦后的星载SAR图像。利用该发明的技术方案,可以得到高质量的超高分辨率星载SAR图像,并具有良好定位能力。The Institute of Electronics, Chinese Academy of Sciences CN103323828A/B proposes a super-high resolution spaceborne SAR imaging processing method and device. This invention establishes a two-dimensional spectrum model of the spaceborne SAR echo signal, and eliminates the range migration phase at the reference slant distance in the two-dimensional spectrum model by multiplying the two-dimensional spectrum model with its corresponding reference function term and the high-order coupling phase term, the range inverse Fourier transform is performed on the signal after the elimination process, the residual distance migration in the two-dimensional spectrum model is corrected by interpolation, and the two-dimensional spectrum model is finally eliminated by azimuth compression. The azimuth modulation phase term of the three-dimensional spectrum model is used to obtain the focused spaceborne SAR image. Utilizing the technical scheme of the invention, high-quality ultra-high-resolution space-borne SAR images can be obtained, and have good positioning capabilities.
北京空间飞行器总体设计部CN201811280751.8公开了一种基于星载AIS实时信息引导的星上自主成像方法。该发明的主要步骤如下:(1)捕获并确认需观测的舰船目标;(2)确定卫星观测时刻和区域;(3)计算卫星对船只的观测姿态;(4)调整卫星姿态,确定SAR载荷可进行成像工作。该发明利用星载AIS信息实时对感兴趣的目标进行匹配筛选,并确定目标所在的区域,实现SAR载荷成像所需要时间、姿态、成像参数等数据的实时解算,自动生成卫星姿态调整指令及SAR载荷开机成像指令,并完成对选定区域和选定目标的成像任务。AIS信息和SAR成像信息的综合利用,提高了海上舰船目标的识别确认效率。CN201811280751.8 of Beijing Aerospace Vehicle Overall Design Department discloses an on-board autonomous imaging method guided by real-time information of on-board AIS. The main steps of the invention are as follows: (1) capture and confirm the ship target to be observed; (2) determine the satellite observation time and area; (3) calculate the observation attitude of the satellite to the ship; (4) adjust the satellite attitude to determine the SAR The payload can perform imaging work. The invention uses the spaceborne AIS information to match and screen the interested targets in real time, and determine the area where the target is located, realize the real-time calculation of the time, attitude, imaging parameters and other data required for SAR payload imaging, and automatically generate satellite attitude adjustment commands and SAR loads start-up imaging instructions, and completes the imaging task of selected areas and selected targets. The comprehensive utilization of AIS information and SAR imaging information improves the identification and confirmation efficiency of maritime ship targets.
但上述方法主要存在以下问题:However, the above method mainly has the following problems:
(1)现有的技术手段都是利用AIS信息作为验证引导手段,协助完成SAR成像或对SAR图像中舰船目标进行检测和识别,核心算法采用的均是基于传统图像分割和形态学的目标检测和识别方法,其处理精度、正确率以及性能提升能力均受限,无法满足后续高分辨率SAR图像的目标提取和类型鉴别的能力要求。(1) The existing technical means use AIS information as a means of verification and guidance to assist in the completion of SAR imaging or to detect and identify ship targets in SAR images. The core algorithms are all based on traditional image segmentation and morphological targets The detection and recognition methods have limited processing accuracy, correct rate, and performance improvement capabilities, and cannot meet the ability requirements for target extraction and type identification of subsequent high-resolution SAR images.
(2)如果仅仅依靠AIS对舰船目标进行检测定位以及鉴别,不仅技术手段单一,对AIS漏报、非合作目标(军舰等)或者故意躲避(AIS不开)等行为不能得到有效的监测,而成熟的星载SAR图像舰船目标检测和鉴别算法可以弥补AIS在舰船目标监视中的不足(2) If only relying on AIS to detect, locate and identify ship targets, not only the technical means are single, but also the behaviors such as AIS underreporting, non-cooperative targets (warships, etc.) or intentional evasion (AIS is not turned on) cannot be effectively monitored. The mature spaceborne SAR image ship target detection and identification algorithm can make up for the lack of AIS in ship target monitoring.
(3)现有方法主要考虑在地面应用或者通过地面设备的参与才能完成功能闭环,必须依赖天地数据传输系统,占用大量星地通信带宽,必然会耗费大量处理时间以及降低星地网络通信效率,进一步影响遥感卫星的效能,处理效率和实时性将无法满足现代遥感卫星的使用需求。(3) The existing method mainly considers the application on the ground or the participation of ground equipment to complete the functional closed loop. It must rely on the space-ground data transmission system and occupy a large amount of satellite-ground communication bandwidth, which will inevitably consume a lot of processing time and reduce the communication efficiency of the satellite-ground network. Further affecting the effectiveness of remote sensing satellites, the processing efficiency and real-time performance will not be able to meet the needs of modern remote sensing satellites.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种星载SAR实时成像装置,可以实现对感兴趣区域信息快速获取和重点目标详细侦察。In view of this, the object of the present invention is to provide a spaceborne SAR real-time imaging device, which can realize rapid acquisition of information of the region of interest and detailed reconnaissance of key targets.
一种星载SAR实时成像装置,包括卫星姿态轨道控制单元、中央处理单元、SAR载荷、SAR成像处理单元、智能信息处理单元、数据处理单元以及载荷控制单元;A spaceborne SAR real-time imaging device, comprising a satellite attitude orbit control unit, a central processing unit, a SAR payload, a SAR imaging processing unit, an intelligent information processing unit, a data processing unit, and a payload control unit;
所述中央处理单元根据目标信息确定包括成像分辨率、幅宽、载荷指向以及卫星姿态的控制参数,并将控制参数发送给卫星姿态轨道控制单元和载荷控制单元;The central processing unit determines control parameters including imaging resolution, width, load pointing and satellite attitude according to the target information, and sends the control parameters to the satellite attitude orbit control unit and the load control unit;
所述卫星姿态轨道控制单元根据所述控制参数将卫星姿态调整到此次任务规定状态,载荷控制单元根据控制参数计算出载荷成像参数控制SAR载荷工作,SAR载荷根据成像参数开始对指定区域进行探测扫描,并将接收到的射频回波信号下变频成中频模拟信号发送给SAR成像处理单元;The satellite attitude orbit control unit adjusts the satellite attitude to the specified state of the mission according to the control parameters, the load control unit calculates the load imaging parameters according to the control parameters to control the SAR load work, and the SAR load starts to detect the designated area according to the imaging parameters Scan, and down-convert the received radio frequency echo signal into an intermediate frequency analog signal and send it to the SAR imaging processing unit;
SAR成像处理单元结合载荷控制单元发送的雷达参数将回波信号处理成SAR图像,然后通过光纤将成像数据发送给智能信息处理单元;The SAR imaging processing unit combines the radar parameters sent by the load control unit to process the echo signal into a SAR image, and then sends the imaging data to the intelligent information processing unit through the optical fiber;
智能信息处理单元对SAR图像数据先进行图像量化,即将原始单精度浮点复数数据量化为8位的定点数据,再进行目标检测处理:如果没有检测到目标,则此次任务结束;如果检测到目标,对目标的坐标位置进行判断和计算,确定目标最密集的中心位置作为详查成像的中心成像点;然后根据中心成像点和目标分布情况计算得出详查包括成像分辨率、幅宽、成像下视角、卫星轨道和姿态的参数信息,并将其发送给中央处理单元计算详查模式下的SAR成像参数,中央处理单元将上述参数信息分发给载荷控制单元、姿态轨道控制单元和SAR成像处理单元;The intelligent information processing unit first performs image quantization on the SAR image data, that is, quantizes the original single-precision floating-point complex data into 8-bit fixed-point data, and then performs target detection processing: if no target is detected, the task ends; if detected Target, judge and calculate the coordinate position of the target, determine the center position of the densest target as the central imaging point of the detailed inspection imaging; then calculate the detailed inspection including imaging resolution, width, The parameter information of viewing angle, satellite orbit and attitude under imaging is sent to the central processing unit to calculate the SAR imaging parameters in the detailed inspection mode, and the central processing unit distributes the above parameter information to the load control unit, attitude orbit control unit and SAR imaging processing unit;
所述姿态轨道控制单元根据轨道和姿态参数信息在指定时间内机动到指定位置并将姿态调整到指定状态,便于后续SAR载荷进行目标探测;载荷控制单元根据波束控制信号控制SAR载荷的波束指向进行感兴趣目标探测扫描;SAR成像处理单元根据采集到的SAR载荷回波信号和雷达参数进行SAR成像处理获取高分辨率SAR图像数据,并将其通过光纤模块发送给智能信息处理单元;The attitude orbit control unit maneuvers to a designated position within a designated time according to the orbit and attitude parameter information and adjusts the attitude to a designated state, which is convenient for subsequent SAR loads to detect targets; the load control unit controls the beam pointing of the SAR load according to the beam control signal to perform Detection and scanning of the target of interest; the SAR imaging processing unit performs SAR imaging processing according to the collected SAR payload echo signal and radar parameters to obtain high-resolution SAR image data, and sends it to the intelligent information processing unit through the optical fiber module;
所述智能信息处理单元对SAR成像处理单元发送过来的高分辨率SAR图像数据先进行图像量化,将原始单精度浮点复数数据量化为8位的定点数据,用于目标检测处理;目标检测完成后,一方面,根据检测结果在原始浮点复数图像数据中获取目标切片,将目标切片发送给深度学习前向推理模型进行目标鉴别处理,获取目标的类型和置信度信息;另一方面,根据目标检测结果坐标位置和SAR载荷波束指向、卫星轨道和姿态信息进行空间几何定位处理,确定目标所在位置的经纬度信息,并将目标位置、目标切片、目标类型、目标置信度等结果信息通过SpaceWire总线发送给数据处理单元;The intelligent information processing unit first performs image quantization on the high-resolution SAR image data sent by the SAR imaging processing unit, and quantizes the original single-precision floating-point complex data into 8-bit fixed-point data for target detection processing; the target detection is completed Finally, on the one hand, the target slice is obtained from the original floating-point complex image data according to the detection results, and the target slice is sent to the deep learning forward reasoning model for target identification processing to obtain the target type and confidence information; on the other hand, according to The coordinate position of the target detection result and the SAR payload beam pointing, satellite orbit and attitude information are processed for spatial geometric positioning, the longitude and latitude information of the target location is determined, and the result information such as the target position, target slice, target type, and target confidence is passed through the SpaceWire bus sent to the data processing unit;
所述的数据处理单元接收到结果信息,将其进行数据压缩、编码处理后,快速将信息下传,形成高品质的情报信息。与此同时,数据处理单元可以根据任务需要和指令控制的方式,将SAR成像处理单元通过光纤传输过来的原始回波数据或者处理完成的SAR图像数据进行下传,便于地面进行数据分析。The data processing unit receives the result information, compresses and encodes the result information, and quickly downloads the information to form high-quality intelligence information. At the same time, the data processing unit can download the original echo data or the processed SAR image data transmitted by the SAR imaging processing unit through the optical fiber according to the task requirements and the command control method, so as to facilitate data analysis on the ground.
较佳的,所述目标的中心成像点位置的计算方法为:目标i的坐标为(Xi,Yi),目标总个数为k,分别计算目标i和其他k-1个目标坐标的平方差δi,则δi最小值对应的位置坐标即为中心成像点。Preferably, the calculation method of the position of the central imaging point of the target is as follows: the coordinates of target i are (X i , Y i ), the total number of targets is k, and the coordinates of target i and other k-1 target coordinates are respectively calculated. The square difference δ i , then the position coordinate corresponding to the minimum value of δ i is the central imaging point.
较佳的,对图像数据进行量化的过程为:将32位无符号定点数据分成6个区间,分别为:第一区间为[0,256),第二区间为[256,4096),第三区间为[4096,16384),第四区间为[16384,65535),第五区间为[65536,262143),第六区间为[262144,4294967296),六个区间对应生成6个灰度映射表,每个表大小为256,6个灰度表合成为一个大小为1536的表,第一区间灰度表生成方法为:假设输入数据为n,其中,n=0,1,2,3,…,255,则进行灰度映射后,获得的灰度表数值为10×log(n),对应地址索引值为n;Preferably, the process of quantizing the image data is: divide the 32-bit unsigned fixed-point data into 6 intervals, which are respectively: the first interval is [0, 256), the second interval is [256, 4096), the third interval The interval is [4096, 16384), the fourth interval is [16384, 65535), the fifth interval is [65536, 262143), the sixth interval is [262144, 4294967296), the six intervals correspond to generate 6 grayscale mapping tables, The size of each table is 256, and 6 grayscale tables are synthesized into a table with a size of 1536. The method of generating the first interval grayscale table is as follows: Assume that the input data is n, where n=0,1,2,3,… ,255, after grayscale mapping, the obtained grayscale table value is 10×log(n), and the corresponding address index value is n;
第二区间灰度生成方法为:假设输入数据为n,其中,n=256,257,258,259,…,4094,4095,则进行灰度映射后,获得的灰度表数值为10×log(round(n/16)×16),对应地址索引值为round(n/16);The gray scale generation method for the second interval is as follows: assuming that the input data is n, where n=256, 257, 258, 259, ..., 4094, 4095, after the gray scale mapping, the obtained gray scale value is 10×log(round(n/16 )×16), the corresponding address index value is round(n/16);
第三区间灰度生成方法为:假设输入数据为n,其中,n=4096,4097,4098,4099,…,16382,16383,则进行灰度映射后,获得的灰度表数值为10×log(round(n/64)×64),对应地址索引值为round(n/64);The gray scale generation method of the third interval is as follows: assuming that the input data is n, where n=4096, 4097, 4098, 4099, ..., 16382, 16383, after the gray scale mapping, the obtained gray scale value is 10×log (round(n/64)×64), the corresponding address index value is round(n/64);
第四区间灰度生成方法为:假设输入数据为n,其中,n=16384,16385,16386,…,65534,65535,则进行灰度映射后,获得的灰度表数值为10×log(round(n/256)×256),对应地址索引值为round(n/256);The gray scale generation method for the fourth interval is as follows: assuming that the input data is n, where n=16384, 16385, 16386, ..., 65534, 65535, after gray scale mapping, the obtained gray scale value is 10×log(round (n/256)×256), the corresponding address index value is round(n/256);
第五区间灰度生成方法为:假设输入数据为n,其中,n=65536,65537,65538,65539,…,262142,262143,则进行灰度映射后,获得的灰度表数值为10×log(round(n/1024)×1024),对应地址索引值为round(n/1024);The grayscale generation method of the fifth interval is as follows: assuming that the input data is n, where n=65536, 65537, 65538, 65539, ..., 262142, 262143, after grayscale mapping, the obtained grayscale value is 10×log (round(n/1024)×1024), the corresponding address index value is round(n/1024);
第六区间灰度生成方法为:假设输入数据为n,其中,n=262144,262145,262146,…,4294967294,4294967295,则进行灰度映射后,获得的灰度表数值为10×log(round(n/4096)×4096),对应地址索引值为round(n/4096)。The gray scale generation method of the sixth interval is as follows: assuming that the input data is n, where n=262144, 262145, 262146, ..., 4294967294, 4294967295, after gray scale mapping, the obtained gray scale value is 10×log(round (n/4096)×4096), the corresponding address index value is round(n/4096).
对输入表的数据先判断其属于哪个区间:若属于第1区间,则直接以该输入值进行查表,即直接利用输入数值作为地址索引值查表;For the data in the input table, first determine which interval it belongs to: if it belongs to the first interval, then directly use the input value to look up the table, that is, directly use the input value as the address index value to look up the table;
若属于第2区间,则将该输入值除以16,得到的结果加上256作为地址索引值进行查表;若属于第3区间,则将该输入值除以64,得到的结果加上512作为地址索引值进行查表;若属于第4区间,则将该输入值除以256,得到的结果加上768作为地址索引值进行查表;若属于第5区间,则将该输入值除以1024,得到的结果加上1024作为地址索引值进行查表;若属于第6区间,则将该输入值除以4096,得到的结果加上1280作为地址索引值进行查表;If it belongs to the second interval, divide the input value by 16, and add 256 to the result as the address index value for table lookup; if it belongs to the third interval, divide the input value by 64, and add 512 to the result Look up the table as the address index value; if it belongs to the 4th interval, divide the input value by 256, and add 768 to the result to look up the table as the address index value; if it belongs to the 5th interval, divide the input value by 1024, add 1024 to the obtained result as the address index value for table lookup; if it belongs to the sixth interval, then divide the input value by 4096, and add 1280 to the obtained result as the address index value for table lookup;
通过查找灰度映射表得到8位灰度数据,即为量化完成的图像数据。The 8-bit grayscale data is obtained by looking up the grayscale mapping table, which is the quantized image data.
本发明具有如下有益效果:The present invention has following beneficial effects:
1)本发明采用广域宽幅低分辨普查和高分辨详查两种成像模式构建SAR成像,结合星载SAR实时成像处理、目标检测以及基于深度学习的目标分类识别技术,对敏感区域实现快速有效的侦察,获取感兴趣目标的个数、位置、类型、置信度以及切片等情报信息。有效解决了海量高分辨率SAR数据直接下传带来的地面处理时延大、时效性低等问题,有效地突破了数传瓶颈、提高固存、载荷利用率,显著提升了卫星的作战效能。1) The present invention adopts two imaging modes of wide-area low-resolution survey and high-resolution detailed survey to construct SAR imaging, and combines spaceborne SAR real-time imaging processing, target detection and target classification and recognition technology based on deep learning to realize rapid detection of sensitive areas. Effective reconnaissance, obtaining intelligence information such as the number, location, type, confidence level, and slice of the target of interest. It effectively solves the problems of large ground processing delay and low timeliness caused by the direct download of massive high-resolution SAR data, effectively breaks through the bottleneck of data transmission, improves solid storage and load utilization, and significantly improves the combat effectiveness of satellites .
2)本发明涉及的星载SAR实时成像方法采用主动发现目标、自主引导高分辨率成像的在轨自主闭环工作模式,将大大提高卫星的智能化水平,增强用户的好用、易用体验,同时简化卫星的使用、提高应用过程中对敏感目标成像的灵活度和时效性、满足用户的应用需求。2) The spaceborne SAR real-time imaging method involved in the present invention adopts the on-orbit autonomous closed-loop working mode of actively discovering targets and autonomously guiding high-resolution imaging, which will greatly improve the intelligence level of the satellite and enhance the ease of use and easy-to-use experience of users. At the same time, it simplifies the use of satellites, improves the flexibility and timeliness of sensitive target imaging in the application process, and meets the application needs of users.
3)本发明涉及的深度学习前向推理模型输入数据为浮点复数数据,浮点复数数据不光包含有目标特征信息还包含有目标的相位信息,增加了信息维度,信息精度高,便于提高分类准确性。3) The input data of the deep learning forward reasoning model involved in the present invention is floating-point complex data. The floating-point complex data not only contains target feature information but also contains target phase information, which increases the information dimension and has high information accuracy, which is convenient for improving classification. accuracy.
附图说明Description of drawings
图1为成像任务时间轴;Figure 1 is the imaging task timeline;
图2为正侧视条带观测模型;Figure 2 is the observation model of the front and side view strips;
图3为后斜视滑动聚束观测模型。Figure 3 is the rear squint sliding spotlight observation model.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
一种星载SAR实时成像装置,包括卫星姿态轨道控制单元、中央处理单元、SAR载荷、SAR成像处理单元、智能信息处理单元、数据处理单元以及载荷控制单元,上述模块配合完成卫星SAR成像任务。任务流程设定为先进行正侧视条带低分辨率广域普查SAR成像,对得到的SAR图像进行感兴趣目标的初检测,根据检测结果以及卫星相关信息组织后斜视聚束高分辨率详查SAR成像,并对高分辨率SAR图像数据进行感兴趣目标检测、切片提取和基于深度学习的目标鉴别,处理完成后将目标位置、目标切片、目标类型以及置信度等信息打包下传地面接收站,快速生成高品质情报信息。A spaceborne SAR real-time imaging device includes a satellite attitude orbit control unit, a central processing unit, a SAR payload, a SAR imaging processing unit, an intelligent information processing unit, a data processing unit, and a payload control unit, and the above modules cooperate to complete satellite SAR imaging tasks. The task flow is set to firstly carry out low-resolution wide-area census SAR imaging of frontal and side-looking strips, conduct preliminary detection of interested targets on the obtained SAR images, and organize rear-squinting spotlight high-resolution detailed observations based on the detection results and satellite-related information. Check SAR imaging, and perform interest target detection, slice extraction, and target identification based on deep learning on high-resolution SAR image data. After processing, information such as target position, target slice, target type, and confidence level are packaged and transmitted to the ground for reception Station, quickly generate high-quality intelligence information.
如图1所示,所述的SAR成像分为普查和详查两种工作模式,成像过程中,先进行普查成像,对感兴趣目标进行广域成像搜索并获取感兴趣目标位置;再根据广域成像搜索结果获取详查成像参数,组织卫星平台和载荷针对感兴趣目标进行详查成像,用以确定目标类型和经纬度位置。其中,普查采用正侧视条带低分辨率成像模式,详查采用后斜视聚束高分辨率成像。可以根据任务需要和目标特点灵活选择幅宽和分辨率等成像参数和模式。As shown in Figure 1, the SAR imaging is divided into two working modes: general survey and detailed survey. The domain imaging search results are used to obtain detailed imaging parameters, and satellite platforms and payloads are organized to conduct detailed imaging for the target of interest to determine the target type and latitude and longitude position. Among them, the census adopts the low-resolution imaging mode of frontal and side-view strips, and the detailed investigation adopts the high-resolution imaging of posterior squint beam. Imaging parameters and modes such as width and resolution can be flexibly selected according to task requirements and target characteristics.
如图2所示,所述的正侧视条带低分辨率成像流程为:中央处理单元根据目标大小和目标区域等信息确定成像分辨率、幅宽、载荷指向以及卫星姿态等控制参数,并将控制参数发送给卫星姿态轨道控制单元和载荷控制单元,卫星姿态轨道控制单元根据控制参数将卫星姿态调整到此次任务规定状态,载荷控制单元根据控制参数计算出载荷成像参数控制SAR载荷工作,SAR载荷根据成像参数开始对指定区域进行探测扫描,并将接收到的射频回波信号下变频成中频模拟信号发送给SAR成像处理单元,SAR成像处理单元结合载荷控制单元发送过来的雷达参数将回波信号处理成SAR图像。As shown in Figure 2, the low-resolution imaging process of the front-view and side-view strips is as follows: the central processing unit determines the control parameters such as imaging resolution, width, load pointing, and satellite attitude according to the target size and target area, and Send the control parameters to the satellite attitude and orbit control unit and the load control unit, the satellite attitude and orbit control unit adjusts the satellite attitude to the specified state of the mission according to the control parameters, and the load control unit calculates the load imaging parameters according to the control parameters to control the SAR load work, The SAR payload starts to detect and scan the designated area according to the imaging parameters, and down-converts the received radio frequency echo signal into an intermediate frequency analog signal and sends it to the SAR imaging processing unit. The SAR imaging processing unit combines the radar parameters sent by the payload control unit. The wave signal is processed into a SAR image.
所述的低分辨率SAR图像的目标检测流程为:SAR成像处理单元通过光纤将低分辨率成像数据发送给智能信息处理单元,智能信息处理单元对SAR图像数据先进行图像量化,将原始单精度浮点复数数据量化为8位的定点数据,用于目标检测处理。如果没有检测到目标,则此次任务结束;如果检测到目标,对目标的坐标位置进行判断和计算,确定目标最密集的中心位置作为详查成像的中心成像点。The target detection process of the low-resolution SAR image is as follows: the SAR imaging processing unit sends the low-resolution imaging data to the intelligent information processing unit through the optical fiber, and the intelligent information processing unit first performs image quantization on the SAR image data, and converts the original single-precision The floating-point complex data is quantized into 8-bit fixed-point data for target detection processing. If the target is not detected, the task ends; if the target is detected, the coordinate position of the target is judged and calculated, and the center position with the densest target is determined as the central imaging point of the detailed inspection imaging.
所述详查成像的中心成像点位置的计算方法为:目标i的坐标为(Xi,Yi),目标总个数为k,分别计算目标i和其他k-1个目标坐标的平方差δi,则δi最小值对应的位置坐标即为中心成像点。其中,中心成像点坐标值平方差δ=min(δi),i=1,2…k。The calculation method of the position of the central imaging point of the detailed investigation imaging is: the coordinates of target i are (X i , Y i ), the total number of targets is k, and the square difference between target i and other k-1 target coordinates is calculated respectively δ i , then the position coordinate corresponding to the minimum value of δ i is the central imaging point. in, The square difference of coordinate values of the central imaging point δ=min(δ i ), i=1, 2...k.
如图3所示,所述的后斜视聚束高分辨率详查SAR成像参数计算及配置流程为:根据中心成像点和目标分布情况计算得出详查成像分辨率、幅宽、成像下视角、卫星轨道和姿态等参数信息,并将其发送给中央处理单元计算详查模式下的SAR成像参数,中央处理单元将上述参数信息分发给载荷控制单元、姿态轨道控制单元和SAR成像处理单元。As shown in Figure 3, the calculation and configuration process of the rear squint spotlight high-resolution detailed survey SAR imaging parameters is as follows: calculate the detailed survey imaging resolution, width, and imaging angle of view according to the distribution of the central imaging point and the target , satellite orbit and attitude and other parameter information, and send it to the central processing unit to calculate the SAR imaging parameters in the detailed inspection mode, and the central processing unit distributes the above parameter information to the load control unit, attitude orbit control unit and SAR imaging processing unit.
所述的高分辨率SAR成像流程为:成像参数计算及配置完成后,姿态轨道控制单元根据轨道和姿态参数信息在指定时间内机动到指定位置并将姿态调整到指定状态,便于后续SAR载荷进行目标探测;载荷控制单元根据波束控制信号控制SAR载荷的波束指向进行感兴趣目标探测扫描;SAR成像处理单元根据采集到的SAR载荷回波信号和雷达参数进行SAR成像处理获取高分辨率SAR图像数据,并将其通过光纤模块发送给智能信息处理单元。The high-resolution SAR imaging process is as follows: After the imaging parameters are calculated and configured, the attitude-orbit control unit maneuvers to the designated position within a designated time according to the orbit and attitude parameter information and adjusts the attitude to a designated state, which is convenient for subsequent SAR payloads to carry out Target detection; the payload control unit controls the beam pointing of the SAR payload according to the beam control signal to detect and scan the target of interest; the SAR imaging processing unit performs SAR imaging processing according to the collected SAR payload echo signals and radar parameters to obtain high-resolution SAR image data , and send it to the intelligent information processing unit through the optical fiber module.
所述的智能信息处理单元对SAR成像处理单元发送过来的高分辨率SAR图像数据,智能信息处理单元对SAR图像数据先进行图像量化,将原始单精度浮点复数数据量化为8位的定点数据,用于目标检测处理。目标检测完成后,一方面,根据检测结果在原始浮点复数图像数据中获取目标切片,将目标切片发送给深度学习前向推理模型进行目标鉴别处理,获取目标的类型和置信度信息;另一方面,根据目标检测结果坐标位置和SAR载荷波束指向、卫星轨道和姿态等信息进行空间几何定位处理,确定目标所在位置的经纬度信息,并将目标位置(经纬度)、目标切片、目标类型、目标置信度等结果信息通过SpaceWire总线(新一代星载高速数据总线标准)发送给数据处理单元a/b。The intelligent information processing unit sends the high-resolution SAR image data sent by the SAR imaging processing unit, and the intelligent information processing unit performs image quantization on the SAR image data first, and quantizes the original single-precision floating-point complex data into 8-bit fixed-point data , for object detection processing. After the target detection is completed, on the one hand, the target slice is obtained from the original floating-point complex image data according to the detection result, and the target slice is sent to the deep learning forward reasoning model for target identification processing to obtain the target type and confidence information; the other On the one hand, according to the coordinate position of the target detection result and the SAR payload beam pointing, satellite orbit and attitude and other information, the spatial geometric positioning process is performed to determine the latitude and longitude information of the target location, and the target position (latitude and longitude), target slice, target type, and target confidence The result information such as the degree is sent to the data processing unit a/b through the SpaceWire bus (a new generation of on-board high-speed data bus standard).
所述的数据处理单元接收到结果信息,将其进行数据压缩、编码处理后,快速将信息下传,形成高品质的情报信息。与此同时,数据处理单元可以根据任务需要和指令控制的方式,将SAR成像处理单元通过光纤传输过来的原始回波数据或者处理完成的SAR图像数据进行下传,便于地面进行数据分析。The data processing unit receives the result information, compresses and encodes the result information, and quickly downloads the information to form high-quality intelligence information. At the same time, the data processing unit can download the original echo data or the processed SAR image data transmitted by the SAR imaging processing unit through the optical fiber according to the task requirements and the command control method, so as to facilitate data analysis on the ground.
所述的发送给智能信息处理单元浮点复数数据进行量化,用于基于形态学的目标检测。具体为:对接收到的浮点复数数据求取绝对值,将绝对值结果由单精度浮点数据转换成32位无符号定点数据,以该结果为输入通过查找灰度映射表得到8位灰度数据,即为量化完成的图像数据。其中,灰度映射表具体生成流程为:The floating-point complex data sent to the intelligent information processing unit is quantified for target detection based on morphology. Specifically: Calculate the absolute value of the received floating-point complex data, convert the absolute value result from single-precision floating-point data to 32-bit unsigned fixed-point data, and use the result as input to obtain 8-bit gray by looking up the gray-scale mapping table The degree data is the quantized image data. Among them, the specific generation process of the grayscale mapping table is as follows:
将32位无符号定点数据分成6个区间,分别为:第一区间为[0,256),第二区间为[256,4096),第三区间为[4096,16384),第四区间为[16384,65535),第五区间为[65536,262143),第六区间为[262144,4294967296),六个区间对应生成6个灰度映射表,每个表大小为256,6个灰度表合成为一个大小为1536的表,第一区间灰度表生成方法为:假设输入数据为n,其中,n=0,1,2,3,…,255,则进行灰度映射后,获得的灰度表数值为10×log(n),对应地址索引值为n;Divide the 32-bit unsigned fixed-point data into 6 intervals, namely: the first interval is [0, 256), the second interval is [256, 4096), the third interval is [4096, 16384), and the fourth interval is [ 16384,65535), the fifth interval is [65536,262143), the sixth interval is [262144,4294967296), the six intervals correspond to generate 6 grayscale mapping tables, each table size is 256, 6 grayscale table synthesis It is a table with a size of 1536, and the method for generating the first interval grayscale table is as follows: Assuming that the input data is n, where n=0,1,2,3,...,255, after performing grayscale mapping, the obtained grayscale The value of the degree table is 10×log(n), and the corresponding address index value is n;
第二区间灰度生成方法为:假设输入数据为n,其中,n=256,257,258,259,…,4094,4095,则进行灰度映射后,获得的灰度表数值为10×log(round(n/16)×16),对应地址索引值为round(n/16);The gray scale generation method for the second interval is as follows: assuming that the input data is n, where n=256, 257, 258, 259, ..., 4094, 4095, then after gray scale mapping, the obtained gray scale value is 10×log(round(n/16 )×16), the corresponding address index value is round(n/16);
第三区间灰度生成方法为:假设输入数据为n,其中,n=4096,4097,4098,4099,…,16382,16383,则进行灰度映射后,获得的灰度表数值为10×log(round(n/64)×64),对应地址索引值为round(n/64);The gray scale generation method of the third interval is as follows: assuming that the input data is n, where n=4096, 4097, 4098, 4099, ..., 16382, 16383, after the gray scale mapping, the obtained gray scale value is 10×log (round(n/64)×64), the corresponding address index value is round(n/64);
第四区间灰度生成方法为:假设输入数据为n,其中,n=16384,16385,16386,…,65534,65535,则进行灰度映射后,获得的灰度表数值为10×log(round(n/256)×256),对应地址索引值为round(n/256);The gray scale generation method for the fourth interval is as follows: assuming that the input data is n, where n=16384, 16385, 16386, ..., 65534, 65535, after gray scale mapping, the obtained gray scale value is 10×log(round (n/256)×256), the corresponding address index value is round(n/256);
第五区间灰度生成方法为:假设输入数据为n,其中,n=65536,65537,65538,65539,…,262142,262143,则进行灰度映射后,获得的灰度表数值为10×log(round(n/1024)×1024),对应地址索引值为round(n/1024);The grayscale generation method of the fifth interval is as follows: assuming that the input data is n, where n=65536, 65537, 65538, 65539, ..., 262142, 262143, after grayscale mapping, the obtained grayscale value is 10×log (round(n/1024)×1024), the corresponding address index value is round(n/1024);
第六区间灰度生成方法为:假设输入数据为n,其中,n=262144,262145,262146,…,4294967294,4294967295,则进行灰度映射后,获得的灰度表数值为10×log(round(n/4096)×4096),对应地址索引值为round(n/4096)。The gray scale generation method of the sixth interval is as follows: assuming that the input data is n, where n=262144, 262145, 262146, ..., 4294967294, 4294967295, after gray scale mapping, the obtained gray scale value is 10×log(round (n/4096)×4096), the corresponding address index value is round(n/4096).
对输入表的数据先判断其属于哪个区间:若属于第1区间,则直接以该输入值进行查表,即直接利用输入数值作为地址索引值查表;For the data in the input table, first determine which interval it belongs to: if it belongs to the first interval, then directly use the input value to look up the table, that is, directly use the input value as the address index value to look up the table;
若属于第2区间,则将该输入值除以16,得到的结果加上256作为地址索引值进行查表;若属于第3区间,则将该输入值除以64,得到的结果加上512作为地址索引值进行查表;若属于第4区间,则将该输入值除以256,得到的结果加上768作为地址索引值进行查表;若属于第5区间,则将该输入值除以1024,得到的结果加上1024作为地址索引值进行查表;若属于第6区间,则将该输入值除以4096,得到的结果加上1280作为地址索引值进行查表。If it belongs to the second interval, divide the input value by 16, and add 256 to the result as the address index value for table lookup; if it belongs to the third interval, divide the input value by 64, and add 512 to the result Look up the table as the address index value; if it belongs to the 4th interval, divide the input value by 256, and add 768 to the result to look up the table as the address index value; if it belongs to the 5th interval, divide the input value by 1024, add 1024 to the obtained result as the address index value for table lookup; if it belongs to the sixth interval, divide the input value by 4096, add 1280 to the obtained result as the address index value for table lookup.
所述的发送给深度学习模型目标切片数据进行目标分类识别。具体为:目标切片生成模块根据目标检测模块传递过来的目标坐标位置,并通知浮点复数图像数据存储模块以该坐标位置为中心,按设定好的尺寸信息提取目标切片,并将提取到的浮点复数切片数据发送给深度学习模型进行前向推理计算,得到目标类型和置信度信息。The target slice data sent to the deep learning model for target classification and recognition. Specifically, the target slice generation module notifies the floating-point complex image data storage module to center on the coordinate position according to the target coordinate position passed by the target detection module, extract the target slice according to the set size information, and extract the extracted The floating-point complex number slice data is sent to the deep learning model for forward inference calculation, and the target type and confidence information are obtained.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011053099.3A CN112379373B (en) | 2020-09-29 | 2020-09-29 | Space-borne SAR real-time imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011053099.3A CN112379373B (en) | 2020-09-29 | 2020-09-29 | Space-borne SAR real-time imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112379373A CN112379373A (en) | 2021-02-19 |
CN112379373B true CN112379373B (en) | 2023-09-01 |
Family
ID=74580898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011053099.3A Active CN112379373B (en) | 2020-09-29 | 2020-09-29 | Space-borne SAR real-time imaging device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112379373B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2613152B (en) * | 2021-11-24 | 2024-10-23 | Iceye Oy | Satellite operations |
CN115421139B (en) * | 2022-07-21 | 2025-01-14 | 北京空间飞行器总体设计部 | On-orbit real-time processing device and method for AIS-guided SAR imaging |
CN115097456A (en) * | 2022-08-02 | 2022-09-23 | 北京卫星信息工程研究所 | SAR satellite remote sensing data on-orbit detection method and device and readable storage medium |
CN115685205B (en) * | 2022-12-29 | 2023-04-11 | 北京九天微星科技发展有限公司 | Low-delay target tracking method, device and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507665A (en) * | 2018-10-30 | 2019-03-22 | 北京空间飞行器总体设计部 | It is a kind of based on spaceborne AIS real time information guidance star on autonomous imaging method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011817B2 (en) * | 2006-05-18 | 2012-08-29 | 日本電気株式会社 | Synthetic aperture radar image processing apparatus and method |
-
2020
- 2020-09-29 CN CN202011053099.3A patent/CN112379373B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507665A (en) * | 2018-10-30 | 2019-03-22 | 北京空间飞行器总体设计部 | It is a kind of based on spaceborne AIS real time information guidance star on autonomous imaging method |
Non-Patent Citations (1)
Title |
---|
王鹏波 ; 周荫清 ; 陈杰 ; 李春升 ; .基于二维deramp处理的高分辨率聚束SAR成像算法.北京航空航天大学学报.2007,(第01期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN112379373A (en) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112379373B (en) | Space-borne SAR real-time imaging device | |
KR102296961B1 (en) | GPU based SAR Image Restoration Device and Image Radar System for Small Unmanned Mobile | |
Pu et al. | Motion errors and compensation for bistatic forward-looking SAR with cubic-order processing | |
Long et al. | High resolution radar real-time signal and information processing | |
CN109507665A (en) | It is a kind of based on spaceborne AIS real time information guidance star on autonomous imaging method | |
CN101630003A (en) | Automatic plotting system for navigation radar | |
Armanious et al. | An adversarial super-resolution remedy for radar design trade-offs | |
CN106054145B (en) | A kind of scouting discrimination method of satellite-borne synthetic aperture radar operating mode | |
Zhou et al. | A new fast factorized back projection algorithm for bistatic forward-looking SAR imaging based on orthogonal elliptical polar coordinate | |
KR102151362B1 (en) | Image decoding apparatus based on airborn using polar coordinates transformation and method of decoding image using the same | |
Li et al. | An autofocus scheme of bistatic SAR considering cross-cell residual range migration | |
CN106569206B (en) | A kind of object detection method compound based on Microwave Optics | |
Yu et al. | On-board fast and intelligent perception of ships with the “Jilin-1” spectrum 01/02 satellites | |
Zhou et al. | ISAR images generation via generative adversarial networks | |
CN112596037A (en) | Distributed SAR anti-interference efficiency evaluation method and system | |
KR102028323B1 (en) | Synthetic Aperture Radar Image Enhancement Apparatus and System | |
CN1301968A (en) | Land and sea compatible and three-dimensional imaging radar altimeter system and its design method | |
Marshalov et al. | A Complex for Carrying Out Radar Observations of Near-Earth Objects | |
US12169236B2 (en) | Doppler beam sharpening for imaging large objects at short range | |
KR20230086322A (en) | Signal processing apparatus for weather radar with noise filtering function using environmental information | |
JP7524502B1 (en) | Object detection device, object detection method, and program | |
Jiang et al. | Design and Experimental Verification of ISAR imaging System for Airborne Maritime Surveillance Radar | |
Jung et al. | 4DR P2T: 4D Radar Tensor Synthesis with Point Clouds | |
JP7694014B2 (en) | ISAR image data learning device, target classification device and radar device | |
KR20200061018A (en) | Synthetic aperture radar system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |