CN112375676A - 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法 - Google Patents

处理高含固厨余垃圾的水平流厌氧消化反应装置和方法 Download PDF

Info

Publication number
CN112375676A
CN112375676A CN202011300516.XA CN202011300516A CN112375676A CN 112375676 A CN112375676 A CN 112375676A CN 202011300516 A CN202011300516 A CN 202011300516A CN 112375676 A CN112375676 A CN 112375676A
Authority
CN
China
Prior art keywords
kitchen waste
stirring
anaerobic digestion
horizontal flow
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011300516.XA
Other languages
English (en)
Other versions
CN112375676B (zh
Inventor
赵庆良
周慧敏
姜珺秋
王琨
李莉莉
丁晶
魏亮亮
王维业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011300516.XA priority Critical patent/CN112375676B/zh
Publication of CN112375676A publication Critical patent/CN112375676A/zh
Application granted granted Critical
Publication of CN112375676B publication Critical patent/CN112375676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/06Stirrer or mobile mixing elements with horizontal or inclined stirrer shaft or axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/28Means for regulation, monitoring, measurement or control, e.g. flow regulation of redox potential
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

处理高含固厨余垃圾的水平流厌氧消化反应装置和方法,它涉及厨余垃圾厌氧消化的装置和方法。它是要解决现有的厨余垃圾厌氧消化装置和方法对高含固厨余垃圾存在的物料混合不均匀、产气效率低的技术问题。本发明的装置包括水平流装置主体、夹套循环水系统、在线检测系统和至少一套搅拌系统;其中每个搅拌系统的搅拌轴上安装两个三爪搅拌器和开启涡轮折叶式搅拌器。方法:一、底物预处理;二、装置启动;三、有机负荷替换;四、装置运行。高含固厨余垃圾处理的有机负荷在5~12kgVS·m‑3·d‑1较高负荷水平下稳定运行,可用于含固率≥25%的高含固城镇厨余垃圾厌处理领域。

Description

处理高含固厨余垃圾的水平流厌氧消化反应装置和方法
技术领域
本发明涉及高含固厨余垃圾厌氧消化的装置和方法,具体涉及一种适用于含固率≥25%的城镇厨余垃圾厌氧消化产生物燃气的装置和方法。
背景技术
随着人民生活水平的不断提高,餐饮业得到高速发展,随之而来导致厨余垃圾产量 的迅速增加,厨余垃圾处理已经成为现代社会生活面临的极大的环境挑战。厨余垃圾指居 民家庭、餐饮行业以及食堂等在食品加工和用餐过程中产生的废料,其占我国基本生活垃 圾的37%-62%。由于垃圾分类实施效果甚微,厨余垃圾中混合了大量生活垃圾,导致处理难度增加,再加上厨余垃圾庞大的产生量和复杂的组成,使得处理处置更加困难。因此,发展一种资源回收率高、环境友好、经济可行的厨余垃圾处理方式是目前亟需解决的问题。
长久以来厨余垃圾的处理方式集中在填埋、堆肥、焚烧、厌氧消化、厌氧发酵等。厌氧处理可在处理废物的同时产生生物燃气,处理后的剩余物还可作为肥料和土壤调节剂农用,实现厨余垃圾的高值转化。但据相关研究,厨余垃圾含固率可达25%以上,部分 厨余垃圾含固率甚至高于30%,远高于常规污水、污泥的厌氧处理,而高含固厌氧消化 (HighSolid Anaerobic Digestion,HSAD)由于物料含水率需求低、节能、成本低等优势 成为厨余垃圾处理的优化方案。HSAD通常定义为进料含固率≥15%的厌氧消化过程,含 固率的增加使得反应体系内部的物质转化过程、搅拌需求、传热情况不同于常见的厌氧消 化反应器,因此有必要设计处理高含固厨余垃圾的反应装置以实现厨余垃圾的高值转化。
HSAD按照物料流动方向的不同,分为垂直流和水平流。而水平流系统,物料由进料口进入,随搅拌过程以及后续物料的推动作用逐渐由进料口运动至出料口,期间完成水解、酸化、乙酸化、甲烷化过程,将物料中的有机物矿化产生生物燃气。现有的水平流系统用 于高含固厌氧消化时存在物料混合不均匀,使消化过程的产气效率较低。
发明内容
本发明要解决由厨余垃圾含固率高造成的高含固厌氧消化装置物质物料混合不均匀、 产气效率低的技术问题,而提供处理高含固厨余垃圾的水平流厌氧消化反应装置和方法。
本发明的处理高含固厨余垃圾的水平流厌氧消化反应装置,包括水平流装置主体1、 夹套循环水系统2、在线检测系统3和搅拌系统4;
其中,水平流装置主体包括筒体1-1、集气袋1-2;
水平流装置主体1的筒体1-1是圆柱形筒体,筒体1-1的轴线水平,筒体的外部设置有夹套1-1-1,在筒体的一端的顶部设置进料口1-1-2、集气孔1-1-3、探针孔1-1-4和水浴夹套出水口1-1-5,在筒体的另一端的底部设置出料口1-1-6和水浴夹套进水口1-1-7;
更进一步地,筒体1-1的下部还设有采样孔1-1-8,采用孔的数量为1~4个,采用孔的数量大于2个时,各采用孔等间距设置;用于取不同位置样品并进行检测分析,以探究 装置内部的物质转化进程;
夹套循环水系统2包括恒温水浴箱2-1、加热装置2-2、温度探头2-3、蠕动泵2-4、温控装置2-5,恒温水浴箱2-1经蠕动泵2-4与水浴夹套进水口1-1-7连接;水浴夹套出水 口1-1-5与温水浴箱2-1连接;加热装置2-2和温度探头2-3设置在恒温水浴箱2-1中,并 与温控装置2-5连接;
在线检测系统3包括控制柜3-1、气体流量计3-2和探针3-3,气体流量计3-2和探针3-3与控制柜3-1连接,用以在线检测反应器的反应状态,防止反应器失稳;
更进一步地,探针3-3为pH探针、氧化还原电位探针、反应基质密度探针或/和基质含水率传感器;其中pH探针用于在线检测反应器不同位置的pH变化,防止反应器酸化 失稳;氧化还原电位探针用于检测氧化还原电位,监测反应器内的厌氧情况;其中反应基 质密度探针用于监测不同位置反应基质的密度变化,反应装置内部物质的均质情况;其中 基质含水率探针可用来检测不同位置的含水率变化情况,可反应装置内物质均值情况和厌氧消化进行情况;
集气袋1-2经气体流量计3-2与集气孔1-1-3连接;
搅拌系统4由电机4-1、扭矩放大器4-2、搅拌轴4-3和两个三爪搅拌器4-4和开启涡轮折叶式搅拌器4-5组成;
搅拌轴4-3的轴线与筒体1-1的轴线在同一水平面上,且互相垂直;
搅拌轴4-3的一端通过扭矩放大器4-2与电机4-1相连接;搅拌轴4-3的一端经筒体1-1的侧壁伸入到筒体1-1中,在筒体1-1内的搅拌轴4-3上固定两个三爪搅拌器4-4和开 启涡轮折叶式搅拌器4-5;其中开启涡轮折叶式搅拌器4-5的对称中心位于搅拌轴4-3的 轴线与筒体1-1的轴线的交点上;两个三爪搅拌器4-4分别对称安装在开启涡轮折叶式搅 拌器4-5两侧;
其中三爪搅拌器4-4的三个爪与搅拌轴的轴线中心均呈60°连接;
开启涡轮折叶式搅拌器4-5设有6个叶片,每个叶片与搅拌轴的轴线呈45°夹角连接, 同时每个叶片本身为折叶式,与前端叶片呈45°夹角连接。该设计使顶端叶片与搅拌轴平 行,缓解叶片的轴流效果,增强推动作用;两个三爪搅拌器4-4和开启涡轮折叶式搅拌器4-5的组合式桨片的设计可实现物料均质和推流的双重效果,实现水平流系统均质和传送物料的双重功能。
利用上述的高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方 法,按以下步骤进行:
一、底物预处理:将厨余垃圾首先破碎至粒径5~10mm,之后混合均匀,将混合好的厨余垃圾放入高压蒸汽锅中在温度为100~120℃的条件下湿热预处理1.5~2h,得到厨余垃圾底物;湿热预处理可加快底物的水解速度,增强底物的水解程度,以实现厌氧系统的快速启动,缩短厌氧消化时间。
二、装置启动:向水平流装置主体的筒体1-1中接种占筒体1-1有效体积的37%~40% 的厌氧颗粒污泥;再按初始有机负荷加入以葡萄糖为碳源、以氯化铵为氮源、以磷酸二氢 钠为磷源,且C:N:P=(20~25):5:1的营养液,搅拌并混合进行培养,培养过程中产生的 气体经集气孔1-1-3收集到集气袋1-2中;培养期间系统的温度保持37±1℃、pH保持在6.5~8.5;培养期间每天向反应器中投加Wolf维生素和微量元素培养液;培养期间的初始有机负荷为1kgVS·m-3·d-1,按每3~5天提升0.3~0.5kgVS·m-3·d-1的幅度加入营养液,提 升至有机负荷为2.5kgVS·m-3·d-1后不再提升;反应器每天在加入营养液后搅拌一次,每 次搅拌15min,以实现物料的均质化;培养期为20~25天;
三、有机负荷替换:将有机负荷的来源逐步由营养液替换为厨余垃圾底物,每次替换 2.5kgVS·m-3·d-1的有机负荷的25%~30%,每次替换后装置需稳定3~5天,直到将有机负 荷源完全替换成厨余垃圾底物;此阶段不排放沼渣沼液;替换过程经历12~20天;
四、装置运行:将有机负荷逐步提升至5~12kgVS·m-3·d-1,当每日投入厨余垃圾底物 后开启搅拌,搅拌运行10~36min;每次负荷提升系统需要稳定3~5天,各项指标稳定后, 再继续提升负荷,厨余垃圾底物的提升幅度在0.5~0.8kgVS·m-3·d-1;未达到反应器有效体 积的80%前,反应器处于补料-分批运行状态(即不排放沼渣沼液),达到80%后开始连续 进出料,为半连续运行状态(即排放沼渣沼液,维持反应器内的物料占有效体积的80%), 完成高含固厨余垃圾的水平流厌氧消化处理。
更地一步地,步骤二中所述的Wolf维生素和微量元素培养液中的微量元素、维生素 组成如下表1所示。
表1 Wolf维生素和微量元素培养液中的微量元素、维生素组成
Figure BDA0002786732660000031
Figure BDA0002786732660000041
更进一步地,步骤二中所述的Wolf维生素和微量元素培养液的加入量按每升反应器 的体积加入0.05~0.1mL的Wolf维生素和微量元素培养液来计;
更进一步地,步骤四中有机负荷提升至7~8kgVS·m-3·d-1范围,同时每日进料后搅拌 开启时间为15~20min。
更进一步地,步骤四中有机负荷提升至9~10kgVS·m-3·d-1范围,日总投料量在对应负 荷下的情况下,投料次数增加为每天两次,每隔12h投料一次,搅拌时间分为两部分, 每次进料后搅拌运行10~12min;
更进一步地,步骤四中有机负荷提升至10~12kgVS·m-3·d-1范围,日总投料量在对应 负荷下的情况下,投料次数增加为每天三次,每隔8h投料一次,搅拌时间分为三部分,每次进料后运行10~12min。
更进一步地,步骤三和步骤四中所述的稳定是用以下任一项数据来判断系统是否处于 稳定厌氧消化阶段:
首先,每日产气中甲烷含量和总产气量:底物的分子组成会影响产气量和甲烷含量, 通常情况下产气中甲烷含量在50%以上,当同一负荷下日产气量偏差不超过±10%且产气 中甲烷含量在50%以上,则认为系统稳定。
其次,pH和总挥发酸与总碱度的比值:厌氧消化系统最常见的问题是酸化失稳,最直接的表示就是pH的显著下降,当系统的pH稳定在6.5~8.5之间,则认为系统稳定。当 pH偏酸时,可通过总挥发酸浓度与总碱度的比值确定系统是否有酸化趋势,此值越小说 明系统越稳定,此比值可较pH提前3~5天反应系统的酸化情况。当总挥发酸浓度与总碱 度的比值小于0.4时,则认为系统稳定。
最后,系统中的丙酸浓度:当折算为COD的丙酸浓度超过总挥发酸浓度50%时,系统有酸化趋势,该项指标可较pH指标提前5~10天预警。当折算为COD的丙酸浓度小于 等于总挥发酸浓度50%时,则认为系统稳定。
系统刚刚检测到酸化趋势时可采用氢氧化钠、碳酸氢钠、碳酸钠等碱性试剂或溶液进 行调节,调节程度根据酸化程度和采用的碱的类型酌情处理,使用碳酸氢钠时建议投加浓 度不超过7.9g·L-1,以避免带来过高的盐度影响厌氧消化过程的运行。
本发明的高含固厨余垃圾水平流厌氧消化装置,采用水平流反应器对高含固厨余垃圾 进行厌氧消化处理,改进传统的单圆片搅拌为三联开启涡轮折叶式搅拌桨,使得高含固高 粘度的厨余垃圾均质效果更好,更有助于物料的厌氧消化过程,此外本发明中提供的有机 负荷运行梯度和相应的改进措施有助于增加高易降解有机物含量厨余垃圾厌氧消化系统 的稳定性和有机物去除效率。
本发明在较高负荷下运行系统产气率和容积产气量高,系统性能更优,辅助以操作方 式和搅拌方式的改进系统各项指标都能稳定在一定水平且缓冲能力和抗负荷能力强。
本发明的装置和方法可用于含固率≥25%的高含固城镇厨余垃圾厌处理领域。
附图说明
图1是本发明的高含固厨余垃圾水平流厌氧消化装置示意图;
图2是本发明的高含固厨余垃圾水平流厌氧消化装置的水平流装置主体1的正视图;
图3是本发明的高含固厨余垃圾水平流厌氧消化装置的搅拌系统4的结构示意图,由 图2的A-A向剖视;
图4是本发明的搅拌系统4中开启涡轮折叶式搅拌器4-5的结构示意图;
图5是本发明的搅拌系统4中三爪搅拌器4-4的结构示意图;
图中:
1为水平流装置主体,1-1为筒体,1-1-1为夹套,1-1-2为进料口,1-1-3为集气孔,1-1-4为探针孔,1-1-5为水浴夹套出水口,1-1-6为出料口,1-1-7为水浴夹套进水口,1-1-8为采样孔;1-2为集气袋;
2为夹套循环水系统,2-1为恒温水浴箱,2-2为加热装置,2-3为温度探头,2-4为蠕动泵,2-5为温控装置;
3为在线检测系统,3-1为控制柜,3-2为气体流量计,3-3为探针;
4为搅拌系统,4-1为电机,4-2为扭矩放大器,4-3为搅拌轴,4-4为三爪搅拌器, 4-5为开启涡轮折叶式搅拌器。
具体实施方式
用以下的实施例验证本发明的有益效果:
实施例1:本实施例的处理高含固厨余垃圾的水平流厌氧消化反应装置,由水平流装 置主体1、夹套循环水系统2、在线检测系统3和4套搅拌系统4组成;
其中,水平流装置主体由筒体1-1和集气袋1-2组成;
水平流装置主体1的筒体1-1是圆柱形的有机玻璃圆柱,内径200mm,全长635mm,长径比为3.2:1,筒体1-1的轴线水平,筒体1-1的前端和后端分别用有机玻璃法兰盘封口,筒体的外部设置有夹套1-1-1,在筒体的一端的顶部设置进料口1-1-2、集气孔1-1-3、探 针孔1-1-4和水浴夹套出水口1-1-5,在筒体的另一端的底部设置出料口1-1-6和水浴夹套 进水口1-1-7;筒体1-1的下部还等间距设有4个采样孔1-1-8,用于取不同位置样品并 进行检测分析,以探究装置内部的物质转化进程。
夹套循环水系统2由恒温水浴箱2-1、加热装置2-2、温度探头2-3、蠕动泵2-4和温控装置2-5组成,其中恒温水浴箱2-1经蠕动泵2-4与水浴夹套进水口1-1-7连接;水浴 夹套出水口1-1-5与温水浴箱2-1连接;加热装置2-2和温度探头2-3设置在恒温水浴箱 2-1中,并与温控装置2-5连接;水浴夹套出水口1-1-5和水浴夹套进水口1-1-7的孔径5 mm,与物料流动方式呈交叉排列,即物料流动为从右向左,夹套内循环水为从左下到右 上,从而实现物料与加热水之间充分的热量交换;
在线检测系统3由控制柜3-1、气体流量计3-2和4个pH探针3-3组成,气体流量计3-2和pH探针3-3与控制柜3-1连接,4个pH探针3-3沿筒体1-1的长度方向均匀设置, 用于在线检测反应器不同位置的pH变化,防止反应器酸化失稳;
集气袋1-2经气体流量计3-2与集气孔1-1-3连接;
搅拌系统4由电机4-1、扭矩放大器4-2、搅拌轴4-3和两个三爪搅拌器4-4和开启涡轮折叶式搅拌器4-5组成;
搅拌轴4-3的轴线与筒体1-1的轴线在同一水平面上,且互相垂直;
搅拌轴4-3的一端通过扭矩放大器4-2与电机4-1相连接;搅拌轴4-3的一端经筒体1-1的侧壁伸入到筒体1-1中,在筒体1-1内的搅拌轴4-3上固定两个三爪搅拌器4-4和开 启涡轮折叶式搅拌器4-5;其中开启涡轮折叶式搅拌器4-5的对称中心位于搅拌轴4-3的 轴线与筒体1-1的轴线的交点上;两个三爪搅拌器4-4分别对称安装在开启涡轮折叶式搅 拌器4-5两侧;
其中三爪搅拌器4-4的三个爪与搅拌轴的轴线中心均呈60°连接;三爪搅拌器4-4的 爪为厚度为2mm、长为40mm、宽度为12mm的叶片;开启涡轮折叶式搅拌器4-5设有6个叶片,每个叶片与搅拌轴的轴线呈45°夹角连接,同时每个叶片本身为折叶式,与前 端叶片呈45°夹角连接;该设计使顶端叶片与搅拌轴平行,缓解叶片的轴流效果,增强推 动作用。开启涡轮折叶式搅拌器4-5的总长100mm,叶片的长40mm、叶片的宽度20mm, 厚度为2mm。两个三爪搅拌器4-4和开启涡轮折叶式搅拌器4-5的组合式桨片的设计可 实现物料均质和推流的双重效果,4套搅拌系统4均布在筒体1-1中,实现水平流系统均 质和传送物料的双重功能。
利用实施例1的处理高含固厨余垃圾的水平流厌氧消化反应装置进行高含固厨余垃 圾厌氧消化的方法,按以下步骤进行:
一、底物预处理:将厨余垃圾首先破碎至粒径5~10mm,之后混合均匀,将混合好的厨余垃圾放入高压蒸汽锅中在温度为120℃的条件下湿热预处理2h,得到厨余垃圾底物;湿热预处理可加快底物的水解速度,增强底物的水解程度,以实现厌氧系统的快速启动,缩短厌氧消化时间;
二、装置启动:向水平流装置主体的筒体1-1中接种占筒体1-1有效体积的37%的厌 氧颗粒污泥;再按初始有机负荷加入以葡萄糖为碳源、以氯化铵为氮源、以磷酸二氢钠为 磷源,且C:N:P=20:5:1的营养液,搅拌并混合进行培养,培养过程中产生的气体经集气孔1-1-3收集到集气袋1-2中;培养期间系统的温度保持37±1℃、pH保持在6.5~8.5;培 养期间每天向反应器中投加1mL Wolf维生素和微量元素培养液;培养期间的初始有机负 荷为1kgVS·m-3·d-1,按每5天提升0.3kgVS·m-3·d-1的幅度加入营养液,提升至有机负荷 为2.5kgVS·m-3·d-1后不再提升;反应器每天在加入营养液后搅拌一次,每次搅拌15min, 以实现物料的均质化;培养期为25天;其中Wolf维生素和微量元素培养液的组成如表2 所示。
表2 Wolf维生素和微量元素培养液的组成
Figure BDA0002786732660000071
Figure BDA0002786732660000081
三、有机负荷替换:将有机负荷的来源逐步由营养液替换为厨余垃圾底物,每次替换 2.5kgVS·m-3·d-1的有机负荷的30%,每次替换后装置需稳定5天,直到将有机负荷源完 全替换成厨余垃圾底物;此阶段不排放沼渣沼液;替换过程经历20天;
四、装置运行:将有机负荷从2.5kgVS·m-3·d-1逐步提升至5.4kgVS·m-3·d-1,当每日投 入厨余垃圾底物后开启搅拌,搅拌运行12min;每次厨余垃圾提升幅度在0.5kgVS·m-3·d-1, 每次负荷提升系统需要稳定5天,各项指标稳定后,再继续提升负荷;未达到反应器有效 体积的80%前,反应器处于补料-分批运行状态,即不排放沼渣沼液,达到80%后开始连 续进出料,为半连续运行状态,即排放沼渣沼液,维持反应器内的物料在有效体积的80%, 进入半连续状态后每日连续运行,完成高含固厨余垃圾的水平流厌氧消化处理。
本实施例在5.4kgVS·m-3·d-1负荷下,达到稳定的厌氧消化状态后的各项指标如表2 所示。
表2在5.4kgVS·m-3·d-1负荷下水平流厌氧消化装置的运行参数
Figure BDA0002786732660000082
从表2可以看出,高含固厨余垃圾水平流厌氧消化装置在达到5.4kgVS·m-3·d-1负荷 时的各项参数,pH稳定,挥发酸与碱度的比值小表明系统处于稳定的厌氧消化状态,SCOD和氨氮浓度较低,系统有机物处理能力高,甲烷含量稳定。产气相关指标可以看出 系统的产气量和产甲烷量较优,折算为产气率来看,日产气率、日产甲烷率都较常规反应 器高,容积产气率和容积产甲烷率更是较常规全混流反应器高,产气、产甲烷性能好。
实施例1在5.4kgVS·m-3·d-1的负荷基础上,进行负荷提升实验,提高运行负荷至8.1 kgVS·m-3·d-1。达到稳定的厌氧消化状态后的各项指标如表3所示。
表3在8.1kgVS·m-3·d-1负荷下水平流厌氧消化装置运行参数
Figure BDA0002786732660000091
从表3可以看出,高含固厨余垃圾水平流厌氧消化装置在达到8.1kgVS·m-3·d-1负荷 时的各项参数,pH和挥发酸与碱度的比值均表明系统处于稳定的厌氧消化状态,SCOD值低,氨氮浓度也远未达到抑制程度,系统有机物处理能力高,甲烷含量稳定。从产气量 和产气率等各项产气指标来看,提升负荷后系统的产气和产甲烷能力都有显著的提高,甲 烷含量也有提升,各项指标接近5.4kgVS·m-3·d-1负荷时的一倍,说明反应器的各项性能 显著提高。
实施例2:本实施例与实施例1不同的是在步骤四中进一步提升负荷时更换了投料和 搅拌策略来优化整个厌氧消化过程,实施例1步骤四的操作用下面的操作替换:
将有机负荷从2.5kgVS·m-3·d-1按0.5kgVS·m-3·d-1的提升幅度逐步提升至11.0kgVS·m-3·d-1,日总投料量在对应负荷下的情况下,投料次数增加为每天三次,每隔8h 投料一次,搅拌时间优化为三部分,每次进料后运行10min;每次负荷提升后系统需要 稳定5天,各项指标稳定后,再继续提升负荷;未达到反应器有效体积的80%前,反应 器处于补料-分批运行状态,即不排放沼渣沼液,达到80%后开始连续进出料,为半连续 运行状态,即排放沼渣沼液,维持反应器内的物料在有效体积的80%,进入半连续状态 后每日连续运行,完成高含固厨余垃圾的水平流厌氧消化处理。其它数及步骤均与实施例 1相同。
本实施例2进入超高负荷状态后,更换了系统的投料和搅拌策略,在此情况下水平流 高含固厨余垃圾厌氧消化装置的性能如表4所示:
表4在11.0kgVS·m-3·d-1负荷下水平流厌氧消化装置运行参数
Figure BDA0002786732660000092
Figure BDA0002786732660000101
从表4可以看出,高含固厨余垃圾水平流厌氧消化装置在达到11.0kgVS·m-3·d-1负荷 时的各项参数,pH和挥发酸与碱度的比值均表明系统处于稳定的厌氧消化状态,SCOD值偏高,说明在大量进料的条件下系统的水解能力提高,氨氮浓度小于900,本发明中使 用的颗粒污泥在其他实验中表现出良好的耐氨氮性能(氨氮浓度>1000mg·L-1时系统仍可正常产气),因此装置产气过程并未受氨氮浓度影响,装置有机物处理能力高,甲烷含量 稳定且较低负荷时提高3%~6%。产气量和产气率等各项产气指标来看,高负荷+优化的 进料和搅拌策略下,产气量和产甲烷量显著提高,日产甲烷率与8.1kgVS·m-3·d-1负荷下 相近,但容积产气率、容积产甲烷率较低负荷下明显提高,说明反应装置的产气性能有了 进一步的提高。

Claims (10)

1.处理高含固厨余垃圾的水平流厌氧消化反应装置,其特征在于该装置包括水平流装置主体(1)、夹套循环水系统(2)、在线检测系统(3)和至少1套搅拌系统(4);
其中,水平流装置主体(1)包括筒体(1-1)、集气袋(1-2);
水平流装置主体(1)的筒体(1-1)是圆柱形筒体,筒体(1-1)的轴线水平,筒体的外部设置有夹套(1-1-1),在筒体的一端的顶部设置进料口(1-1-2)、集气孔(1-1-3)、探针孔(1-1-4)和水浴夹套出水口(1-1-5),在筒体的另一端的底部设置出料口(1-1-6)和水浴夹套进水口(1-1-7);
夹套循环水系统(2)包括恒温水浴箱(2-1)、加热装置(2-2)、温度探头(2-3)、蠕动泵(2-4)、温控装置(2-5),恒温水浴箱(2-1)经蠕动泵(2-4)与水浴夹套进水口(1-1-7)连接;水浴夹套出水口(1-1-5)与温水浴箱(2-1)连接;加热装置(2-2)和温度探头(2-3)设置在恒温水浴箱(2-1)中,并与温控装置(2-5)连接;
在线检测系统(3)包括控制柜(3-1)、气体流量计(3-2)和探针(3-3),气体流量计(3-2)和探针(3-3)与控制柜(3-1)连接;
集气袋(1-2)经气体流量计(3-2)与集气孔(1-1-3)连接;
搅拌系统(4)由电机(4-1)、扭矩放大器(4-2)、搅拌轴(4-3)和两个三爪搅拌器(4-4)和开启涡轮折叶式搅拌器(4-5)组成;
搅拌轴(4-3)的轴线与筒体(1-1)的轴线在同一水平面上,且互相垂直;
搅拌轴(4-3)的一端通过扭矩放大器(4-2)与电机(4-1)相连接;搅拌轴(4-3)的一端经筒体(1-1)的侧壁伸入到筒体(1-1)中,在筒体(1-1)内的搅拌轴(4-3)上固定两个三爪搅拌器(4-4)和开启涡轮折叶式搅拌器(4-5);开启涡轮折叶式搅拌器(4-5)的对称中心位于搅拌轴(4-3)的轴线与筒体(1-1)的轴线的交点上;两个三爪搅拌器(4-4)分别对称安装在开启涡轮折叶式搅拌器(4-5)两侧;
三爪搅拌器(4-4)的三个爪与搅拌轴的轴线中心均呈60°连接;
开启涡轮折叶式搅拌器(4-5)设有6个叶片,每个叶片与搅拌轴的轴线呈45°夹角连接,同时每个叶片本身为折叶式,与前端叶片呈45°夹角连接。
2.根据权利要求1所述的处理高含固厨余垃圾的水平流厌氧消化反应装置,其特征在于筒体(1-1)的下部还设有采样孔(1-1-8)。
3.根据权利要求2所述的处理高含固厨余垃圾的水平流厌氧消化反应装置,其特征在于采样孔(1-1-8)的数量为1~4个,采用孔的数量大于2个时,各采用孔等间距设置。
4.根据权利要求1、2或3所述的处理高含固厨余垃圾的水平流厌氧消化反应装置,其特征在于探针(3-3)为pH探针、氧化还原电位探针、反应基质密度探针或/和基质含水率传感器。
5.根据权利要求1、2或3所述的处理高含固厨余垃圾的水平流厌氧消化反应装置,其特征在于搅拌系统(4)的套数为2~5套。
6.利用权利要求1所述的高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方法,其特征在于该方法按以下步骤进行:
一、底物预处理:将厨余垃圾首先破碎至粒径5~10mm,之后混合均匀,将混合好的厨余垃圾放入高压蒸汽锅中在温度为100~120℃的条件下湿热预处理1.5~2h,得到厨余垃圾底物;
二、装置启动:向水平流装置主体的筒体(1-1)中接种占筒体(1-1)有效体积37%~40%的厌氧颗粒污泥;再按初始有机负荷加入以葡萄糖为碳源、以氯化铵为氮源、以磷酸二氢钠为磷源,且C:N:P=(20~25):5:1的营养液,搅拌并混合进行培养,培养过程中产生的气体经集气孔(1-1-3)收集到集气袋(1-2)中;培养期间系统的温度保持37±1℃、pH保持在6.5~8.5;培养期间每天向反应器中投加Wolf维生素和微量元素培养液;培养期间的初始有机负荷为1kgVS·m-3·d-1,按每3~5天提升0.3~0.5kgVS·m-3·d-1的幅度加入营养液,提升至有机负荷为2.5kgVS·m-3·d-1后不再提升;反应器每天在加入营养液后搅拌一次,每次搅拌15min;培养期为20~25天,完成启动;
三、有机负荷替换:将有机负荷的来源逐步由营养液替换为厨余垃圾底物,每次替换2.5kgVS·m-3·d-1的有机负荷的25%~30%,每次替换后装置需稳定3~5天,直到将有机负荷源完全替换成厨余垃圾底物;此阶段不排放沼渣沼液;
四、装置运行:将有机负荷逐步提升至5~12kgVS·m-3·d-1,当每日投入厨余垃圾底物后开启搅拌,搅拌运行10~36min;每次负荷提升系统需要稳定3~5天,各项指标稳定后,再继续提升负荷,厨余垃圾底物的提升幅度在0.5~0.8kgVS·m-3·d-1;未达到反应器有效体积的80%前,反应器处于补料-分批运行状态,即不排放沼渣沼液,达到80%后开始连续进出料,为半连续运行状态,即排放沼渣沼液,维持反应器内的物料在有效体积的80%,完成高含固厨余垃圾的水平流厌氧消化处理。
7.根据权利要求6所述的利用高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方法,其特征在于步骤四中有机负荷提升至7~8kgVS·m-3·d-1范围,同时每日进料后搅拌开启时间为15~20min。
8.根据权利要求6或7所述的利用高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方法,其特征在于步骤四中有机负荷提升至10~12kgVS·m-3·d-1范围,日总投料量在对应负荷下的情况下,投料次数增加为每天三次,每隔8h投料一次,搅拌时间分为三部分,每次进料后运行10~12min。
9.根据权利要求6或7所述的利用高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方法,其特征在于步骤四中有机负荷提升至9~10kgVS·m-3·d-1范围,日总投料量在对应负荷下的情况下,投料次数增加为每天两次,每隔12h投料一次,搅拌时间分为两部分,每次进料后搅拌运行10~12min。
10.根据权利要求6或7所述的利用高含固厨余垃圾水平流厌氧消化装置进行高含固厨余垃圾厌氧消化的方法,其特征在于步骤三和步骤四中所述的稳定是指当同一负荷下日产气量偏差不超过±10%且产气中甲烷含量在50%以上,则认为系统稳定;或者当系统的pH稳定在6.5~8.5之间,则认为系统稳定;或者当总挥发酸浓度与总碱度的比值小于0.4时,则认为系统稳定;或者当折算为COD的丙酸浓度小于等于总挥发酸浓度50%时,则认为系统稳定。
CN202011300516.XA 2020-11-19 2020-11-19 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法 Active CN112375676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011300516.XA CN112375676B (zh) 2020-11-19 2020-11-19 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011300516.XA CN112375676B (zh) 2020-11-19 2020-11-19 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法

Publications (2)

Publication Number Publication Date
CN112375676A true CN112375676A (zh) 2021-02-19
CN112375676B CN112375676B (zh) 2022-04-12

Family

ID=74585855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011300516.XA Active CN112375676B (zh) 2020-11-19 2020-11-19 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法

Country Status (1)

Country Link
CN (1) CN112375676B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114991747A (zh) * 2022-05-26 2022-09-02 长江大学 一种基于环形阵列探针测量的页岩油产量解释方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103124A (en) * 1996-09-26 2000-08-15 Sanyo Electric Co., Ltd. Organic waste processor and organic waste processing method
JP2000343100A (ja) * 1999-03-30 2000-12-12 Osaka Gas Co Ltd 高温メタン発酵
JP2005095770A (ja) * 2003-09-25 2005-04-14 National Institute Of Advanced Industrial & Technology 有機性廃棄物の処理方法
CN202179950U (zh) * 2011-07-15 2012-04-04 虞浩明 一种曲边斜叶桨式搅拌器
CN102703514A (zh) * 2012-05-24 2012-10-03 无锡丰陆环保科技有限公司 一种餐厨垃圾处理方法及厌氧发酵反应装置
CN102864073A (zh) * 2012-09-21 2013-01-09 中国环境科学研究院 一种厨余垃圾干湿联产氢气与甲烷的装置与使用方法
CN103387936A (zh) * 2013-07-31 2013-11-13 河海大学 一种提高餐厨垃圾厌氧消化产沼气量装置及其产沼气方法
CN103451236A (zh) * 2013-09-04 2013-12-18 中国环境科学研究院 一种餐前与餐厨垃圾耦合厌氧发酵联产氢气与甲烷的方法
CN103877891A (zh) * 2013-05-30 2014-06-25 青岛科技大学 一种错位六弯叶组合桨高效搅拌装置
CN105154475A (zh) * 2015-10-20 2015-12-16 北京国能中电能源有限责任公司 一种餐厨垃圾厌氧发酵产沼气的快速启动方法及装置
CN106192974A (zh) * 2016-08-29 2016-12-07 天津恒吉生科技有限公司 一种淤泥固化处理的设备及方法
CN109337809A (zh) * 2018-11-16 2019-02-15 曲阜师范大学 一种基于厌氧消化失衡微生物抗性强化的预警调控方法
CN111138055A (zh) * 2020-01-10 2020-05-12 重庆市环卫集团有限公司 一种用于餐厨垃圾处理的高温厌氧颗粒污泥的培育方法
CN111438159A (zh) * 2020-03-11 2020-07-24 上海交通大学 一种餐厨垃圾处理系统和处理方法
CN111808727A (zh) * 2020-07-31 2020-10-23 苏州恺利尔环保科技有限公司 厨余垃圾物料的卧式推流厌氧反应器和处理方法
CN111992084A (zh) * 2020-08-13 2020-11-27 南京工业大学 一种三斜叶-涡轮组合桨

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103124A (en) * 1996-09-26 2000-08-15 Sanyo Electric Co., Ltd. Organic waste processor and organic waste processing method
JP2000343100A (ja) * 1999-03-30 2000-12-12 Osaka Gas Co Ltd 高温メタン発酵
JP2005095770A (ja) * 2003-09-25 2005-04-14 National Institute Of Advanced Industrial & Technology 有機性廃棄物の処理方法
CN202179950U (zh) * 2011-07-15 2012-04-04 虞浩明 一种曲边斜叶桨式搅拌器
CN102703514A (zh) * 2012-05-24 2012-10-03 无锡丰陆环保科技有限公司 一种餐厨垃圾处理方法及厌氧发酵反应装置
CN102864073A (zh) * 2012-09-21 2013-01-09 中国环境科学研究院 一种厨余垃圾干湿联产氢气与甲烷的装置与使用方法
CN103877891A (zh) * 2013-05-30 2014-06-25 青岛科技大学 一种错位六弯叶组合桨高效搅拌装置
CN103387936A (zh) * 2013-07-31 2013-11-13 河海大学 一种提高餐厨垃圾厌氧消化产沼气量装置及其产沼气方法
CN103451236A (zh) * 2013-09-04 2013-12-18 中国环境科学研究院 一种餐前与餐厨垃圾耦合厌氧发酵联产氢气与甲烷的方法
CN105154475A (zh) * 2015-10-20 2015-12-16 北京国能中电能源有限责任公司 一种餐厨垃圾厌氧发酵产沼气的快速启动方法及装置
CN106192974A (zh) * 2016-08-29 2016-12-07 天津恒吉生科技有限公司 一种淤泥固化处理的设备及方法
CN109337809A (zh) * 2018-11-16 2019-02-15 曲阜师范大学 一种基于厌氧消化失衡微生物抗性强化的预警调控方法
CN111138055A (zh) * 2020-01-10 2020-05-12 重庆市环卫集团有限公司 一种用于餐厨垃圾处理的高温厌氧颗粒污泥的培育方法
CN111438159A (zh) * 2020-03-11 2020-07-24 上海交通大学 一种餐厨垃圾处理系统和处理方法
CN111808727A (zh) * 2020-07-31 2020-10-23 苏州恺利尔环保科技有限公司 厨余垃圾物料的卧式推流厌氧反应器和处理方法
CN111992084A (zh) * 2020-08-13 2020-11-27 南京工业大学 一种三斜叶-涡轮组合桨

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MINGXING ZHAO ET AL.: "High-solids fermentation of food wastes for biogas recovery by using horizontal anaerobic reactor", 《JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY》 *
党林贵等: "不同组合桨搅拌器搅拌特性的数值研究", 《郑州大学学报(工学版)》 *
刘敏珊等: "45°涡轮桨搅拌槽内搅拌特性数值模拟研究", 《郑州大学学报(工学版)》 *
周慧敏: "水平流厌氧消化系统处理高含固厨余垃圾的效能与机制", 《《中国优秀博硕士学位论文全文数据库(硕士) 工程科技辑》》 *
周慧敏等: "有机负荷和进料频率对高含固厨余垃圾厌氧消化系统性能的影响", 《环境科学学报》 *
陈国理主编: "《压力容器及化工设备》", 30 June 1990, 华南理工大学出版社 *
陈志平主编: "《过程设备设计与选型基础》", 30 September 2007, 浙江大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114991747A (zh) * 2022-05-26 2022-09-02 长江大学 一种基于环形阵列探针测量的页岩油产量解释方法

Also Published As

Publication number Publication date
CN112375676B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN102321675B (zh) 一种有机废弃物生产生物燃气的方法及设备
Tian et al. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion
CN104628233A (zh) 一种用于有机物料深度脱水装置及其深度脱水方法
CN102989745B (zh) 处理生活垃圾的淋滤机械生物反应器
CN105154475A (zh) 一种餐厨垃圾厌氧发酵产沼气的快速启动方法及装置
KR20190121101A (ko) 혐기성 소화공정의 실시간 모니터링 시스템
CN103204611A (zh) 基于微波污泥预处理的源头污泥减量化的方法与装置
CN112375676B (zh) 处理高含固厨余垃圾的水平流厌氧消化反应装置和方法
CN105624033A (zh) 一种有机垃圾干式厌氧发酵装置
CN210764915U (zh) 用于剩余污泥胞外聚合物剥离和资源化的装置
CN111534416A (zh) 一种有机物的发酵设备及发酵方法
CN205088239U (zh) 一种餐厨垃圾厌氧发酵产沼气的快速启动装置
CN110877953A (zh) 污泥资源化利用的反应系统
CN104973737B (zh) 一种处理高悬浮固体浓度有机废水的方法
AT408098B (de) Verfahren und vorrichtung zum biologischen anaeroben abbau von organischen abfällen unter bildung von biogas
CN103865791B (zh) 一种链霉素菌渣的处理装置及其方法
CN109650690A (zh) 餐厨废弃物高效厌氧产酸产气的处理方法
CN106282245A (zh) 新型有机垃圾资源化回用方法及系统
CN215667952U (zh) 一种干式厌氧发酵装置
KR20100112431A (ko) 무동력 일체형 2상 혐기소화조
CN104944594A (zh) 一种微生物絮凝剂的制备及在处理马铃薯淀粉废水中的应用
CN206127088U (zh) 一种用于城镇污泥高固态厌氧发酵处理装置
CN211946744U (zh) 污泥资源化利用的反应系统
CN214937382U (zh) 利用厨余垃圾生产碳源的装置
KR101769988B1 (ko) 고상 및 액상 유기성 폐기물의 통합혐기소화조

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant