CN112365921B - 一种基于长短时记忆网络的蛋白质二级结构预测方法 - Google Patents
一种基于长短时记忆网络的蛋白质二级结构预测方法 Download PDFInfo
- Publication number
- CN112365921B CN112365921B CN202011285274.1A CN202011285274A CN112365921B CN 112365921 B CN112365921 B CN 112365921B CN 202011285274 A CN202011285274 A CN 202011285274A CN 112365921 B CN112365921 B CN 112365921B
- Authority
- CN
- China
- Prior art keywords
- secondary structure
- protein
- residue
- label
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 82
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000015654 memory Effects 0.000 title claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims abstract description 49
- 238000012549 training Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 24
- 230000007704 transition Effects 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 13
- 150000001413 amino acids Chemical class 0.000 claims description 5
- 238000007476 Maximum Likelihood Methods 0.000 claims description 4
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 229940096437 Protein S Drugs 0.000 claims 1
- 102000029301 Protein S Human genes 0.000 claims 1
- 108010066124 Protein S Proteins 0.000 claims 1
- 238000002887 multiple sequence alignment Methods 0.000 claims 1
- 230000007787 long-term memory Effects 0.000 abstract description 7
- 238000004364 calculation method Methods 0.000 abstract description 5
- 230000006403 short-term memory Effects 0.000 abstract description 5
- 235000018102 proteins Nutrition 0.000 description 63
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 101710177166 Phosphoprotein Proteins 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000002864 sequence alignment Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 102000038037 druggable proteins Human genes 0.000 description 1
- 108091007999 druggable proteins Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B15/00—ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
- G16B15/20—Protein or domain folding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- Medical Informatics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011285274.1A CN112365921B (zh) | 2020-11-17 | 2020-11-17 | 一种基于长短时记忆网络的蛋白质二级结构预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011285274.1A CN112365921B (zh) | 2020-11-17 | 2020-11-17 | 一种基于长短时记忆网络的蛋白质二级结构预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112365921A CN112365921A (zh) | 2021-02-12 |
CN112365921B true CN112365921B (zh) | 2022-07-15 |
Family
ID=74515099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011285274.1A Active CN112365921B (zh) | 2020-11-17 | 2020-11-17 | 一种基于长短时记忆网络的蛋白质二级结构预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112365921B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113851192B (zh) * | 2021-09-15 | 2023-06-30 | 安庆师范大学 | 氨基酸一维属性预测模型训练方法、装置及属性预测方法 |
CN113724780B (zh) * | 2021-09-16 | 2023-10-13 | 上海交通大学 | 基于深度学习的蛋白质卷曲螺旋结构特征预测实现方法 |
CN114743591A (zh) * | 2022-03-14 | 2022-07-12 | 中国科学院深圳理工大学(筹) | 一种mhc可结合肽链的识别方法、装置及终端设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106951736A (zh) * | 2017-03-14 | 2017-07-14 | 齐鲁工业大学 | 一种基于多重进化矩阵的蛋白质二级结构预测方法 |
CN111785321A (zh) * | 2020-06-12 | 2020-10-16 | 浙江工业大学 | 一种基于深度卷积神经网络的dna绑定残基预测方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170098030A1 (en) * | 2014-05-11 | 2017-04-06 | Ofek - Eshkolot Research And Development Ltd | System and method for generating detection of hidden relatedness between proteins via a protein connectivity network |
CN110163243B (zh) * | 2019-04-04 | 2021-04-06 | 浙江工业大学 | 基于接触图与模糊c均值聚类的蛋白质结构域划分方法 |
CN111063389B (zh) * | 2019-12-04 | 2021-10-29 | 浙江工业大学 | 一种基于深度卷积神经网络的配体绑定残基预测方法 |
-
2020
- 2020-11-17 CN CN202011285274.1A patent/CN112365921B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106951736A (zh) * | 2017-03-14 | 2017-07-14 | 齐鲁工业大学 | 一种基于多重进化矩阵的蛋白质二级结构预测方法 |
CN111785321A (zh) * | 2020-06-12 | 2020-10-16 | 浙江工业大学 | 一种基于深度卷积神经网络的dna绑定残基预测方法 |
Non-Patent Citations (3)
Title |
---|
"Prediction of Protein–Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets";Xie, Z;《International Journal of Molecular Sciences》;20200111;全文 * |
"基于卷积神经网络的蛋白质折叠类型最小特征提取";潘越;《南京大学学报(自然科学)》;20200930;全文 * |
基于CNN与LSTM模型的蛋白质二级结构预测;王剑等;《生物信息学》;20180424(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112365921A (zh) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112365921B (zh) | 一种基于长短时记忆网络的蛋白质二级结构预测方法 | |
Senior et al. | Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) | |
US11573239B2 (en) | Methods and systems for de novo peptide sequencing using deep learning | |
JP2022501696A (ja) | 品質スコアの勾配を使用した反復的なタンパク質構造予測 | |
CN109785901B (zh) | 一种蛋白质功能预测方法及装置 | |
Wang et al. | DeepAc4C: a convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA | |
CN112085247A (zh) | 一种基于深度学习的蛋白质残基接触预测方法 | |
Eguchi et al. | Multi-scale structural analysis of proteins by deep semantic segmentation | |
CN113361752B (zh) | 一种基于多视角学习的蛋白质溶剂可及性预测方法 | |
CN112085245B (zh) | 一种基于深度残差神经网络的蛋白质残基接触预测方法 | |
CN109977286A (zh) | 基于内容的信息检索方法 | |
CN109346125A (zh) | 一种快速精确的蛋白质绑定口袋结构对齐方法 | |
Zhang et al. | Two-stage distance feature-based optimization algorithm for de novo protein structure prediction | |
Antonelli et al. | SUPERSMART: ecology and evolution in the era of big data | |
Nguyen et al. | Deep networks and continuous distributed representation of protein sequences for protein quality assessment | |
CN112216345B (zh) | 一种基于迭代搜索策略的蛋白质溶剂可及性预测方法 | |
Wang et al. | Identification of Type VI effector proteins using a novel ensemble classifier | |
Zrimec et al. | Gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure | |
Liu et al. | An overview of biological data generation using generative adversarial networks | |
CN114927165B (zh) | 泛素化位点的识别方法、装置、系统和存储介质 | |
Liu et al. | Protein contact map prediction using multiple sequence alignment dropout and consistency learning for sequences with fewer homologs | |
Chen et al. | MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training | |
Zhu et al. | TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for High-Accuracy Gene Function Annotations | |
Guo et al. | Prediction of Circular RNA-RBP Binding Sites Based on Multi-source Features and Cascade Forest | |
Subhashini et al. | PREDICTING SUBCELLULAR LOCALIZATION OF PROTEINS WITH MULTIPLE SITES USING THRESHOLD ML-KNN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231218 Address after: 518054, D1101, Building 4, Software Industry Base, No. 19, 17, and 18 Haitian 1st Road, Binhai Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province Patentee after: Shenzhen Xinrui Gene Technology Co.,Ltd. Address before: 510075 No. n2248, floor 3, Xingguang Yingjing, No. 117, Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province Patentee before: GUANGZHOU ZHAOJI BIOTECHNOLOGY CO.,LTD. Effective date of registration: 20231218 Address after: 510075 No. n2248, floor 3, Xingguang Yingjing, No. 117, Shuiyin Road, Yuexiu District, Guangzhou City, Guangdong Province Patentee after: GUANGZHOU ZHAOJI BIOTECHNOLOGY CO.,LTD. Address before: The city Zhaohui six districts Chao Wang Road Hangzhou City, Zhejiang province 310014 18 Patentee before: JIANG University OF TECHNOLOGY |