CN112359024B - Pseudomonas syringae bacteriophage and composition, kit and application thereof - Google Patents

Pseudomonas syringae bacteriophage and composition, kit and application thereof Download PDF

Info

Publication number
CN112359024B
CN112359024B CN202011276087.7A CN202011276087A CN112359024B CN 112359024 B CN112359024 B CN 112359024B CN 202011276087 A CN202011276087 A CN 202011276087A CN 112359024 B CN112359024 B CN 112359024B
Authority
CN
China
Prior art keywords
pseudomonas syringae
psa
phage
kit
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011276087.7A
Other languages
Chinese (zh)
Other versions
CN112359024A (en
Inventor
许文建
徐天舜
丛郁
徐旭凌
乔欢
何四龙
肖逍
丁良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phagelux Nanjing Biotechnology Co ltd
Original Assignee
Phagelux Nanjing Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phagelux Nanjing Biotechnology Co ltd filed Critical Phagelux Nanjing Biotechnology Co ltd
Priority to CN202011276087.7A priority Critical patent/CN112359024B/en
Priority to KR1020217033436A priority patent/KR20210142680A/en
Priority to PCT/CN2020/134391 priority patent/WO2022099837A1/en
Publication of CN112359024A publication Critical patent/CN112359024A/en
Application granted granted Critical
Publication of CN112359024B publication Critical patent/CN112359024B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/00031Uses of virus other than therapeutic or vaccine, e.g. disinfectant

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The invention relates to the field of microorganisms, and particularly discloses a pseudomonas syringae bacteriophage, a composition, a kit and an application thereof, wherein the pseudomonas syringae bacteriophage is pseudomonas syringae kiwi pathopoiesia variant bacteriophage PSA-P1 with the preservation number of M2020252; the bacteriophage has higher tolerance to ultraviolet rays and pH, and can play a better role in preventing and treating in different preventing and treating environments; the composition at least comprises one bacteriophage PSA-P1; the kit contains a composition of phage PSA-P1 or phage PSA-P1; phage PSA-P1 composition for use in, but not limited to, killing Pseudomonas syringae at 101 PFU/mL~108 Within the titer range of PFU/mL, the bacteriostasis rate of pseudomonas syringae and kiwi fruit pathogenic variant phage PSA-P1 on pseudomonas syringae reaches 54.1-94.9%.

Description

Pseudomonas syringae bacteriophage and composition, kit and application thereof
Technical Field
The invention relates to the field of bacteriophage, in particular to pseudomonas syringae bacteriophage and a composition, a kit and application thereof.
Background
Pseudomonas syringae belongs to the genus Pseudomonas of the family Pseudomonas, and has 57 pathotypes, of which Pseudomonas syringae is a causative variant of Actinidia actinidia (Psa; Pseudomonas syringae pv. actindiae). Psa has a variety of genetic genes with strong adaptability, so that the kiwi fruit tree is easy to invade and cause infection all year round.
At present, in the related technologies, on one hand, chemical prevention and control are mainly adopted, and methods such as field spraying, pus discharge wound smearing, dry injection and the like are adopted for applying the medicine, but the effect is not ideal from the existing prevention and control situation. On the other hand, with the recent national call for resistance reduction and no resistance on crops, domestic and foreign scholars actively research emerging antibacterial biological agents, and as the pseudomonas syringae bacteriophage has the specific and efficient cracking capability on target bacteria (pseudomonas syringae kiwi pathogenic variety), the quantity of pathogenic bacteria in the environment can be obviously reduced, and the occurrence and prevalence of diseases can be controlled or reduced. Therefore, the pseudomonas syringae bacteriophage can be used as an antibacterial infection preparation.
In view of the above-mentioned related art, the inventors believe that the tolerance of the phage differs in different control environments, thereby affecting the titer of the phage.
Disclosure of Invention
In order to solve the technical problem of the tolerance of the phage in different control environments, the application provides the pseudomonas syringae phage, and the composition, the kit and the application thereof.
The invention provides a pseudomonas syringae bacteriophage, and a composition, a kit and an application thereof, and adopts the following technical scheme:
in a first aspect, the invention provides a pseudomonas syringae bacteriophage, which adopts the following technical scheme:
the Pseudomonas syringae phage is Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1), and the preservation number is CCTCC NO: m2020252.
By adopting the technical scheme, the pseudomonas syringae kiwi fruit pathopoiesia variety phage PSA-P1 has excellent ultraviolet resistance and pH resistance, is stored in China Center for Type Culture Collection (CCTCC) with the preservation number of M2020252.
Preferably, the Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. actinodiae phage PSA-P1) is a virulent phage and comprises a head part and a telescopic tail part which are polyhedral and three-dimensionally symmetrical, wherein the diameter of the head part is 50-55 nm, the length of the tail part is 15-20 nm, and the diameter of the tail part is 6-10 nm, and the phage belongs to the family Autograpiviridae.
By adopting the technical scheme, the appearance of the phage is observed in an electron microscope, so that the phage has a polyhedral three-dimensional symmetrical head and a telescopic tail, the injection of nucleic acid of the head into host bacteria is facilitated, and a special receptor on the surface of the host bacteria can be effectively identified.
Preferably, the Pseudomonas syringae kiwi pathopoiesia variety phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) has a nucleotide sequence shown in SEQ ID No. 1.
Preferably, the Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. actinodiae phase PSA-P1) is cultured for 24h under the condition that the MOI (multiplicity of infection) is 0.000001, and the titer reaches 7 multiplied by 1010PFU/mL or more.
By adopting the technical scheme, the multiplicity of infection (MOI) is the ratio of the number of the phage to the number of bacteria, and is an important basis for researching the dose-effect relationship between phage-infected bacteria and produced phage progeny. The pseudomonas syringae bacteriophage only needs to be added in a small amount, and can infect pseudomonas syringae to proliferate and obtain a large amount of progeny bacteriophage. The invention provides a high-quality phage strain source for the industrial production of phage bactericides.
Preferably, the Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. actinodiae phase PSA-P1) has tolerance under the condition of pH 3-12, and the titer is reduced by no more than 4 orders of magnitude within 96 h.
By adopting the technical scheme, the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 has excellent tolerance under the condition of pH3 or pH12, namely under the acidic or alkaline condition, and can play an effective prevention and treatment role when the prevention and treatment environment is between pH 3-12.
Preferably, the titer of the Pseudomonas syringae kiwi pathopoiesia variety phage PSA-P1(Pseudomonas syringae pv. actinodiae phase PSA-P1) is reduced by no more than 1 order of magnitude after the Pseudomonas syringae kiwi pathopoiesia variety phage is subjected to ultraviolet radiation for 8 hours.
By adopting the technical scheme, when the ultraviolet rays in the control environment are stronger, the pseudomonas syringae kiwifruit pathopoiesia variety phage PSA-P1 has good tolerance and less titer reduction, and can play an effective control role on pathogenic bacteria.
In a second aspect, the invention provides a pseudomonas syringae bacteriophage composition, which adopts the following technical scheme:
a Pseudomonas syringae bacteriophage composition, the composition at least comprises a Pseudomonas syringae kiwi pathopoiesia phage PSA-P1(Pseudomonas syringae pv. Actinidiae phage PSA-P1).
Preferably, the composition includes a chemical germicide.
As one embodiment of the invention, the pseudomonas syringae kiwifruit pathovar phage PSA-P1 and a chemical bactericide are used in combination as a composition. By way of illustration, the proportional relationship between pseudomonas syringae and actinidia pathovar phage PSA-P1 and the 700-fold liquid of amobam can be determined by one skilled in the art in conjunction with the present application and the actual field of application and general knowledge in the art.
In a third aspect, the invention provides a pseudomonas syringae phage kit, which adopts the following technical scheme:
a Pseudomonas syringae phage kit, which contains the Pseudomonas syringae kiwi pathopoiesia phage PSA-P1(Pseudomonas syringae pv. Actinidiae phage PSA-P1) or Pseudomonas syringae kiwi pathopoiesia phage PSA-P1(Pseudomonas syringae pv. Actinidiae phagePSA-P1) composition.
Through the technical scheme, the pseudomonas syringae phage is applied to the rapid detection of pseudomonas syringae, and the detection comprises but is not limited to detection of pseudomonas syringae in the forms of test paper, test paper boxes and the like, or screening of target pathogenic bacteria in clinical samples, so that the detection sensitivity is effectively ensured.
In a fourth aspect, the invention provides an application of pseudomonas syringae bacteriophage, which adopts the following technical scheme:
the application of Pseudomonas syringae phage is that the Pseudomonas syringae kiwi pathopoiesia phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) is 101PFU/mL~108The bacteriostasis rate to pseudomonas syringae reaches 54.1-94.9 percent in the titer range of PFU/mL.
In a fifth aspect, the invention provides an application of a pseudomonas syringae phage composition, which adopts the following technical scheme:
the application of the pseudomonas syringae and kiwi pathopoiesia variant phage PSA-P1 composition is used as an effective component of a biological disinfectant or a biological pesticide to prevent and control but not limit bacterial diseases caused by pseudomonas syringae.
By adopting the technical scheme, the pseudomonas syringae kiwifruit pathovar phage PSA-P1 and the composition thereof can be used for treating and preventing bacterial infection caused by pseudomonas syringae and not limited by pseudomonas syringae, and can be used as a biological agent for preventing and treating diseases caused by pseudomonas syringae and not limited by pseudomonas syringae.
In conclusion, the invention has the following beneficial effects:
1. the pseudomonas syringae kiwifruit pathogenic variety phage PSA-P1 is a virulent phage separated from nature, has higher tolerance to ultraviolet rays and pH, is suitable for different control environments, and can play a better biological control effect on kiwifruit canker;
2. the pseudomonas syringae kiwi fruit pathopoiesia variety phage PSA-P1 is a virulent phage separated from the nature, a test phage does not contain a virulence gene or a bad gene, the DNA of the phage cannot encode protein which can cause potential health risks, and the possibility of carrying a lysogenic gene does not exist;
3. the pseudomonas syringae kiwifruit pathogenic variant phage PSA-P1 has high affinity and cracking capacity, and reaches 10 in 24h of culture10A titer of PFU/mL or greater; pseudomonas syringae and kiwi fruit pathogenic variant phage PSA-P1 can specifically and partially or completely inactivate Pseudomonas syringae, and can complete massive proliferation by only a small amount of initial phage, thereby providing a high-quality phage strain source for industrial production of phage bactericides; the pseudomonas syringae kiwifruit pathovar phage PSA-P1 or the composition thereof can be prepared into various products for detection, disinfection, plant protection and the like and applied industrially by the technicians in the field according to the description of the application and the common general knowledge in the field;
4. the pseudomonas syringae kiwifruit pathogenic variant phage PSA-P1 is a strict virulent phage, has high specificity and schizolysis to host bacteria, and has a wider host range, and the schizolysis rate to 45 pseudomonas syringae reaches 91.1%; pseudomonas syringae and kiwi pathopoiesia variegate phage PSA-P1 can be used as an effective component of various products for environmental disinfection, for example, the pseudomonas syringae and kiwi pathopoiesia variegate phage PSA-P1 can be used for disinfecting and decontaminating water distribution systems, irrigation facilities, aquaculture facilities, public and private facilities or other environmental surfaces in the forms of liquid soaking, spraying, combined use with an aqueous carrier and the like, and can effectively control the growth and activity of target bacteria; the liquid soaking, spraying forms include but are not limited to detergents, disinfectants, detergents, etc.; the aqueous carrier includes but is not limited to phosphate buffer solution, TSB medium, LB medium, chlorine free water and so on;
5. the pseudomonas syringae kiwifruit pathogenic variant phage PSA-P1 interacts with non-host pathogenic bacteria, any one of 10 tested non-host pathogenic bacteria cannot be identified, and the specificity is good;
6. the pseudomonas syringae kiwifruit pathogenic variety phage PSA-P1 is good in stability, has tolerance under the condition that the pH is 3-12, and has titer reduction within 96h not more than 4 orders of magnitude; after the ultraviolet radiation is carried out for 8 hours, the titer is reduced by no more than 1 magnitude order;
7. the pseudomonas syringae kiwi pathogenic variant phage PSA-P1 can be used for preparing a composition, a reagent or a kit, is applied to the rapid detection of pseudomonas syringae, and comprises but is not limited to detection of pseudomonas syringae in a target sample in the forms of test paper, a kit and the like, or screening of target pathogenic bacteria in a clinical sample, so that the detection sensitivity is effectively ensured;
8. pseudomonas syringae kiwifruit pathovar phage PSA-P1 and its composition with concentration of 10 in liquid culture medium3PFU/mL pseudomonas syringae has good killing capacity; when the concentration of Pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1 is more than or equal to 1 × 106When PFU/mL, the killing rate of the compound to pseudomonas syringae reaches more than 91.8 percent, and the compound has no antagonism to other combined substances;
9. the Pseudomonas syringae kiwifruit pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. actinodiae phase PSA-P1) and the composition thereof can be prepared into biological agents which can be applied to control diseases caused by Pseudomonas syringae and are not limited to Pseudomonas syringae by the technicians in the field according to the description of the application and the common knowledge in the field.
Drawings
FIG. 1 is a schematic representation of plaques of the present invention;
FIG. 2 is a schematic diagram of electron microscope results of the bacteriophage of the present invention;
FIG. 3 is a schematic representation of the structure of a plaque sample appearing in a lysogenic assay;
FIG. 4 is a schematic diagram of the structure of a plaque sample that did not appear in the lysogenic assay.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings 1 to 4 and examples.
In the following examples, the reference numbers of the strains are the same as the reference numbers of the same company.
Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1), with the preservation number of CCTCC NO: m2020252, the preservation unit is China center for type culture Collection, and the preservation time is 30 days at 06 months in 2020.
The Xanthomonas campestris phage YHC5(Xanthomonas axonopodis phase YHC5) has the preservation number of CCTCC NO of M2018579, the preservation unit is China center for type culture Collection, and the preservation time is 2018, 08 months and 30 days.
Xanthomonas carpi citrus pathovar citri (Xanthomonas axonopodis pv. citri) deposit number ACCC 03526, obtained by contacting the depository with a depository.
Pseudomonas syringae Cucumis sativus var (Pseudomonas syringae pv. lachrymans), deposit No. ATCC7386, available by contact with depository.
Pseudomonas syringae tomato pathogenic variety (Pseudomonas syringae pv. tomato), deposit number ATCC BAA-871D-5, available for purchase by contact with a depository.
Pseudomonas syringae tobacco pathogenic variety (Pseudomonas syringae pv. tabaci), deposit number ATCC13453, available for purchase by contact with a depository.
In the following examples, the following examples are given,
the formula of the TSB liquid culture medium is as follows: 15g of tryptone, 5g of soybean peptone, 5g of sodium chloride and 1000mL of distilled water;
the formula of the TSA solid culture medium is as follows: 15g of tryptone, 5g of soybean peptone, 5g of sodium chloride, 15g of agar and 1000mL of distilled water;
TSA plate: sterilizing a TSA solid culture medium, pouring the sterilized TSA solid culture medium on a sterile flat plate, and cooling and solidifying the TSA solid culture medium to prepare the TSA flat plate;
the formula of the TSB semisolid agar culture medium is as follows: 15g of tryptone, 5g of soybean peptone, 5g of sodium chloride, 7g of agar and 1000mL of distilled water;
SM liquid formula: 8.5g of sodium chloride, 2g of magnesium sulfate, 50mL of 1mol/LTris-HCl, 0.25g of gelatin and 1000mL of distilled water.
Example 1: isolation preparation and purification culture of pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1
The source sample of pseudomonas syringae kiwifruit pathogenic variant phage PSA-P1 is collected from mass-colored farmer market sewage in Jiangning district of Nanjing city, Jiangsu province, filtered by double-layer filter paper, centrifuged at low speed and normal temperature, and the supernatant is filtered by a filter membrane of 0.22 mu m.
Separation of phage:
(1) taking 10mL of filtered supernatant, adding the filtered supernatant into 10mL of TSB liquid culture medium with 2 times of the volume of the TSB liquid culture medium, simultaneously adding 1mL of phage host bacteria Psa-1 log phase bacterial liquid, and placing the mixture at the temperature of 28 ℃ for overnight culture;
(2) centrifuging the above culture at 8000rpm for 10min, and filtering the supernatant with 0.22 μm filter membrane;
(3) taking 0.5mL of phage host bacteria Psa-1 log-phase bacterial liquid, adding 5mL of TSB semisolid agar culture medium at 40 ℃, uniformly mixing, pouring the mixture on a TSA plate, and preparing a double-layer plate containing the host bacteria;
(4) taking 10 mu L of the prepared supernatant, dripping the supernatant on a solidified double-layer plate, air-drying the plate under a sterile condition, and placing the plate at 28 ℃ overnight for culture to form phage spot spots.
And (3) purifying the phage:
(1) picking the bacteriophage spot with a toothpick, transferring to 1mL of SM liquid, and shaking for 1 min;
(2) performing 10-fold gradient dilution, and taking 102、104And 106Adding 0.5mL of phage host bacteria log-phase bacterial liquid into the diluent respectively, and mixing uniformly;
(3) standing for 15min, adding the mixed solution into 5mL of TSB semisolid agar medium at 40 ℃, mixing uniformly, pouring the mixed solution onto a TSA plate, shaking uniformly and flatly for 5min, standing in a 28 ℃ incubator overnight after solidification, and observing to obtain a double-layer plate containing single plaques;
(4) picking up a single plaque, transferring the single plaque into 1mL of SM solution, purifying for at least 3 times according to the method, and finally forming plaques with consistent shapes and sizes on a flat plate;
(5) picking single plaques with consistent shapes and sizes by using toothpicks, placing the single plaques in 50mL of TSB liquid culture medium containing 1mL of logarithmic phase host bacterium liquid, and shaking at 180rpm overnight at the temperature of 28 ℃;
(6) centrifuging the culture at 8000rpm for 10min, and filtering the supernatant with 0.22 μm filter membrane to obtain purified phage solution, i.e. Pseudomonas syringae kiwi pathogenic variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1). Pseudomonas syringae Actinidia pathovar kiwii phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) produced single circular plaques on Pseudomonas syringae lawn, see FIG. 1. Pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1), with the preservation number of CCTCC M: 2020252.
Example 2: electron microscopy of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 the purified phage solution prepared in example 1 was used for electron microscopy: dropping 20 μ L sample on copper mesh, allowing it to settle naturally for 15min, absorbing the excessive liquid from the side with filter paper, adding 1 drop of 2% phosphotungstic acid on the copper mesh, dyeing for 10min, absorbing the dye solution from the side with filter paper, drying, and observing with electron microscope.
The result is shown in figure 2, and the observation of the form of pseudomonas syringae kiwi fruit pathopoiesia variety phage PSA-P1 under an electron microscope shows that the phage has a polyhedral three-dimensional symmetrical head and a longer tail, and the diameter of the head is about 50-55 nm; the length of the tail part is 15-20 nm, and the diameter of the tail part is 6-10 nm. Pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1 belongs to the family Autographiviridae.
Example 3: preparation of pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 particles and extraction and sequencing of genome
(1) Taking 100mL of the purified phage solution prepared in the example 1, sequentially adding 20 μ L of DNaseI 20 μ L, RNaseA 20 with the concentration of 5mg/mL, incubating at 37 ℃ for 60min, adding 5.84g of NaCl, and placing in an ice bath for 1h after dissolving;
(2) centrifuging at 11000rpm for 10min at 4 ℃, transferring the centrifuged supernatant into a new centrifuge tube, adding solid PEG8000 to make the final concentration 10% (w/v), and carrying out ice bath for 1h after the PEG8000 is completely dissolved;
(3) centrifuging at 11000rpm for 20min at 4 deg.C, adding 1mLSM solution to resuspend and precipitate to obtain phage particle concentrated solution, and storing at 4 deg.C.
And extracting phage nucleic acid by using a lambda phage genome DNA kit and sequencing. Through nucleotide sequencing, the Pseudomonas syringae kiwi pathopoiesia variety phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) has a nucleotide sequence shown in SEQ ID No. 1.
The sequence of Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 is aligned on NCBI website to obtain the phage belonging to Autographiviridae family.
Example 4 potency assay of Pseudomonas syringae Kiwi berry pathogenic variants phage PSA-P1 Using SM as diluent, stock solutions of Pseudomonas syringae Kiwi berry pathogenic variants phage PSA-P1 (from example 1) were diluted stepwise in 10-fold gradient to l08And (4) doubling. Respectively taking l05、l06、l07And l08The diluted phage culture solution (L000 μ L) was mixed with the host bacterial solution (300 μ L) and allowed to stand for 15min to allow the mixture to be fully bound to the receptors on the bacterial surface. Adding the mixed solution into 4mL of semi-solid agar culture medium cooled to 50 ℃, uniformly mixing, immediately spreading on a solidified solid agar plate, and performing inverted culture at 28 ℃ for 6-8h after the agar is solidified. Three replicates of each dilution were taken and counted as the average of the three replicates of that dilution. Wherein the phage titer (PFU/mL) is the average plaque number multiplied by the dilution factor as shown in Table 1, and the Pseudomonas syringae kiwifruit pathopoiesia variety phage PSA-P1 has 10 h after culturing for 12h10Titers above PFU/mL.
TABLE 1 titer of Pseudomonas syringae Kiwi pathovar phage PSA-P1 after 12h of culture
Incubation time 4h 8h 12h
Phage PSA-P1 titer (PFU/mL) 4.1x109 1.7x1010 3.3x1010
Example 5: virulence gene or undesirable gene deletion detection test of pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1
The selection of 103 virulence genes identified as being derived from lysogenic phages within pathogenic bacteria in this example is shown in table 2, and the determination of whether they contain the following virulence genes was performed by determining the whole genome of the pseudomonas syringae kiwifruit pathovar phage PSA-P1 and performing bioinformatic analysis on it. The results show that pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 does not contain the following virulence genes or undesirable genes and therefore does not encode proteins that may pose potential health risks, and therefore pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 does not affect the health of the human or animal body.
TABLE 2 major known virulence genes of lysogenic phages in pathogenic bacteria
Figure BDA0002778058200000091
Figure BDA0002778058200000101
Figure BDA0002778058200000111
Figure BDA0002778058200000121
Example 6: toxicological experiments
The experimental mice are divided into two groups (phage group and control group) at random after 20 mice with half male and female are bred adaptively for three days, each group comprises 10 mice (5 mice for male and female), and the dose of the phage group is 1010PFU/kg Pseudomonas syringae Kiwi pathopoiesia variant phage PSA-P1, control group was given physiological saline in equal amount for 15 days continuously, and the test mice were sacrificed by neck-cutting and examined for visceral status.
The experimental result shows that the pseudomonas syringae kiwifruit pathovar phage PSA-P1 at the dose has no influence on the daily behaviors of the mice. The viscera were examined by dissection without abnormality. Pseudomonas syringae kiwifruit pathopoiesia variant phage PSA-P1 has biological safety, and can be used as crop disease control preparation.
Example 7: determination of Pseudomonas syringae Kiwi pathovar phage PSA-P1 on the optimal multiplicity of infection (MOI) of Pseudomonas syringae
Selecting a single colony of host bacterium pseudomonas syringae Psa-1, inoculating the single colony into a test tube containing 3mL of TSB liquid culture medium, and carrying out shake culture in a shaking table at the temperature of 28 ℃ and overnight at the speed of 180rpm to obtain a host bacterium suspension. The host bacterial suspension is transferred to 10mL of TSB liquid culture medium according to the proportion of 1:100, and the host bacterial suspension is subjected to shaking culture to the prophase of logarithm under the conditions that the temperature is 28 ℃ and the rotating speed is 180 rpm. Phage PSA-P1 purified solution (prepared in example 1) and phage host bacteria (MOI ═ purified phage solution titer/phage host bacteria concentration) were added at ratios of MOI of 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001, 0.00001, 0.000001, and 0.0000001, respectively, and TSB liquid medium was added to make the total volume of each tube the same. The culture was carried out in a shaker at 28 ℃ for 24 hours with shaking at 180 rpm. After the culture is finished, 10000g of the culture solution is centrifuged for 10min, and the supernatant culture solution is collected, and the titer of the phage for each treatment is determined by a double-layer plate method. Each point was subjected to duplicate multi-tube culture and averaged to obtain the MOI producing the highest phage titer as the optimal multiplicity of infection. The experiment was repeated 3 times.
TABLE 3 titer of Pseudomonas syringae Kiwi pathovar phage PSA-P1 at different multiplicity of infection
MOI PSA-P1(PFU/mL) Host bacterium (cfu/mL) PSA-P1 potency (PFU/mL)
100 107 105 1.2×108
10 107 106 3.3×108
1 107 107 4.6×108
0.1 107 108 1.4×109
0.01 107 109 5.8×109
0.001 107 1010 7.2×109
0.0001 106 1010 2.4×1010
0.00001 105 1010 4.5×1010
0.00000 104 1010 7.4×1010
0.0000001 103 1010 5.2×1010
As can be seen from Table 3, the phage PSA-P1 titer reached a maximum of 7.4X 10 under 24h culture10PFU/mL, its MOI is 0.000001. Indicating that only a small amount of initial Pseudomonas syringae phage is needed to achieve large scale proliferation. The phage PSA-P1 provides a high-quality phage strain source for the industrial production of phage bactericides.
Example 8: determination of pH and temperature stability of Pseudomonas syringae Kiwi pathovar phage PSA-P1
8-1: stability of Pseudomonas syringae Kiwi pathopoia var phage PSA-P1 under different pH conditions 900. mu.L of TSB liquid medium with pH of 1-14 was added to each sterile EP tube, the EP tubes were placed in a thermostatic water bath at 25 ℃ and after temperature equilibration, 00. mu.L of purified phage solution (prepared in example 7) was added to give an initial titer of 1X1010PFU/mL, standing at room temperature. Samples were taken at 1h, 4h, 8h, 24h and 96h of reaction, and the phage titer was determined by a double-layer plate method after appropriate dilution of each treated sample. The experiment was repeated 3 times.
TABLE 4 stability of bacteriophage PSA-P1 at different pH conditions
Figure BDA0002778058200000141
The results are shown in table 4, the titer of the phage PSA-P1 has not changed significantly between pH 5 and 10, indicating that it has good stability under neutral, slightly acidic and slightly alkaline conditions.
Under acidic conditions at pH3 and basic conditions at pH12, the titer of phage PSA-P1 decreased to some extent, but by about 3 orders of magnitude compared to pH 7, indicating better tolerance under acidic and basic conditions. Under both very acidic conditions at pH 2 and very basic conditions at pH 13, the titer of phage PSA-P1 decreased to 0 within 1 hour.
8-2: stability of Pseudomonas syringae Kiwi fruit pathopoiesia variegated phage PSA-P1 under different temperature conditions
The titer is 1.0 multiplied by 107The phage PSA-P1 (prepared in example 7) was subjected to conditions of 4 deg.C, 25 deg.C and 40 deg.C, and the titer was measured by periodic sampling.
TABLE 5 stability of Pseudomonas syringae Kiwi pathovar phage PSA-P1 at 4 deg.C
Figure BDA0002778058200000142
TABLE 6 stability of Pseudomonas syringae Kiwi pathovar phage PSA-P1 at 25 deg.C
Figure BDA0002778058200000143
Figure BDA0002778058200000151
TABLE 7 stability of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 at 40 deg.C
Figure BDA0002778058200000152
As can be seen from tables 5 to 7, the phage PSA-P1 has better stability at 4 ℃, the titer does not significantly decrease after 3 months of storage, and the titer still does not exceed 1 order of magnitude after 12 months of storage; under the condition of 25 ℃, the titer is not obviously reduced after the phage PSA-P1 is stored for 4 weeks; at 40 ℃, the titer of the phage PSA-P1 does not significantly decrease within 24 hours, and after 72 hours, the titer decreases by 1 order of magnitude. Therefore, the phage PSA-P1 has better stability under different temperature conditions.
Example 9: pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 tolerance to ultraviolet light
Taking 10mL of the product with the titer of 1 × 108PFU/mL of PSA-P1 phage (prepared from example 7) plated on 90mm platesAfter being placed in a bacteria culture dish, the bacteria culture dish is placed in a super clean workbench and is irradiated under an ultraviolet lamp (20w, 20 cm). Sampling at 0min, 20min, 40min, 1h, 2h, 3h, 4h, 5h, 6h, 7h and 8h respectively, placing in the dark for 30min, and determining the titer of the phage by using a double-layer plate method.
TABLE 8 stability of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 under UV irradiation
Figure BDA0002778058200000153
As shown in Table 8, the titer of Pseudomonas syringae Actinidia pathovar phage PSA-P1 was reduced by an order of magnitude at 8h of UV irradiation, and thus the phage of the present invention was more resistant to UV.
Example 10: pseudomonas syringae kiwifruit pathovar phage PSA-P1 lysis ability test on Pseudomonas syringae from different origins
The lysis spectrum of the phage was determined by double-plate titration. Respectively selecting single colonies of 45 pseudomonas syringae separated from 6 provinces such as Shandong, Sichuan, Chongqing, Anhui, Guangdong and Henan, inoculating the single colonies into a test tube containing 3mL of TSB liquid culture medium, and culturing at 28 ℃ and 180rpm overnight to obtain bacterial liquids of the strains. mu.L of each bacterial suspension was mixed with TSB semi-solid agar medium and spread on a common agar plate, 5. mu.L of purified phage PSA-P1 solution (prepared in example 1) was dropped on the plate, air-dried naturally, cultured overnight at 28 ℃ and the results were observed.
TABLE 9 lysis results of Pseudomonas syringae Actinidia var typhimurium phage PSA-P1 on Pseudomonas syringae from different origins
Figure BDA0002778058200000161
Figure BDA0002778058200000171
Note: "+ + + +" is completely clear; "+ +" is medium and clear; "+" is slightly clear; the non-cleaved is "-".
The results are shown in Table 9, the phage PSA-P1 has strong lytic capacity to Pseudomonas syringae from different origins, and the lytic rate can reach 91.1%. Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 has a broad lysis spectrum.
Example 11: lysis test of Pseudomonas syringae Actinidia var typhimurium phage PSA-P1 against non-pathogenic beneficial bacteria
Selecting 5 nonpathogenic rhizobia and 5 nonpathogenic bacillus subtilis, respectively inoculating the 5 nonpathogenic bacillus subtilis into test tubes containing 3mL of TSB liquid culture medium, and culturing at 30 ℃ and 180rpm for 8h to obtain bacterial liquid of each strain. 300 μ L of each bacterial suspension was mixed with TSB semi-solid agar medium and plated on common agar plates. mu.L of each of the purified phage PSA-P1 solutions (prepared in example 1) was dropped on the plate, allowed to air dry, and then cultured at 30 ℃ for 24 hours, and the results were observed.
TABLE 10 lysis test of Pseudomonas syringae Actinidia pathovar phage PSA-P1 against non-pathogenic beneficial bacteria
Figure BDA0002778058200000181
Note: "+ + + +" is completely clear; "+ +" is medium and clear; "+" is slightly clear; the non-cleaved is "-".
As shown in Table 10, in this example, none of the 10 non-pathogenic bacteria were recognized by the phage PSA-P1. The test phage has extremely strong host specificity and has no damage to microbial communities.
Example 12: lysogenic characterization of Pseudomonas syringae Actinidia var typhimurium phage PSA-P1 will give 100. mu.L (0PFU/mL, 1.0X 104PFU/mL,1.0×105PFU/mL,1.0×106PFU/mL,1.0×107PFU/mL) of phage PSA-P1 (prepared in example 7) with 100. mu.L of Pseudomonas syringae Psa-1 (1.0X 10)8cfu/mL) were mixed and inoculated into a liquid culture containing 10mL of TSBThe medium was shake-cultured in a 50mL centrifuge tube at 28 ℃ for 48 hours. The turbid culture solution obtained was applied by gradient dilution to a TSA plate and cultured in an incubator at 28 ℃ for 48 hours. Picking the central part of 30-50 single colonies on a TSA plate, placing the central part in an EP tube containing 200 mu L of TSB liquid culture medium, and carrying out shake culture at 28 ℃ for 24 h; subsequently, mitomycin C with the final concentration of 0.5 mug/mL is added into the EP tube, and the culture is continued for 12 h; filtering the obtained culture solution with 0.22 μm filter membrane for sterilization, dripping on Psa-1 double-layer plate, and culturing at 28 deg.C; simultaneously adding the titer of 1.0 multiplied by 107PFU/mL phage PSA-P1 (prepared in example 7) was spotted onto the bi-layer plate as a positive control. After 24h the double plate was observed and if plaques appeared, the phage PSA-P1 was confirmed to be a lysogenic phage.
The results showed that all control plates had plaques (FIG. 3) and all test plates had no plaques (FIG. 4), indicating that Pseudomonas syringae Actinidia pathovar phage PSA-P1 was not lysogenic and was a virulent phage.
Example 13: turbidity method for detecting bacteriostasis rate of pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1 on pseudomonas syringae
Selecting a single colony of the host bacteria Psa-1, inoculating the single colony into a test tube containing 3mL of TSB, and carrying out overnight culture at the temperature of 28 ℃ for 180r/min until the single colony is turbid to obtain a host bacteria liquid; the titer is 2 multiplied by 1010Phage PSA-P1 (prepared in example 7) in PFU/mL was gradually diluted in a gradient of sterile water to the titer of each treatment group. As shown in Table 11, 100. mu.L of the Psa-1 bacterial suspension and 100. mu.L of each diluted phage PSA-P1 were added to 50mL centrifuge tubes each containing 10mL of TSB broth, and the suspension was incubated at 28 ℃ and 120r/min for 24 hours using 100. mu.L of Psa-1 bacterial suspension mixed with 10mL of TSB broth as a positive control, and the turbidity value of each treatment group was measured with a turbidimeter. The bacteriostasis rate is (positive treatment turbidity-treatment group turbidity)/positive treatment turbidity multiplied by 100 percent
TABLE 11 bacteriostatic effect of Pseudomonas syringae Kiwi fruit pathogenic variant phage PSA-P1 on Pseudomonas syringae
Figure BDA0002778058200000191
Figure BDA0002778058200000201
As can be seen from Table 11, about 101The bacteriostasis rate of the phage PSA-P1 of PFU/mL to PSA-1 can reach 54.1%, which shows that the pseudomonas syringae kiwifruit pathopoiesia variety phage PSA-P1 can effectively inhibit and kill bacteria under an extremely low dosage.
Example 14: bactericidal effect of pseudomonas syringae kiwi pathopoiesia variety phage PSA-P1 in liquid
Culturing Pseudomonas syringae Psa-1 to logarithmic growth phase, subpackaging into different test tubes, diluting the bacterial liquid with the same volume of TSB liquid culture medium until the final concentration of Pseudomonas syringae Psa-1 is 1 × 103cfu/mL. Respectively inoculating to the mixture with final concentration of 1 × 102PFU/mL、1×103PFU/mL,1×104PFU/mL、1×105PFU/mL、1×106PFU/mL Pseudomonas syringae Actinidia var typhimurium phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) (prepared in example 1). Setting a control group and a blank group at the same time, wherein the control group is given with a final concentration of 1x103cfu/mL Pseudomonas syringae Psa-1; the blank group was given an equal amount of physiological saline. Each treatment was cultured with shaking at 28 ℃ and 150rpm for 4 hours, and the residual amount of Pseudomonas syringae was measured. The detection method comprises the following steps: after each treated sample was diluted with sterile water, 100. mu.L of the diluted solution was applied to a TSA solid plate, and the number of colonies on the plate was counted after incubation at 28 ℃ for 24 hours. The number of pseudomonas syringae (number of colonies on TSA plate) x dilution multiple x 10.
TABLE 12 Bactericidal efficacy of Pseudomonas syringae Kiwi pathovar phage PSA-P1 in liquids at different concentrations
Figure BDA0002778058200000202
As can be seen from Table 12, Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 was present at a final concentration of1×102PFU/mL, the growth of the pseudomonas syringae Psa-1 in a liquid culture medium can be well controlled; when the final concentration of pseudomonas syringae kiwifruit pathogenic variety phage PSA-P1 is more than or equal to 1 × 104When PFU/mL, the killing rate of the pseudomonas syringae can reach more than 99 percent.
Example 15: preparation of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 composition
1. The final concentrations were 1X10 respectively2PFU/mL、1×103PFU/mL、1×104PFU/mL、1×105PFU/mL、1×106PFU/mL of the purified phage PSA-P1 solution (prepared in example 1) was mixed with a final concentration of 50% amobam 700-fold solution (chemical bactericide) in equal volumes to prepare 1:1 of composition 1, composition 2, composition 3, composition 4 and composition 5, respectively.
2. The final concentrations were 1X10 respectively2PFU/mL、1×103PFU/mL、1×104PFU/mL、1×105PFU/mL、1×106PFU/mL of the purified phage PSA-P1 solution (prepared in example 1) was mixed with a final concentration of 1X106PFU/mL of Xanthomonas carpi phage liquid was mixed uniformly in equal volumes to make 1:1 of composition 6, composition 7, composition 8, composition 9 and composition 10.
3. The final concentrations were 1X10 respectively2PFU/mL、1×103PFU/mL、1×104PFU/mL、1×105PFU/mL、1×106PFU/mL of the purified phage PSA-P1 solution (prepared in example 1) was mixed with 50% final concentration of 700-fold ambam solution to a final concentration of 1X106PFU/mL of Xanthomonas carpi phage liquid was mixed uniformly in equal volumes to make 1:1:1 compositions 11, 12, 13, 14 and 15.
Example 16: bactericidal effect of pseudomonas syringae kiwifruit pathovar phage PSA-P1 composition in liquid
Culturing Pseudomonas syringae Psa-1 to logarithmic growth phase, subpackaging into different test tubes, diluting the bacterial liquid with the same volume of TSB liquid culture medium until the final concentration of Pseudomonas syringae Psa-1 is 1 × 103cfu/mL, into which realms are respectively accessedThe composition of Pseudomonas syringae Kiwi pathovar phage PSA-P1 prepared in example 15, control group and blank group were set simultaneously, and the control group was given at a final concentration of 1X103cfu/mL Pseudomonas syringae Psa-1; the blank group was given an equal amount of physiological saline. Carrying out shake culture on the treatments at 28 ℃ and 150rpm, detecting the residual quantity of pseudomonas syringae Psa-1 after 4h, wherein the detection method comprises the following steps: after each treated sample was diluted with sterile water, 100. mu.L of the diluted solution was applied to a TSA solid plate, and the number of colonies on the plate was counted after incubation at 37 ℃ for 24 hours. The number of pseudomonas syringae (number of colonies on TSA plate) x dilution multiple x 10.
TABLE 13 Bactericidal efficacy of Pseudomonas syringae Kiwi pathovar phage PSA-P1 compositions in liquids at different concentrations
Figure BDA0002778058200000221
As can be seen from Table 13, the Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 composition at each concentration has a good killing effect on Pseudomonas syringae. The pseudomonas syringae kiwifruit pathogenic variety phage PSA-P1 can be used together with other substances to control bacteria, and has no antagonism to other substances.
The combination of the embodiment is not limited to the 700-fold liquid of amobam, but may also be chemical bactericides such as polyoxin, flumorph, dimethomorph, prochloraz, difenoconazole, flusilazole, myclobutanil, mancozeb, thiophanate-methyl, carbendazim, chlorothalonil, and fructosan. The embodiment can also be used together with a chemical disinfectant to achieve the effect of preventing and killing.
Example 17: pseudomonas syringae kiwi fruit pathogenic variant phage PSA-P1 and its composition for preventing and treating kiwifruit canker
360 kiwi trees are randomly divided into 6 groups (phage 3 group, composition 5, control group and blank group) after adaptive culture for 1 month, each group comprises 60 kiwi trees, and the dosages of phage experiment groups are respectively 1 × 104PFU/mL、1×105PFU/mL、1×106PFU/mL of phage tested (prepared in example 7) and 1X105cfu/mL Pseudomonas syringae Psa-1; control group was given 1X105cfu/mL Pseudomonas syringae Psa-1; the blank group is given with the same amount of normal saline, 1L is inoculated by adopting a stem infusion method, the incidence rate of kiwifruit canker within 15d is counted from the inoculation, and the incidence rate is the incidence plant number/total plant number multiplied by 100%.
TABLE 14 Effect of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and compositions thereof on Kiwi fruit canker
Time 104PFU/mL 105PFU/mL 106PFU/mL Composition 3 Control group Blank group
1d
0% 0% 0% 0% 0% 0%
2d 1% 0% 0% 0% 6% 0%
3d 3% 1% 0% 0% 11% 0%
4d 6% 3% 0% 0% 20% 0%
5d 7% 4% 0% 0% 34% 0%
6d 8% 6% 3% 3% 40% 0%
7d 11% 8% 3% 3% 48% 0%
8d 13% 9% 5% 4% 52% 0%
9d 17% 11% 7% 5% 60% 0%
10d 19% 13% 7% 7% 62% 0%
11d 20% 16% 8% 7% 68% 0%
12d 20% 16% 9% 7% 74% 0%
13d 22% 17% 9% 8% 82% 0%
14d 24% 18% 10% 8% 90% 0%
15d 26% 18% 10% 8% 100% 0%
As shown in Table 14, the kiwifruit trees in the control group broke up at 15 days after inoculationThe incidence rate of the ulcer disease reaches 100 percent. In each experimental group of the phage, the higher the concentration of the phage PSA-P1 is, the lower the incidence rate of the kiwi fruit tree is; phage PSA-P1 concentration of 106And when the concentration is PFU/mL, after root irrigation is carried out for 15 days, the incidence rate of the kiwi fruit trees is kept within 10 percent. The pseudomonas syringae bacteriophage and the composition thereof can be used as a biological bactericide to effectively prevent and treat the kiwifruit canker.
Example 18: preparation and application of pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 and kit of pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 composition
The kit contains 5-10 mL of the titer of 1 multiplied by 107PFU/mL Pseudomonas syringae Actinidia var typhimurium phage PSA-P1 liquid or Pseudomonas syringae Actinidia var typhimurium phage PSA-P1 composition, 1L TSB semisolid culture medium, 1L TSA culture medium.
The using method of the kit comprises the following steps: taking out the titer of 1 × 107PFU/mL Pseudomonas syringae kiwi fruit pathopoiesia variant phage PSA-P1 liquid or Pseudomonas syringae kiwi fruit pathopoiesia variant phage PSA-P1 composition, using double plate droplet method to determine the test phage lysis spectrum. And (3) selecting a single bacterial colony to be detected, inoculating the single bacterial colony to a target liquid culture medium, and performing shake culture at a target temperature in combination with the growth characteristics of the bacterial strain to be detected to obtain a bacterial liquid of the bacterial strain to be detected. Mixing 300 μ L of the suspension of the strain to be detected with 5mL of TSB semisolid culture medium, spreading on a TSA plate, and dripping 10 μ L of Pseudomonas syringae Kiwi fruit pathogenic variant phage PSA-P1 liquid or Pseudomonas syringae Kiwi fruit pathogenic variant phage PSA-P1 composition on the plate. And after natural air drying, culturing at a target temperature according to the growth characteristics of the strain to be detected, and observing the result.
Example 19:
application of pseudomonas syringae kiwi fruit pathopoiesia variant phage PSA-P1 and kit of composition thereof to citrus canker
The main component of the kit 1 is 5-10 mL with the titer of 3 multiplied by 108PFU/mL Pseudomonas syringae Actinidia pathovar phage PSA-P1 liquid.
The main component of the kit 2 is 5-10 mL with the titer of 3 multiplied by 108PFU/mL of Xanthomonas campestris YHC5 liquid.
The main component of the kit 3 is 5-10 mL of 700 times of ambam solution with the final concentration of 50%.
The main component of the kit 4 is 5-10 mL with the titer of 3 multiplied by 108PFU/mL pseudomonas syringae kiwifruit pathopoiesia variety phage PSA-P1 liquid, 5-10 mL titer is 3 x108PFU/mL of the carpet xanthium gracile bacteriophage YHC5 liquid and 5-10 mL of the ambam 700-fold liquid with the final concentration of 50%.
The test process comprises the following steps: 120 citrus trees are subjected to adaptive culture for 1 month and then are randomly divided into 6 groups (a kit 1 group, a kit 2 group, a kit 3 group, a kit 4 group, a positive control group and a negative control group), and 20 citrus trees are cultured in each group. Respectively adding 1L of the extract into the solution with the final concentration of 1x10 by adopting a stem infusion method3cfu/mL Xanthomonas carpi citrus pathopoiesia variant ACCC 03526(Xanthomonas axonopodis pv. citri) performs toxicity attack treatment on 100 citrus trees in a kit group 1, a kit group 2, a kit group 3, a kit group 4 and a positive control group, and 1L of physiological saline is respectively input into 20 citrus trees in the negative control group by a stem infusion method. After three days of challenge treatment, 5 groups of citrus trees subjected to challenge treatment are respectively inoculated with 1L of each thousand-fold dilution liquid of the kit 1 group, the kit 2 group, the kit 3 group and the kit 4 group by adopting a stem infusion method, and the positive control group and the negative control group are both given with the same amount of physiological saline. The incidence of citrus canker was counted 15 days after inoculation, and the incidence rate was defined as the number of diseased plants/total number of plants × 100%.
TABLE 15 Effect of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and kits of compositions thereof on Citrus canker
Figure BDA0002778058200000251
As shown in table 15, the citrus incidence of the kit 4 group was lower than that of the kit 2 group, indicating that the kit 4 containing the composition had significant control of citrus canker, and the kit 4 containing the composition had better control of citrus canker than the kit 2 containing only the xanthomonas carpi phage YHC 5.
Example 20:
application of pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1 and kit of composition thereof to cucumber bacterial angular leaf spot
The kit of example 19 was used for each of kit 1, kit 2, kit 3, and kit 4.
The test process comprises the following steps: 120 cucumber vines are subjected to adaptive culture for 1 month and then are randomly divided into 6 groups (a kit 1 group, a kit 2 group, a kit 3 group, a kit 4 group, a positive control group and a negative control group), and 20 plants are respectively adopted. Respectively adopting root irrigation method to make 1L final concentration be 1x103cfu/mL Pseudomonas syringae cucumber pathogenic variant ATCC7386(Pseudomonas syringae pv. lachrymans) 100 cucumbers in the kit 1 group, the kit 2 group, the kit 3 group, the kit 4 group and the positive control group were subjected to detoxification treatment, and 20 cucumbers in the negative control group were applied with 1L physiological saline by root irrigation. After three days of toxin attacking, 1L of thousands times of dilution liquid of the kit 1 group, the kit 2 group, the kit 3 group and the kit 4 group is respectively inoculated by adopting a root irrigation method, and the positive control group and the negative control group are respectively given with the same amount of physiological saline. The disease rate of cucumber bacterial angular leaf spot within 15 days from inoculation is counted, and the disease rate is the number of diseased plants/total plants multiplied by 100%.
TABLE 16 influence of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and kit of compositions thereof on cucumber bacterial angular leaf spot
Figure BDA0002778058200000261
As shown in table 16, the cucumber incidence of the kit 4 group was lower than that of the kit 1 group, indicating that the kit 4 containing the composition had a significant effect on controlling cucumber bacterial angular leaf spot, and the kit 4 containing the composition had a better effect on controlling cucumber incidence than the kit 1 containing only pseudomonas syringae kiwi pathovar phage PSA-P1.
Example 20:
application of pseudomonas syringae kiwifruit pathopoiesia variant phage PSA-P1 and kit of composition thereof to bacterial leaf spot of tomato
The kit of example 19 was used for each of kit 1, kit 2, kit 3, and kit 4.
The test process comprises the following steps: 120 tomato vines are randomly divided into 6 groups (a kit 1 group, a kit 2 group, a kit 3 group, a kit 4 group, a positive control group and a negative control group) after being adaptively cultured for 1 month, and each group comprises 20 tomato vines. Respectively adopting root irrigation method to make 1L final concentration be 1x103cfu/mL Pseudomonas syringae tomato pathogenic variant ATCC BAA-871D-5(Pseudomonas syringae pv. tomato) 100 tomatoes in the kit 1 group, the kit 2 group, the kit 3 group, the kit 4 group and the positive control group are subjected to challenge treatment, and 1L of physiological saline is applied to 20 tomatoes in the negative control group by a root irrigation method respectively. After three days of toxin attacking, 1L of thousands times of dilution liquid of the kit 1 group, the kit 2 group, the kit 3 group and the kit 4 group is respectively inoculated by adopting a root irrigation method, and the positive control group and the negative control group are respectively given with the same amount of physiological saline. The incidence of bacterial leaf spot of tomato within 15 days from inoculation was counted, and the incidence rate was the number of diseased plants/total number of plants × 100%.
TABLE 17 influence of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and kit of compositions thereof on bacterial leaf spot of tomato
Figure BDA0002778058200000271
Figure BDA0002778058200000281
As shown in table 17, the tomato incidence of the kit 4 group was lower than that of the kit 1 group, indicating that the kit 4 containing the composition has significant control of bacterial leaf spot of tomato, and the kit 4 containing the composition has better control effect on tomato incidence than the kit 1 containing only pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1.
Example 21:
application of caryophylli pseudomonad kiwi fruit pathovar bacterium bacteriophage PSA-P1 and kit of composition thereof to bean sickness
The kit of example 19 was used for each of kit 1, kit 2, kit 3, and kit 4.
The test process comprises the following steps: 120 kidney beans were randomly divided into 6 groups (kit 1 group, kit 2 group, kit 3 group, kit 4 group, positive control group and negative control group) after adaptive culture for 1 month, and 20 plants were each group. Respectively adopting root irrigation method to make 1L final concentration be 1x103cfu/mL Pseudomonas syringae Phaseolus vulgaris pathogenic variant ATCC21781(Pseudomonas syringae pv. phaseolicola) 100 Phaseolus vulgaris in the kit 1, the kit 2, the kit 3, the kit 4 and the positive control group were subjected to detoxification treatment, and 20 Phaseolus vulgaris in the negative control group were applied with 1L of physiological saline by root irrigation. After three days of toxin attacking, 1L of thousands times of dilution liquid of the kit 1 group, the kit 2 group, the kit 3 group and the kit 4 group is respectively inoculated by adopting a root irrigation method, and the positive control group and the negative control group are respectively given with the same amount of physiological saline. The incidence of the soybean phytophthora blight within 15 days from inoculation is counted, and the incidence is the number of the affected strains/the total strains multiplied by 100%.
TABLE 18 influence of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and kit of composition thereof on Phaseolus vulgaris blight
Figure BDA0002778058200000282
Figure BDA0002778058200000291
As shown in table 18, the incidence of kidney beans in the kit 4 group was lower than that in the kit 1 group, indicating that the kit 4 containing the composition has significant control of kidney bean phytophthora blight, and the kit 4 containing the composition has better control effect on the incidence than the kit 1 containing only pseudomonas syringae kiwi pathopoiesia phage PSA-P1.
Example 22:
application of pseudomonas syringae kiwifruit pathopoiesia variant phage PSA-P1 and kit of composition thereof to tobacco wildfire
The kit of example 19 was used for each of kit 1, kit 2, kit 3, and kit 4.
The test process comprises the following steps: 120 tobacco plants were randomly divided into 6 groups (kit 1 group, kit 2 group, kit 3 group, kit 4 group, positive control group and negative control group) after adaptive culture for 1 month, and 20 plants were each group. Respectively adopting root irrigation method to make 1L final concentration be 1x103cfu/mL Pseudomonas syringae tobacco pathogenic variant ATCC13453(Pseudomonas syringae pv. tabaci) 100 tobacco strains in the kit 1 group, the kit 2 group, the kit 3 group, the kit 4 group and the positive control group were subjected to detoxification treatment, and 1L of physiological saline was applied to 20 tobacco strains in the negative control group by root irrigation. After three days of toxin attacking, 1L of thousands times of dilution liquid of the kit 1 group, the kit 2 group, the kit 3 group and the kit 4 group is respectively inoculated by adopting a root irrigation method, and the positive control group and the negative control group are respectively given with the same amount of physiological saline. The incidence of tobacco wildfire was counted from inoculation within 15 days, and the incidence rate was defined as the number of diseased plants/total number of plants × 100%.
TABLE 19 influence of Pseudomonas syringae Kiwi fruit pathovar phage PSA-P1 and kit of composition thereof on wildfire of tobacco
Figure BDA0002778058200000301
As shown in table 19, the incidence of tobacco in the kit 4 group was lower than that in the kit 1 group, indicating that the kit 4 containing the composition has significant control of tobacco wildfire, and the kit 4 containing the composition has better control effect on the incidence than the kit 1 containing only pseudomonas syringae actinidia pathovar phage PSA-P1.
In conclusion, the Pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. actinodiace phase PSA-P1) and the composition thereof have high safety, can be used as effective components of a preparation kit and a biological disinfectant or a biological pesticide, and can be used for preventing and treating various bacterial diseases caused by Pseudomonas syringae.
Through examples 19-22, it can be seen that the use of pseudomonas syringae kiwifruit pathovar phage PSA-P1 alone has a killing effect on pseudomonas syringae used in an offensive experiment, and can significantly control diseases of an offensive plant, but the control effect of the composition containing phage PSA-P1 on diseases of the offensive plant is better.
The present embodiment is only for explaining the present application, and it is not limited to the present application, and those skilled in the art can make modifications of the present embodiment without inventive contribution as needed after reading the present specification, but all of them are protected by patent law within the scope of the claims of the present application.
Sequence listing
<110> Philippinecaceae (Nanjing) Biotech Ltd
<120> pseudomonas syringae bacteriophage and composition, kit and application thereof
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40200
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ggtcttgctg aacgactgga agttcgatgc gaaggtctga tccttctcgc cgaagtacat 60
gcccatggtc tgagcgtcca gcgcctgcaa ggtcttgagt tgctgcttga cgtatggcgg 120
gagatccttc tcacccttga agtcatccgg gttgaaactc attgccgcct caagcgagga 180
ggtcaggccg gggagcttca tgcggttcga ccgcgaccat gcgacggact gctgcaacga 240
ccagtcgctg acctgctgtg ggtcttggcc ctgagcgatc atctcctgcg ccttctgagc 300
cagcccagcc tcgaaggtct tggcgatctt gttacgatct tggtcgctgt acgcttggtt 360
caaacctagc gggatcgcac cttggttgta catcgccaac atggagctgc catagccttg 420
gttctccttc tgccgcgcct tggccgcaga gtccatacgg agacgaagac cagcgatggc 480
gtgagcactg taggtgccgg ggaattcctt gttgatctgc tcaatgcgct tgagggtgga 540
accccacgac gcctgaccgt tgaccgctgc cagctccatc ttacccatct cgtcgccgag 600
cataggtgcc atctcgcggg cgtgccactg gtcgtactga tcctgcgcgg tcttgaggag 660
ctggctcccc ttcgaccagt ctgtgacgtt gagctgatcc agcagtcgct tgtcaccctg 720
tgctgccgtg gtggccgctg cctgcatcag catcttcttc atgctgaact cagacacgcc 780
catcatcttg gcacgcgctg ggatctcgtt catgacgatg tgttcagccg aagcattcgg 840
gtcacccagc aggtcttgga tgctggtgtt cagcgcctcc tcccgcttgg caacacgata 900
gtcgcctcgg atcttctcac ccacaccgac cagcgcttgc tggctttcct gaatgttcat 960
ggaggtgtca cggagcgtcc acttgtccac gccgtacttg tccagcagag gttggtattc 1020
cttctgctgt gccttcatga agtcctcgtt ggacatctca gggttttctt gcatcaactg 1080
cacgaggcgg ttgtttgcct cctgcacgtc gtgcttggag acgatggtgt tgtaggccat 1140
acgacctgca acggtggcgt cttgggtgat gccctgacgc tcgttctctg ccttccagat 1200
gtcctgtgca gcgatggtgc tctgcttgat ccggtcttct tcaacctgcc gctcgacctc 1260
ggtttgcgcc tgctccgaca gggtgttggc gaagttcgcc agtccaccca tcacgtcggc 1320
gaggccgttg gatacatacc cagcggcccc tgcgcggttg gtctgtgcag cctgttggaa 1380
gaaagcccgg ttgcgttgtg cgccaccgac gccaagttct acggcttcac gttctgccat 1440
gttaacctcc tgcgtttacc ttctgtgcct gctcgaactt ctggctacct tggtaggcac 1500
cgccaaacgc actgagagca gacccgccaa ttttgagcgc cccggacgcc cacgatgggc 1560
gactgatagg cgagtagtcc atgcctgctt gaccctgaga tcggatctgc ttggcttggt 1620
tcgttacgtt gtccagcttg ctctgacgag tagcttggat gttgtcgagg ttgtgctgac 1680
gatcacgcgc cagcccttgc tcttgcatca gaaccgattg cccagcagta ccgctcgccg 1740
ctgccatggt gttcacccgg ccacgcgctt gcatgtactg cttctgcatc tcggtgttct 1800
gatccgcttc ctccagcagc gcatcctgct caacctgcga caggtcgcca tacgattgct 1860
cgatggcttt ggcctgctcg cggttgtgga tctcctgctg ttcggctgcg gcgtccgctt 1920
ggttcttgct gtcttgcaca gagacgacgg tagcagcgac cgaagccgct gctgctgcgt 1980
acatcataat cgggatagct acggccatta caacctccgc ccagtttgct ggtagctgcc 2040
ctcccactcc aacccacgta tctggagcgg caggtggcta tcagagaata cttcgatggt 2100
agcctcgtgg gtgaacagcc ggacaggaac cggcagcgtg ccactgatta gtggtgcgaa 2160
gcctacccgg ttgttgtggc tacccatgcg ccgaccatag aacggatact tccactggcg 2220
accttgtggg tcagatacca gcacagtgaa gctgcccgtc cggtcgtagt tcacggacat 2280
gcgacccatg gtgatgcggt caatggccat gacgttgcca ttctggtcac gcaggaatgg 2340
ctgggttgga atgtagcggc taccgtagcg gcgacccatc aggatcgtca ccgactgcgt 2400
gacagtctcg tctgccagcg aggtgctggt gtagaacgaa cggaggccca gacctgcttg 2460
gaactcgaac tcggtgccaa tgtcggacgg ccagcacccg gttgcatgca cagccaacca 2520
gcggtcgatg tccgcagtct gcacgtcgaa cggcatcgtc cagcgccaga ccttggccac 2580
gtcatcccac gtcgcggtgg tagtcacctt gcggtcgagg cggcagggga agtccatgcc 2640
tgcatcgtcg tcgtcgttgg tgagagccat gtgctcaagg tacacgttgc catcggcgtg 2700
caggaagatg aagaacacgt cgtcctctac gaactgaaca tgcagcaact tgctctgcga 2760
gtcgaacgtc cagcggtgcc atgcagcctg caccttgtcc gctccctgcc acagccagtt 2820
gtacacatag gccacatgct cctcagcatc ggtgcgcact accagcacgt tggtgttcgg 2880
gttgctgctg agctggcgaa cctgcccctt aatcagcttc tcgacgtgct cggtgattgg 2940
ccgagcctgc ttggtgtcct tgtccgagtc ggtgaacatc tcgcggatgc ccgaccagtt 3000
gcccgcgtca tacgcgaaca tgatcgactc accagtgatg gcaggcttgg cgaagatgtt 3060
catcgggaac gaagtcacct gcttgaacac cacgttggct gccgtcaccg gcttgctgcc 3120
ctcgatcatg aactgcccgt tgctggcgaa gaagatggcg tcaccatcca ccgtcacgga 3180
gttcttgatg atgttgatct tctcactgtc ggagaaggta tcaatcgggt cgctgtccac 3240
ttccgtctga ctcgactcct tgaagaagtt gaagaagtca ttcgagcgag tgaacaccgc 3300
cgactcatcg ctggtgaaga acagtcggtt ctggaacgta cccacggact gcacgtagtt 3360
attggtgaac gacgggaact tcacagtcgt gtcattacca accttgcggt cttcccatgc 3420
accggcccgc agctcgaagt gaggcacgcc agcattgatg gtggtacgga tcagggtgtg 3480
aggcatcgtc cggttgtcga agcccaactt ggccccgccc tccagtgact cctcccactt 3540
gaccttcgag ccatcggtgc ccactgcctt gagccagtag ctgttacgct tcacgccctc 3600
ggtgttctga atctcaacaa tccagttaag tggtgcatac ggtggcaggt aggccggaga 3660
cttcacgcgg ttctgtactg cgatcaggtc gccgccgttg gcaccgtcca ccgtggtgat 3720
ggtgttgatc ggctgaccat ttcggtagat gaagatcacg ttgttgttct gcgtgacgtt 3780
gaactgctcc tgcgcaccgg atgccgagaa cgtatagttc cccgcaccgt cgccagttgc 3840
cgtggtgata ccctcgcgca gcatgtgtgc gaacacctca gcgatgcggt tggtcttcac 3900
gttgttcgac gcacggtcgg cagactcagc gccaccatcc ccggtgtacg aagctcgcgg 3960
ggtgttgatg gtaaccacta cgccgccctg tccgttcatg tccgggttga tgcggatgat 4020
gtacgagcgg ctataggttg cgtactggca gtagaccagc gccgcgttgg acgggttcgg 4080
tgcctgtacg tcaccacggg ccagcacctg caccttgttg ttggcaagga aggtgtagtc 4140
gccgatggtg ctgaatgcca tgttgcgcat cgggtcatcg gtggtcatgt agtcccacgt 4200
agactgcggc gcatccacgg tacacttgac gcccttggtg ttgaagatcg aaggcgtggc 4260
ggtgtccggt tcaacgaaga tgaaatactt ctcctcgtcg cctcggtcat agaagtgaat 4320
ggtagtacgc gggtcgtatg gcttgccgct ggtcatcacc agacgggcca cgttcgacgt 4380
accgattcgc ttgtacaggg agtccagcac agacgggatc atgttctctt gcaacgtgca 4440
ttgcccgttg attcgatccc ggtcagcctg ctggctcatg ccttggatag gtcgccccat 4500
cccagcttga actcttgcca tgtggcctcc ttagttgttg ttcatgaacc caccgatgct 4560
ggcgatgggg tgacgcaggt tcgggttctg gaatgcgttc cgctttcggt aggtcgcatc 4620
ctcctgctcc agcgcgatga agctacgctg cgcctgctgg ttcagggctg taaacttcgc 4680
ctgatccacg tccttgtcgt ggacgtacca gaagcgggca gcatccacca ccgcatcctt 4740
ggcggtctgc ggcaggtcgt cgtagtccac gaaggccacg atgtccagcg ggatgtactt 4800
gagcttcgcg tccaccagcg ccgacaggtc gaagccatac tccagcgtgt ccatcaggtg 4860
gttgcctcgc ttgacgaggt tcacttcacg gagcgagtgg gtacgcttga gccgcacggc 4920
cagacagttg ttcggcagca cgactcggcc agtgtcggga gcagggtaga gcttgtggaa 4980
gccctcttgg ttgaaccagt aacccttgcc cttgttggtc tggatggtgg cgctgatatc 5040
atccagcacc cggttgatgt cgccagcgtc aacgtgatag tcgatctcgt tgagcgtggt 5100
gataccggcc tgacccatcg catcgagcac gcggttgatg gcatgcagct tggtcagttc 5160
cggcatgaag ccagctactt tcatgcgtcc tcctagtctc acactgtgag acaaaaataa 5220
gccccaaggc caacccgaag gttagccaag gggcatgggt gttactcgcc ggtttgcagc 5280
gcggcaggct tgaccagtgc agacacagcg gcctgtactg ccagcgcgaa cgcttcgacg 5340
ttctggacgc ccggcccggt tgggtcggca ccctcgaagg aatcgacctg catacgctta 5400
cgcttgacgc gggtggtcag gcgagcggtc acgtcttcca gcgaggcgtc ggttgcgttg 5460
gcaccgaagc cagccatcag gtgttcccag cgatcaggga tagcgccctc ggcgaggtac 5520
gagtcaacgt accaagtctt gttcgctttg ttccaccaga tctcgccggt cagggcgatg 5580
gagcggccaa ccagcagagc ttcgttgccg aagatcacga acatgcaggc ttccatgtcg 5640
gcggtcacgt cgtagcggaa accgttcgac gccttggaca gcaggtggtg gtcgttcact 5700
tcaccgtcga tgtcgatgtg gtcgcggttc ttgttcggga agtggttggt cgggacaact 5760
gggatgttgt acgacttgag cacgaacccg gtaacaccag cggtgccgta ggtgttgtag 5820
cgagcatcgc agacgcgctc ggcgtcacgc aggctgttga acaccggcca tggcatggcg 5880
atggtcagct tggacagatc cagatcttgc aggactgcct gctcgatcac catctcaacg 5940
aacgacagga tgcgagtcgg gtcgtccatg ttgaagttct tgtcctgtgc agcgatggag 6000
aagccgtggc ccttcacacg cggcacgccg ttgcgggcag tgctgttgtt aatcagcgca 6060
ccgtagatgc actgttgcag cagcatgcga tcttccatct tcttgatggc ggtcacctgc 6120
tcctcggcca gcttgccctt gaccatgatg tcgtcctgca cgtcgtcgag catgccgact 6180
acgttacgag cgatcacggt ggtgtcgatc accagcgagt ttttgtcgaa ctcggcttga 6240
gcgccgcgca cgtctttacc cggagccagc gcctgcactt cggtggtgcc gaggtacttg 6300
ttgctgacgg tgttggtgcc ctgaacctgt tgcaggtcga agtaggtcat catgcccatc 6360
aggttcacgt aggcgcgctt gatctggccg gtgaacttct cgaaggccag agtggctgct 6420
tcgccggatt tggagatctt ggggtcaacc aagttgttaa cgtcggacat gtaatacctc 6480
tcttgtcaaa tgggagattc gagcagcgga cttgccgact gctctatcta tactgcaact 6540
taattactgg atgccgcgac ggatcgactg gctgcgcatg gaatcgacct gacgttggta 6600
gtcgcggtcg ttccagtatt tgtcgctgtc catgatcttg ttgtactcgg caccagtgag 6660
ggtggacttg ccggtcaggt cgccaccagc aggcttgccg tcagcagtgc cgtcgcccaa 6720
cagttccacc gagcggtcgc ccttggtgat cttgtcgtgc tgcgccatct gctgcttggc 6780
catctggatg accatgcgct gggcttccca gctatcgccg cccatgatcg cgttgtagct 6840
ggcgatctgc ttgtcgtcga agttggcgag gatgaaggac tcgatcttct cgatgccttc 6900
cttgccacca accagctcgg cgtactctgc ctgcacagct tcctgcgcct tggcagcgtc 6960
ggcctgcgtg cgggcatgct ctgcgatggt ctgttggttc aggccacggt acaggttcag 7020
gtagccgtca accatgacct tgccgaactt ctcgtccagc ttggcgcggg tgtcggcaga 7080
cagctcgaac ttgccacctt cggcaaacag ctcggtgagc agggccttct cgtcaacgcc 7140
agcatcagcc agagctgccg agatttcaga aggcacctcg acttcaactt gctgatcgcc 7200
gaagtgatag acaggcgcat cgccttcctc gcccttcttg tcgccctctt cttcgccgcc 7260
tttcttgcca tcgccttcgc cagcatcgtc gcctgcgttc tggacatcat cagcattcgc 7320
tccttcttca ccagtgttgc cagtggtttc ggattcggta gtctgcgtct ggtcaccatc 7380
gccgggttcc tctgcgaagt tggtagggcc ggtcgagccg gtcaggtcga ggacgccatc 7440
cttcggcgag ttgtcgatta cttctacttc ggttgccatt tacatacctc cagcattatt 7500
catgagattg tcagcgatgg ttgggacggc cttctgcaag ccctcttgga tcatcgcctg 7560
ttgctgctgc tcttgacgct gcgcctgcgc ttccgcgaac tggtcgtcag tcatcatgaa 7620
cggcagagtg aggttgagct ggttgctgat gtagctggag taagcacccc aatccacacg 7680
ctcctgcatt ggctgaggcc acgctgctgg catgctcacc atctcggtga actgctggat 7740
gcgatccaac tcggacatct tgctcagtgc ctcgatgccg gtcatcaggg tgatcttgac 7800
gtgctccttg ccaagctcca tgccgatgcg gttaagcaac aggcgagcat acggcttctg 7860
caacgtcggg gccagcaggg tgtagttgcc acccagcgcc tgttcgttcg actggctgtc 7920
acggcggatc tcgtaggcag tcacgcgctc ggcgttacgc tggatctgcg agtccatcat 7980
gaaggcttgt cccacgcggc gctcgtactt gtcgagcact gcactgatgg gcgtgaagtc 8040
cgcgtacttc tccaactgga ggacaccgat gtcgtcgatg ttgccgtaca cgtactcacc 8100
cgtggggctg ttaatcaggt ggtcaacgtc ggtggtagca cccggcttaa ccagatactt 8160
gacgtcggcc atcaggatca tgcccttggc gattgcctcg ctcaggaact gaatcatgtg 8220
caggtcacct gcatgcagct ccaccttgga gcgcccatag tcctcgccgt agttcgcctc 8280
ccaacggagt acgatgaacg ggaaccgatc ctcatgcacg cggtactcgg tgcccacgat 8340
gtgaccctca gcttcctgtc ggatgatgaa gaagtcaccg tcgcgcttgc actcggtgta 8400
cagctcgatg ttggtgtcag agtcacgacc gccggggctg gcccggttgg cgcgaatgac 8460
agcttggatc tctggcggga atgtgtcgag cgccttgtgc tccagcagga tcagcttgag 8520
caacgtgccg gacttgtcac gcttgaccac gtagcggttg agcgggtagt tcacggcgtc 8580
tcccttcttg ggagtgtaga ggcaggtgtt gccgatagcc agcaagtggc ggatggcttg 8640
cccgatggca gaccgtccac tgattcgctc gtgctccagc attgcctcct tgacggcagc 8700
agccagcagg gactgagcct taacgactgc gcccgcttcc tgctgcaatt ggatcagagt 8760
tgcctgctcc agctccgtgc cgaagaacgg agagtgtggc gggaacatgg tcatcaccag 8820
tcggttctcc agatgcgtca gtgccgaagc cccgaagctc tgccagccag tggtgttcat 8880
gctgtcgcca tagtcaccca tgcctacgtg gtcgaagtca accagcaggt gtgggatggt 8940
gtagcgactg aatcgcttgc cgcgctccac gaaagcgttg cgcattggct tgagcttttc 9000
gtatgcctgc ttgatggtct tagacttctg accaccggcc tgcttgacgt tggcgcgacc 9060
gcgaagggtc aggtcgatct gccccgtctg gtgtacgata ggtcggacat cgcggttcat 9120
agcacctcct tagacggcga ggccagtgcc tgctaccgac ttcggacgga cgagctgacg 9180
cttgccttga tctgcgccgg tatcgacatc gccgtcaccg agggttacgt cttccggttg 9240
gacatccacc atccgctcag ggcggtcagc ggtgaaagtc tctttcggct tcttgggttt 9300
gctgctcatg ttacctcctt gcggtactca gtacctacgt gggaatatcc caagcgctgg 9360
tagaactcgg cagtctgctc ctcatggata ccagaggcta ctgagagctg cacatgcgtg 9420
gctcccttct ccttggccca tgcctcccag ccctgcacga gcttgtaagc agctcggctc 9480
ccccggtatt caggctcgac ataaaggatc gtgtccatcg ccatcttggc cgggttccaa 9540
ggcagcgggc aacaaaagcc ccacagaaag cccactagct tgttgtcgtc gaacaccagc 9600
aagaagcagc cgtcctccat cataatggtt tgggctgctg attgcagagc gtagtcctgt 9660
tggactgggt tgctcttggt gtccgcctcc tcagcgtagc gaactgacag tggggcgatt 9720
agtagcatgt cgagcaaggt tgcttgacga gtgtggatca tggcttgaat gttgcctcga 9780
tctggcgctt gagcgcgcgc ttcgtgctat tggctacgaa cgtcccgagg ggcgacgtag 9840
gcgattctgg atcttctgcc aagaatcgca tcaaagtttc gtaagcctcc cggccaatgc 9900
gttgcacctg tggagcaccc cgcaagctgg aaggctcatg ggattgtccg gtgtttcgca 9960
tcgacgggga gaggtggctg tcattcattc gaggtcgtcc tctcctgttg cggttgatag 10020
agatgccacc gtagatacaa tggcatcgac ccgtaggcca tggtgttctg cctgctcatg 10080
caggtcttct ggaatctccg acccagcctg agccagatcg aagattgcct tgaaggtttc 10140
gtattgcgtc atgcaaactc cttcttctat agtgcaactt aaaagtcgcc gacggttttg 10200
tcgtggcgtt cttccatgac tttcggcagg cggatcttgc ccttcgagct gtcggacagt 10260
ccgcgcacgc ggtagacctt gttgaccgga ttgtcaacgt ggccgactgg cttggtgcag 10320
aagccgtgga acaggcgctc ggcgtcttcg tgagtccagc ccttgccgag catggccttg 10380
acgaggttgt cgccttccca cttgaagatc aggttcgcca ccttgttggt gtacttgccc 10440
gtgccttcct cgatgccgac gcacagcagg tcgtagttga tctcccgcac ccacttcatc 10500
atgcgccagc ccttgtggcc agcttcccag ccggtctgtg gcttgaacac ggcaccttcc 10560
tcgccgagag cgatcagctc cagagcgaag gcttccacct cgttctcgtt ccacagcggg 10620
cgcatcggca actgagtggc ccggacaggc ggggtcagca tcaggttgcg gaacatgcgg 10680
ttaacccggt cggtgtacac cacgtcggac ttgcccttga tgaactcctc gatggtgagg 10740
tggtcatgca ggtacaggtg caggtcaggc agcagcgcct cctgctcagc cgacagcggc 10800
ttggtgcggt tggggttcac gatgcccgac aggacttcga ggctgcactt gctgttgcac 10860
agttcggcga tgtagatacc gacaggccac agggccgatt gcagttcctg ctccagcgct 10920
tgcacgttgg tcatcaggcg gctggtgcgg ttgaagatca gcacgcggtt gggcaggctg 10980
aggacgagcg cgtatacgcc atccttcttg gtctgcccat acaccggcca cgtcacattc 11040
ttgtgcatct tgccgttgtt aacttcctgc cagtgcttga gcttcatgac agtcttttct 11100
tcgccacggt tagcggtggc acctacgaag ttccagatac gttcgaccat tggtcacctc 11160
agatcttgat gatacggagt ttacgcaacg tccagatgac gaagcggagg aaccagctac 11220
ccttcggcgg gcgtgggttg gtgctgttcg gcaacgccca tgcgtagtcg tatgccttgc 11280
ggtacttgaa ccggcaatca accggcacct tctgcaacat cagcggcagg cggtgcaggc 11340
cacgttggaa gccgaggttc tcgtagtaag cgtgctgaga cattagcgca cctccaagaa 11400
tgcacggttg tagagttcag ggttcagcca ctggcggcgg tcgagcatgg ccggggtgtc 11460
accgttctta ccgtcaacca gcttgcacag gttggggatg aagcggcgca gctcgtgggc 11520
gaagctcgcg tccatacggt tctcgatgga catgtggcgc aggtgctcag gcaggcgagt 11580
ctcggtcgcg gtgccctcga agcgggtgcc ggggttctgg acttccaaca cgaagtcaca 11640
ggcacgggcc tcgttctgcg ggcgcacgtc ggtgacgacg gccagcaggt tcaggttggc 11700
acctgccacc tcgttcagct cctcggccag acgacgaacc caaaagtcag ggtcgatgcg 11760
gcgagcggct tgcccgagga taatcagcag gtcacggcca gagcactgga tgatgctgcc 11820
ttccttggtg tggtcgccgt acactacgat gcggttggcg ctgttgcgag cttgcaggcc 11880
cagctcgtgg cctattgcgt cgagccattc gttcatgttg ctgtgcggaa ggccacgttg 11940
gttcagccac acttcgagca tgaacgggtt gaacttgaac tcacccggca cgtctttcag 12000
ctcgtcgatg aagcggcgct cacaggccgt gacgaacacg gtcatgtcac gcaacgcctt 12060
ggcgaagctg gtacgctgga tggtgtagcc acgtcggtgc atctcgttga tgatgacgtc 12120
tgctgcgtag tctttaccgg agcgcttggc tccattcatt cctagtacaa acatttgatg 12180
atacctcgtt gggtttggtt gggggcaccc tcacgcaagg cgagggctaa ggttcacttg 12240
agaacgttct ggatctcagg taggaagtca gcaaggctga cacctcggtc aacgatcacc 12300
gggaagtaga acgacccgat gcggttgcac agttgtggga cgacggcatc cagataccga 12360
ccttgctcgc gcagcatacc gagacgaaca acgtcgtcct ctggtaggcg tcggcggcgg 12420
acggcaatgt gctgtcggtg cggcgaggta cggaggtgca acacaatggt cggcgggttt 12480
gcccgcagct cctccatgcc cttgtcgatc agcgacatgc gaatggccag ctcctcgaag 12540
tcgctgtcca ccacttggcg catctcgtcg gctacggtct ggacggtgcc catgtcaacg 12600
acacggacgg actcacccag caccttcacc aattgctcag cgatggtagt acgaccggag 12660
gcccggccac ctaccacaac gattaccttg tccattacag actcccagtc cagcgaccct 12720
tggcgtcgag acgcatcggg atcagttgag gttggctgtc gatgatgact gcacaaccga 12780
ggatcggctt gccatggtag ttctccccgt aggcgaaggc cgggtggtca gggtcgatca 12840
ggcagccggt aatcatggcc cagtattgct tgccggtgga ctgagcatat tccagttgga 12900
acttgccatg ctcatgacct acgacgaggt tctggttcag gtgggctgcc acgcccagct 12960
tgttgctgcc ggcctgatga cggaagttcg tcacctgacc attcggcaac tggatctgcc 13020
actcgaagtt ccagctccag ccctgaccgc caccatcagg gaacagcacc tcacggtagg 13080
ttcgcaggta ctcgacaggg atgccgaagt gcttggcctt gcggtacagc agggagccgt 13140
ggttcgagtg gcacagcagc atgcgcggga agatcttctc cagcttgtgc aggaagacac 13200
gcgcttcacg cagctccttg ccagcgctgt cgaggttcgg gtcgctgtcg tggaacgaca 13260
tggcgtggcc gtcagtctcg tcaccttcgt tgataaccag cgtcggcttg tagtgcgcgg 13320
cgacggcgat caggaagtcg agggcgtcag ggtgatggta cggtgcatgc aggtcaggga 13380
tgacgaggat gcgggacgag tcggcctcga agtcatagcc gaggaagtcc tcgggctttg 13440
gctctttcag ctcacgcatg ttcttgatga cgcggttagc cttcgtcaag gtcatgtagt 13500
gctcgccgtt cttcttcgtc tcgtcgaact gacgcgacca gtaccgggcc agctcacgcg 13560
acacgatggt gccgtgggtg ttggcggtca agacatctgc catcttcttg aagttgacag 13620
cgttggtttc cgggtcggtg gcacgcaggc gagctgccag tacctcctcg tcggtgaagc 13680
gttggcgaat gcgttgagac attgagcctc ctatttcggg agggaagcct tcacagtgtt 13740
ggccgtcttc ttgcgagcgg cggcgttctt cttgttccgg gcctccgttg gtgtgaggaa 13800
cgtgggatgc acgtagttgg tctgtggcac cttgtgggtt tcgtagtacg ccaccagccc 13860
cttgaggatg gcgagcactt cgttaggcgt cttggcaccg ccccacctga tgcacaggtt 13920
tcggatcttg ccctccatgc cgttgatggc acggggcaac gccgcccgga tgattccggt 13980
ttggtggttg tgatccacca cgacgttcga gctggtcatt gcacgcaggt cgcgcccggt 14040
gatcgggcac ttgttgcctt gcttggccat cagctctttc ttgattgctg gtaggtcagc 14100
ggcctttact ttcactcgtt ccatgcggta tcactcccca tcggacagtg gctgcttgct 14160
cgccagaggt cacccttctt ggtctgcatc cacgcgagac ggccctgctc cagcatgcgc 14220
tggtaggcgg tcagttgcat ggtgccacca cggaagttca gagcagggtg agtacccggc 14280
ccgtagtatt ccttgtaggc attgagcacg gcgtagtaca gttccttctc ggagttgcac 14340
ttgtccagca gctcgtaggc atacgacggc cccttgcctt tcaggccaga gtagttgtcg 14400
gcgtcgtcgc ccatgatgat ctgagcgtag aagaacttga ggccgcagcc tttcaagtca 14460
gttacgctca cggactcctt ccgacctacg catacgcgct tggtcttctg ttgtcctgcc 14520
ttcgcaccac gcagccacgt atcatacggg ccgggatgca ccttcggatt gacaggctcg 14580
ccaccgacca gcggccagtg ctcgtagtcg ttgacctcgt taaccttggt cttcggccag 14640
agttcgccga gcttgtcgtt gaagcgcttg acctgcttgc gaggatcgta gtgccagcca 14700
cctgtgatac cgctgtcctt gtcggaggag cagaccacag tgttgccgaa ctcacgatgc 14760
tcaggcgagc caacctcgac gcccagcgca gccgctgcgt catacacggc gatgctgatt 14820
aggtcgtcgg cttcttctcc gtccgacatg atggcaccca gtagacgttg cacgtcttcc 14880
ttgagttcat agaagtacgg aggtttgtca gggttacgtt gtcccttgta gtcctcggtg 14940
aaggcgatgt ccagacggaa gttctttgcg ctgtcagtca tgaacagctt ggcagcgtca 15000
cagccagcag ccgtgatcca tgcgttgagt tccttacaca acatctccca cgcatcttca 15060
tactgcgggg tgtccttgag cgacttggcg tgcccttcct ccacgaggta gagcgcctgc 15120
gtatagctca ggctgtagtg tgctgccact gcgtacccga tctggtacgg caacaggtcg 15180
gcgtcaatga gcgcaaccat gttgccctcc gtgggccaca gcttatagtg aatgtcgcgc 15240
tcggcaatct cgccgccgta gttgaaacca tcggtcatca ttaacctcca ataatgagga 15300
catgataatg atgataatgg tgtggacaaa ataaagcccc accctagttt agggtgaggc 15360
tactggcgca ggccggagaa ttaaccctcg aaggattctt cttcggcgac cggggcttcg 15420
gcttcgggtt cagcggctgc ttcttccttg gccgggacac cgacttcctt gtacagcagg 15480
taggcggcga ccacgttggc cttggcgatc aggcccttgt cggtcgaacc ttcggcggcg 15540
gtggcgcgag cgaacgacag accttcggcg aagaacttca gggtgcccag ctcggcttgc 15600
gcttcggctt cggtcttgtg ggctttctta ccaaccagct caccggactg ctcgtcgatg 15660
acgacgaact ggtctacgaa tttgccagca acaacggtgg ccagagcttt gacgatcaga 15720
ttaacttggg acatgagaca cctctctttc atttgggatg ggcgagcaac attgctctat 15780
ctatactgca acttaaagct ggccctgcca ccgctggtta tctaccagtg ggccttagca 15840
cttgctttat ctatactgca acttaaagca gcacggtgta gcaccctgcc cggttcgacc 15900
ttgctcaatg agttcggttc gaccatgggg tgctatcctt gatgccttgt gcttaggtcg 15960
gtgcaactct tggctcaggc ttaccgcaag gggaatgagc tgtggttgac cacggacttg 16020
ggcagactgt ctcacagtgt gagactacta cggactgaca ctatgcgacg ttatgcgcgg 16080
tcagttaagc gatgcgtttc acacgcacga ctgagtgctc ggggaagtcg tagttgactc 16140
gatccccggc agcgtcacgg aagttcacgc agacgaagcc gtcacggtag acgacatgca 16200
ggtcttcggt gccgacgcct tccacgaagg ttgggccggt gtacgaatcc gcctgctcga 16260
cggtggtaac ttccgcgtcg tcagccttgg ccagacgtgc gtggccagcg cggatagcgc 16320
cagccgggtt caggtggatc tggacgagac gagctttcat tcgccgaact cctgttcttc 16380
atcgagctgc tcgaccttgc ccgctggctg ctgaggcttc tgctcaccgg agtcatcacc 16440
ggactcgtcg tccgacttct tctccttgcg agtgtagcgc tccttgtccg cgtcgaagat 16500
cgactggatc agctcctgcg acgggtgagt accggccttg aactcctcgg tttccatgac 16560
ggtttcacgg aactcgcgga cagggtgcag gcgctccagc acttccttgg tcagctcgcc 16620
ttccatcagg aagccgggcg caccttcgag cggggcgaag gccggggcgt tctgcaacag 16680
ctccagcgtg tcttcgccga tctcggccat gttggagaag ttgatgaact tcggcgtgcc 16740
atcttcgttg gtttccttgc cgcccttgag cgacagagac acgagctggt tgcccatggt 16800
ggtgaagcct ttgtgcttgg ccatgccacc catcgccggg atgaaggtct tgtgcaggaa 16860
cgacttgtcg cccttcttga gcgggaagcc cttcacgaag aacatcgggc tgccgtcgtc 16920
cagcttgtct tccttaccca gcaggtggaa gatagcgaac gcatacggag ctggggcttt 16980
cacttcaccc ttgaagactt cgctgaacga gccaacacgg atcagtgccc acaggcgggc 17040
gttgcgggtg cccactttgg gctgcttgaa ctggctcacc gtttcggcaa cggcaccacc 17100
atagtcaaat gcgtcggaca tgtaacctcc aatgatgttg agagcgaact tgctctatct 17160
atactgcaac ttaaaactgt gagactaagc cacctagggt gtgagacttt tcctaggtgg 17220
ctcgctcatt agtgcgtatc gtgccacgac ttaccgatct tatattcccc ggccagcggg 17280
atgttcagct tgaacaactc gccagtcttg gtcatcgtct cggcaaggat ctgacctgcc 17340
ttgtggtact tgcgggagca cacgatgatg ccgtccttcg cagacacctt gctggcagca 17400
gaccacatgc gaccgtcaac gtctacatgc acacgcttct cctcgacatc gaagacagcc 17460
ttgatggcct tcttctcgtc ctgcccttcg gccacggtgt aagggagttc gtactcgatg 17520
ctgagcactt cctcctctgg cacctccatc tgcacctcgt catgcacgtt ggcaatgaag 17580
cgaggatggc ccagcttgtc gagtgcaatg ccctcggact tcatctggtt ctcagcgagg 17640
cacagaccgt acttcatggt cagggagccg gtcatctgga gcaacacgtt caacacggtg 17700
tgaaccttga tcttattacc ggagcggcgg atgcggcccc agcgtccgtc gatggcatgc 17760
aggtagccgt actggttacc ctctgcttcg aggcggtcga tcagtgcagc cagcgttggc 17820
agctcacgac ggaagcgagc aacacgctgc tccatctcgg cttcgctgat accacacacg 17880
cgggcaaggt tctttatgcc agagccatac aggaatgcgt agatgaatgt cttcgcagtg 17940
tcacgcttga gcaaaccagc gagctgttgg ttgtggctgt ggatgtcacc gtggagcacg 18000
acctcgatgt acgtcgggtc attcatgaag tgcgccaaca tgcgcagctc cagacccgag 18060
ccgtcgcagc ccagcaccat catgcccttg cctgcaatga acaggtggcg caatgggtgc 18120
aggccgcgag acgggatgtt cacgacgtac ttgtgtcgca tgcggaacgt gttggtgccg 18180
atggagaatg cggcggcagg tacgcgccac tcctcgtcag cacttaccgg ccactcaccc 18240
atgcgggcga agtagtcctg agcctcgcag ctatgctcgc ggttgaatgc tcgggccatc 18300
aggccacgac actcacgctt gccgttcgct tgcttcggcc actccttgtg ctcggcgaag 18360
tattccatat cgccgacgtt caggatctgg ctccgacggg agcgcaggac gtaccagctt 18420
accagccctt gcaggaactc ggggacggag ccatcacgct cggcccacgc cttcaacgac 18480
gcttcgtcaa tcttgccaga ccatggcttc ggtggctcgc cagacgggtt ctcgtccgcg 18540
ttctccatcc actcctcgtc accatcagag aagttaacac cgcgccaccc gcgaggatag 18600
agcacgttct ctttcatgta ttcgaggttg ccgaggccga tctgctcgta cacgataggc 18660
gtgaacgggc cagcgaccag cgggtctttg gtgtcgttga cgttgccgac catctcgggg 18720
aacaccttct tgaggttggc cgagtagtcg ccggacttgg ttacgatggc ccacattgtt 18780
gctcgcttgc cgatccgttg ttcggtgcgg gtaaggagct gggtcagggc ttgacgtagc 18840
cacgccggat cgtcgttgaa ggctttctgg taagcgttgc aggtggcggt tatgtgagcc 18900
atcttcatcg gctcggtcac cagacggtct gggatcgctg ggcggatctt gacagcgatg 18960
tcttccatct gcttgccgag catcttccag tcttcccacg cttggtgcat gtccagacgg 19020
aaaccacgca gcgcctgacg agtgatcgcc agtgccacct gagtctccat cctaagggca 19080
gaggagatgc cgaagcgggt gtccttgttg acgccacgct tgacagcctc ggcccagtcg 19140
ccgtgcatca gccagaagaa catgtccttg ccgatgatcg tatcctctac gcatcggtgg 19200
atcatgtggt cggtcaggtg cgaccagtcc tcgttctctg gcttgaagcg gccaatgcgg 19260
atgccgtgcg cagcaatgct gtgcggcccc acgttgccca cgcccatggc aaacgcctgc 19320
ggtggcggct tgcggtcagg gttggtgagc tgggagatca gcatggtgtc catcatgcgc 19380
atcggaaagt acgcttgatg cgggcggtct ttgccacgac gctcaaggta attgtacttc 19440
cagacgtggg gccacacgta ctccagaagg aacacgtcat agcccacgcc gttctggaac 19500
accagcgact ccgcttccat catggcatgc agggcatctt cgaggtagcc gtcttgctgg 19560
tcctcttgat ccagcttcac ccgtgcagcg ttgcgcttct cgtagggatc gaagaacacg 19620
aacgtttcgc cagtgaaggc gtcggtcagt acgatctcat gcacgcacga tgggtcgttg 19680
taacgaaggt cgggcagcaa gccctcggct tcactatcca cgatccagaa gcggccttcg 19740
ccgctgatct tacgctggcc ctttggccac ttgctcgggt agaactgcaa tgcgtccatg 19800
atggttactc ctgcgggaag atgtcgtctt gctcgggctt cggttgcggg ttgattgcat 19860
cccacttggc ctgcatgtag tcgatgcggc cttgggccag accttcgcgg gttacgcgca 19920
ggccgtgctt gtcaggatgg aacatcccga ggaacaccgg ggtggtgccg cacatgacga 19980
actgattcag gttgcaatca tgctgcgcga cgaggttccc ggcgtcatgt tccgtgtcat 20040
aaaacacgat gtcgagccga agccggggaa gctgtacgac cagtcggacg cagtgatctt 20100
cttcggtagg ctcggacggc gcacaggcgg cggcgcgggg atcgtcgagg tagtcgttgt 20160
cgctcgttgc ttttgggtgc ggctcgccag tccagtacga cttgacgacg tgcgcatctt 20220
cgagacgggc gacgagatca gcgaggtcgc tgatgctgta ctcttgcaca ccgacggcga 20280
tgtcgatgtc cttggcgtta cggtcgtagt ggacatcacg ggcgaagcct ccgcagatga 20340
caccttgaaa gccacactgg ctgaggatgt cgaggattgg gtaagcacct gcaagcaggg 20400
cacggttgtg gtgattcatg ggggcacctc actaggttgg gttgttacct tttaagcccc 20460
acctccgagg agatggggca gggtgttaca gctcggggcc ttcgacttcg atgacgccta 20520
cgtcgaggta ggggtaggct tcctgcaact gctcgcggat ctggttggcg agcttgtcac 20580
agtcggcgtc gtcttcgagg tgatcgactt cgagggtcag ggtcatgcgg gccatggggc 20640
ctccttaacg aatggagatg gacaggtcgt actgggtacg ggatttgtag cacacggatg 20700
cggcgacgga cagcacgagg aactcgtcgt ccgggtgctg cttggccaga cggccagctt 20760
cctcggtcgc ctcttgcagg gtcaggtgca gcttggtggg caggccaccg ttcttgcgcc 20820
acacgtagaa ctcaccgaga tccgacacgt cgctggccgg tggcaggctg agctgctggg 20880
cctcggtgag cagaccacgg ttgaacgtca tgttgcacgc gcaggtgtag acgtgggcgt 20940
tggccttcca gtgcgcaggc aggaacatgc tgcggaagta cggcaggctg tactgctggg 21000
tcacgccgtt gcggaactcg atgaatgcac cgttcatggt gacggtcttc accttgccga 21060
tccacatgtg ccgggtggca ccctcgcggt aatagatgac ttccttgccc tccagcgaca 21120
ggacagcgcg gtcgtcgtgg cgggtgatgg tgtcggcgat ggtcttatgg gtcatggtca 21180
atcctcatta gttggggggc gaagcgagac tgcttcccag tagtctcacg ctgtgagact 21240
accagtgaaa ctagctctgt tgcatggact gggtgacagc caccttatcc agaacccact 21300
tggtcagctt gcggcactga tccgcatcgc ggtcttgcag cacgcactcc agagggaagg 21360
cgtagccatt catcccagca ggcaagggcg tcaccgcaga taggtagatg cccagcgggc 21420
tagtccacga ccagttgatg cgccactcga tgtacttgcc gaggacacgc accgcatcgg 21480
ctggacggat gccagccttg gtcagtacct cgaacgcacc gcccttcacc ttggacacga 21540
aggtcgaaag catggcgctg tggatgtcgc gggcagtgtg cgtcacgtcg ttgaagttac 21600
gtgcgctgat ggtcaccgcc tccagagcct cgtcagtgcc gatggcttgc aggtctgcga 21660
tggatacctt gcccatcagc aggtcggtca ggtgttcgcg tactttgtaa gtgttcatct 21720
tgattcctcg tagttggggg cgagggcacg aacgtaccct ctatctatac agcaacttaa 21780
agtctcacag cgtgagacta ataggcttgt ggttcgtcca gatcaaacgg gacatcaccg 21840
gggtctacga ccggctcggt cagtggtact ggtgcggtgc gattgccacg gctttcacgg 21900
gtgcgctgtg ggtcatcacc ttggtcgaag ttgtcacggg cacgctgctc tggtggcttg 21960
ttgtctcctt tgcggcctac ctccggcagt tcgtatacac cctccagctc ggtgtacttg 22020
ccagtcctga tgtccttctc tgccaccacc acgctgccta ccatgtggcc gatgcctcgg 22080
ttcttgaggt tacggtacag ggtgatgcac ttgtggcgga agacttcggc catggtgtta 22140
cgctcgattc cccacacggc attggcccaa aaggtaatgg agccagcacc acggaagtca 22200
ccctcgtaca cctcgccacc ttgagtgtgg ccgatgcgtc cgttgccccc gcctaccttg 22260
ataaggtgag acagcaggaa gatgttaacg gcgttctcgt ccttgaatgt cccgatgcgc 22320
ttcatcgttt cgtcaatcgc ctgcacgcca gtggccactt ggcccttgtc gttcttgtgc 22380
tcgaaggcag tcaggttgtc gatgacgaag tatttgtagc ccatggacag cgcgtcctgt 22440
agcacctcca tcaccgcatc cacgtccttg ctaccgccga ggtcagcgat cagcaatcgg 22500
tcttggttgt cgagcatgtc gagtgcgtcg tccaagtcct gttgcgtgta gtcgcgggcc 22560
gggttgtact cagcgcccag ctctacctcc tcgggagttt gcggcgggga gttgaagtcc 22620
ttgccgacca gcatgccagc gaaggtacga gccacctcct ctttctggtt ctccagatag 22680
acaacgacga catcttcgcc catgtccatg aggttggcga cgtgcgccat ggtggtgtcg 22740
gtcttgccca caccagtgcc agcgccccac acggcgaggt agtgcagccg cacgccaaag 22800
gtgatcttgt tgaatccctt gagccagtac gacttgccca tctccaccat ctggcgggcc 22860
ttggccttga tgtcacccac acgcttgagt ttgcccttga cctgatactc cgccgcgttg 22920
aataccgcac tcacaaactc ggagtcgcgg ccattcttga ggcagtcgtt cgggtctttg 22980
ttgccgtgtg gcatggtcag cttcttgagc gtcgggccgt tgcgcaggag cttggacacc 23040
tcgcgggcca gcttctcgcc cgtgtcgtcg tcatcaaagg cgaacaccac ggtcttgaac 23100
gagcacagaa actccttgtg cttgatgaac tcctccagcg cctgctcacc cttgttcggg 23160
ccgtacacat ggaacagctt gaggccatcc agattggtgc gggagccgag gccatcgttc 23220
aggccgttca gttccttaac catcatctgc tgggttgctg ccacgtcgca ctcaccgcca 23280
acgaggacgc agatgccacg gcgttggccg ctgtctgcga tgcgcttggt tgcttgcatg 23340
ccgaacaggt cttgatcccc gaacagcttg ccgagatgcc caaaggagaa gtccttcggc 23400
agggtgcggc acttggcacc gaccagctcc ccttcctcat agcgaggata gtagtggcgg 23460
ttaaccttgc ctgcttcgtc gtgccccacg cggataccat acagcgcagc gattgcacca 23520
tggatgccac gggtcacaag gtgagaacgt ttcaggtcgc cgaaccattc gacttcccga 23580
tcccattcca cctgcttctc gtcgcgctca gcttcggtca tcacttccca gcgatcagcc 23640
atgcgcatgc cgcccaatgc caaggcacgg agcagcgggt ctttcagctt gccttcgtgt 23700
tccatctgac ggaactcgcc ggggctgtac ttgatgtcgc cagtgattgg caactggtcg 23760
attggggtgg cctcacccgc agcctcgtag tagggcttgc ctgtcttgtg gaagtgacca 23820
cgagaacagt agccgccacc gtccttgaag cggataagat ggttgcccgt cttgtcgtgt 23880
ccgcactcgc ggcacttgac acacggttcg ttcttgagga tctggctcat gcgtgtttct 23940
ccaccgacag ccagccgacc cgcttcatct tccgttgagc tgcgtaacgt tcctttcggg 24000
cgtcaggctc ttggttgcgg cggtctttct tacggctgat cttttcgtct actcgggaca 24060
tttctgtcac tcctaaaggg ttggttatct atgctgctac ttaatagaag tcatcaggct 24120
ctacgtcgaa cagagtctca cactgtgaga caagatcgtc atagctgatg tcgtcgtcga 24180
actcgtggcc gcaacggcac tcacctgaga tgcgcacgtc gtgctcctta gatgcctcgc 24240
gcacggctgt ctcgatgttg tacgttactt gggtcttgcc aagccagtta gtgtacccat 24300
aggcaacgac catattctta tgacggcaga tgtttcttct catgactgct attccttcta 24360
gatgatgata agtggagtat ggtagccact gtaactacta gacctactcc ctactactaa 24420
ccctaatggt cactactaag gactactggt cactactggt tgctactggt ggattctcct 24480
atactgctac ttaattaatt ctcacagaaa agtctcacag tgtgagacag aacgaagaaa 24540
gcccgctcag atttctccga acgggcgata ataaatcagg cgaaaatgta cttggactct 24600
cgtacagtct ccagatccag cgtaccagtg gccgggagat ccagctcaag gtcagccatc 24660
actcggtcgc actgagcttc gtagaaatcc ttaacaacgt cgtgcttctg gtacatgtca 24720
acgaaggaat ctacaagaat cttgcgcagt ttggcggtgt tgccagcgtg cgtaccgaac 24780
gagtcgtgga taactgcgat gctgtggata ccgttgttgc tgaaaccttc ggtcgccagc 24840
accagatggc ttgcgtccat gctgtgaacg aagttaggag cagccgacga cttcatggca 24900
cgagccgaaa gctgtgggtt ctcctcgcgg atggtgaaga acgtgtcgcc catcatctgc 24960
gtcttgacac ggcgagcggt gctgtcgtag atagcctgat gcacgatgaa cccggtagga 25020
gtcacatgct caagcggtac gttgcggatc gaaacttcgt gggtcacctt cttgatgaac 25080
ttcatcgccg cacgagctgc aacaacgacg tgaccgatac cttcccaagt cagaccagac 25140
gcgaacagct cggcttgcat ccggctcatg ctacccttgc catcgttgaa attatgcacg 25200
gcagtaggct tgcggaactg ggcacgggcc ttgtcgttct cgtccttctg gagcgagtcc 25260
agatgctgag ccatggactc acggcaggtc atctgagacg aaccatacgg cagggtcatt 25320
actggcttct tgcacaggct acgggtcacg ccgatgcgca gccactcggt agcgatcatc 25380
tgcgactcaa gcgcgttcaa ggtgaacggt ggagccatgg cagaatccca cacgccgcca 25440
tcttctacga ttgccttgtg gcgggcagcg gccttgctca gcatgcgctc gaacgactcg 25500
cacggaacgt ggccgtccac gatgtcttcc atccagcggc gcacgatctt ggctacagcg 25560
ccgtagatgt cctgtggtgt agtacccggc acgaggttaa cttccttgcc gcctacttcg 25620
tcgcgcagca tggcgctgta gtgctggata ccggagcagg aaccatccat tgccaccgca 25680
acgcggctca ggaacttctc aggtgcctca gtctcacagt gtgagacaaa atcggcgtac 25740
tcaaggcacc atgcgaggaa ctgccacggc ttgtcggcct gagtccagtc agtgaaggtc 25800
agcgggtcgg cggcgatgtc gaggcacagg tcaatgaacg agtcttcact gaccagcgcc 25860
acgcgctcgt caaactcctt cttgtcccat ccccacacgt tcgcgccgtg aaccttgaac 25920
caatattcgc cttcgtctcc cagcgccatc gcgttagcga actggcacag cgctttctgc 25980
aagtcgccgc cctgtggcga gatcagcgag gattgcgcat agacacgacc acggaagtcg 26040
caggtataca cgaagtgcat acgctcaaag tcttgatact gcaagccttg gtcaatggtg 26100
gccgatgcct cacggtactt ggccttacgc tcggcctcgt cgttgtaggt cttggccgct 26160
tccatcttcc acgccttgaa agcttcttgt tgctcaggct caaggacgtc catcagctcc 26220
ttgccgcgaa gctcggagaa catcgacgga accgggcacg gaggcgttgc cagcttctca 26280
cgcgcaggca gggccaacgg caggccgcgc agacgcgcct cgtttgcaac ctgcaagata 26340
cgcttgttaa cgcgccactc tacgccctgc aatgcgttca cagccgcata gacgctcggc 26400
atttgcttgc gggtcaggcg cgaaagcacc ttgtggtcac ggcacttaac gagcggcatg 26460
ccacgttgca tcttgggcgt atgccagcca cctgagcgcg ggccagtcca atcaagcgga 26520
cgaacgacac aaggcgcata agcaggcgac atttcaccca ctacggcctt gtactcctca 26580
atccattgtt ccattgcctc tgtggcttca atgactacca cttcatcacg aacaccccga 26640
tggatgttac gcttttggat aacaggcacg ccattgagca acatgttgtt ggcaaacagc 26700
tcaatgagct tagagccaag gttgaaaata tcgttgtcgc tccagcccac aaaacgctca 26760
aggtctaccc cgaacttgtc tttgcgggtc tggtcttcac tcagcagctt ttcagcatgc 26820
accatcacgt cgtggccgtg gccgtacttc tgagacgatt ggcgcttgag ggattctttg 26880
attgcctgaa tgtacttagg cgcggcgttc tccagcttgg taaaacgcac ctcgtcttca 26940
atacggcgac cgatagtctc ggccagattc tgcgcggtct ggttaggatt catcagacca 27000
tcaaagatgc acttgattgc aatgtagcta ctcacctcag ttggcatgca acggagatgc 27060
acgaggcttg cggacggacg cccgcgacgg ccttcgtagt agtctagata ggcttggatg 27120
ccatcggcca tcggcttgac gaagttgcga gtcagacgac ggaaccaatc ggtgtcagaa 27180
gcggcaccag cggcaatggc gcggtcgttg ttgcgaatga atcgctccat acctgcgccg 27240
tgcattttgg cctctagggc cagttgtgtg tcaagcatag tcattcctta cttggattcg 27300
gcgcgtaccc cgtttgctat gcaatagatg gtatcgcgct cggtattggt caagcagccc 27360
tgatagagcc acttataata caggttctta tccaatgagc gcaagcgtgc ggcgaactgc 27420
gcccgctgtt tgttcaacgg gtcagtgtag attgccatca cgcgcttctc aagctcggcg 27480
aagtccagtt gcagcgaggt cggccagctt tcgtctagac tcagttgagt ttcgtcgtgg 27540
tactggcgcg acttcaatgc accaaacagg ctaggcccga tcgaattagc gtccattgaa 27600
tgaacccaat ttgcggcaat gctatgttgc ttcatggcgt gatgttcctg ttattcgacc 27660
aatgttagtc atagatgcca ccattctaga tggcatctag tctaccactg tgagacttat 27720
tcagcggcca gcaagttgtc gcgggctgct accagaagat caaaggcttc gtgaccgttg 27780
ccatagccag ccttgaccag accacggaaa gcggccttga tcttgctttc cgacttcgcg 27840
tcatcctcgg agataccgag cacgacagcc gggtttttgt gcttgaactg tggcagtacc 27900
ggagcactag cgcccttgtt gtactgagtt tgcgcgtctt gcatctcctt gatttgagcc 27960
agaagctcgg agatttgctt gcgcaggtcg gcgttatcgg ccagcaattg cttgtcagcc 28020
tcgccgcccg ctacaggtgc gacaggagcc gaaggctctt gcgacccgcc gctaggcgcg 28080
ctattttcgc ccgcttcacc ttctacgccc ggcgcttgtg gcagttgttg cagcgagttt 28140
tcaccgtctt gcttgctggt gtcaatctgc tgctgcttag gcgcgatagg ctcgggattg 28200
agcaagagat tcagcgtggt agtggtcagc gagccattgc tagccagctc ggcggccttc 28260
tctaacactt cgtcgtctgc ctgagtagcc agcgcataca gtacgcgcat gctaaccccg 28320
gtaaagcggt cgtcattacc gaacgtctcg gcaaccttca tcagcttgta agcctgcgct 28380
ttcttgatgg agaagtgagc gaatgcccaa tccaagaagg ccgtagcctt ctcgccttgc 28440
tccttgaact cgcaattagc ttcgatcaga agtttgccaa ccttgaccga ttcaagctgg 28500
atattgtcaa gagattggtt aatctcaatg acaatttctt ccatgcgagt tacggccagt 28560
tctacgttgg tgttttcgat agtcatgatg ttagttcctt gggtattgtt cggccaatat 28620
tagccaccga tgcacccgcc tacgtggtgc atctagtcta ctactggttt gttgggagcc 28680
agatacagcg gcagttcatc agtaccgcta ggctgtaggt tccggctgct acttgacagt 28740
tacggcaatg gcgaaagcgc ttcatggttt gagcaccatg tagacgacat cgggttgccc 28800
ttctgtccag ttcggttcgc gcttgtactc agtgaatccg tgccgcttgt agaagtcagg 28860
caggaagcca tcgaagcaat ccagcgtttt accgccttct tgaatcgcct tctgtacaag 28920
ccagctaccc gagacgccca agctcacaag agcctgaatc tcgccgtcaa tgacagcaaa 28980
catgccggta agacgctggc cgtccttcac gagaaacagc tttgcgtagt gcttatagaa 29040
catctcttga atgtccttgt gtggcgtgtt tgggtagcgt tctttaaact tgaggaagcg 29100
ctgagccagt gcgctaacga agtcgtcagc cttggtcagt gcctcaccat gtttatgcac 29160
tcggcgagcg tgtccaagag cgtagtagaa cttggtaacg tctgccatct gaatgataat 29220
gctagccatg gttgttgctc ctatgatggt ttgagtgttt cggaaagccc tctgttacca 29280
aagggcagac ctgaaacaaa caatccaagg aacatcacta atccagattg ttaaagagcg 29340
tatcggctag ctagttgcta gctgatgtcg gtcattctac gtagtgctta gctacctgtc 29400
aacaactatt ttcaatcttt ttcgttgtct tgtgcgagcc agtgagacgc cgtatctagc 29460
gcgtcctcct tgtcgcttgt gtggtagtcc tctgatgggt tgcggtagac acggccaaag 29520
gctgagatgt tctcaaacca taccgcgtac tcctcccatt catcgttcca ccatacccgc 29580
acgcggcgag tgagtgttac cagtgtgcta ggcgcttctt gcgagtgtac tagcttcatg 29640
ctgcaacccc gaggataacc agcgaggcga taactacagg cgttagtagt gccacgatcc 29700
cgcttgctgt aagcaacgag tagaacaagg cagcatagcc gtatctaaac aggtagtagg 29760
tcatagcgta gtctcccatt gtgagacaag tagctaagca ctacgtagag cgaccgagtt 29820
gttaaagagc gtatcaagta gctagtggct aggccgtgtc gcgtcttgat ggttgccatt 29880
ctacagcctt cctacatggt gtcaactacc tttcgcaatt attttctaca tgactgcaac 29940
ttaattccct accgagtagc gcccgagtta gctaccgagc cgcaacccta ggccgctggc 30000
catcgccctg acctaccctt acaccttcct actaccgagt agagcaccta ccagacgcta 30060
ccagcggcta ccgagtaagg aaccgagtta gcacccgaga tgcacccgag gcagctacca 30120
gcggctacca gtggctacca tggtggaacc ttgtaagcat gcgagatgca acaaacagat 30180
gccgcccggt gcgtctggtg tcaactgctt tcggctgatt atttcttgtc tcacactgtg 30240
agactgccag cctgtcacca gtcctacccg attagctacc tgtctgcttg cgtatcagcc 30300
tcacagtgcg cccgattgag cgcggtagcc atcgtctaac ccttaccctt gcatctcccc 30360
tactgcctag gcaggccgct agcagctacc gaggcagcta ccgaggtggc acccggtcac 30420
cttccaagag gcaagggcac ccccttcgag ccaccgagtc gcccgagggt ggcacggggg 30480
aatccggcgg cggctaccgg cgggaaaccc ctcacacgta caaaccaatt ttgattctgg 30540
tctgctagcg agaagccacc gaggtagcca ccgagatcac tctcttaatc ttccttgtca 30600
tacccgttca gggcattaca caggtctact gcttccgagt agtctaccag tccctgcgtc 30660
aagccaccta ctgacgatgc gtcaacaagc ggatgctggc agcgaactgg ttcacttaca 30720
acggatgact gagcacagcc cagtacggac aggctcaggc acaggagtat cgcggaacgc 30780
aggagcttca tcaagcacct ccttcacctt gagtctatct gtctgtgcct tggtagccac 30840
cttgggcacc tgagtgcgca gggacttgac cttggcttcg gactgctcca gcttctcctt 30900
gtagtcatca cgttccttgc ggtaggtgat ggctctatcc cattgagaat aggcaagaag 30960
ggctaggagc aggatggtag cgatcgtcag gagcttctgt ctcatagacc actcctgcac 31020
aatgctgcat cgcttgctcg tctgttgccc agtcccttgg acggatagcc accaatggta 31080
gccttatagc cgggagccat cccgtacttg cccttccatg gggcttcgat tgcatcgcag 31140
gcagccttcc agttgcgagc acgtaggtgc tgcatgtaag gcgcttccac gtagctgttg 31200
gtgaactgcg agccacgcca cccggacttc ccgaggttga tagcggtgct ggtgaaacca 31260
gccactaccg tgtcgggagc gcccttcggc atgtacttca agacagcttg catgtactcg 31320
ttcgtggtac ggagcaagtc cttgtcgcac tccagttggg tgtactgcat cttagggata 31380
ccctgagtct gcccgtaaca ccacgtctta accccgccct gatcgaggta cggggtgagg 31440
gataggccct ccttctcggc aacatggacg ctagctgttg ctagcgccac cgtcgcaccg 31500
agggccagaa gtcgttgctt taacacgatc cttcctccat gcggcgaact tcattactaa 31560
gaagacagtc gagagcagga agtagatccc gctcactgct gccacgatgt ctggtaaact 31620
ccatcccatt atgctcacgc ccacaacagc agcagaggcg gtgctgttgc cgatagtacc 31680
ggcatcgtcc gccagttgct gcaagattgt cattgtgcct cctccgtagt tctttggttc 31740
agtaaggaac ccgaaggcgg tgctggaggc gagcgcttcg cgctacaagg gactctcagt 31800
gccttcgagt ggttatggtg ctgcggggcg gtcgagcacc cacaggttgc cgttgttcag 31860
catgttgacc atgcggccag caggaacagc agcggcccag tcaccttcgc agataaactg 31920
ggtggcagcg ccttgggtca cggtcaatgc tgcaacgcca gcgacagcgc actggatgct 31980
cttggtcatc gcagcaaagc tgatcttctg gtcggtgcca ttgcacacgt acagcttgcc 32040
atcagacgca tcggagatgg tcagggtggc atcggagaag tacgtcagtt cgagcttgtt 32100
gctcacgttg atgttgccag agccatcagg gccgttaccg ttgaccgtag taactacgtt 32160
cagggtcagg gcaccttcgg cgtttggctc aacaccattg atcgaggtca ccgtaccttt 32220
cgggatgacc agctcgatgt tgccagcttc gtcaggctca acgccattga cggacttgac 32280
agtaccctca ccgccaccac caccttgacc catcgctacc cacgcatccg atgcacgatg 32340
accgagggcc atgtacaggg agttgtcgtc gagcaggatg gtagcaccac gggtcttgcc 32400
cgagatgctg gtgatgttga tcgggtgctt agggtcgctc aggttcgcaa gaacaatcgg 32460
agcgcccttc acagccttgg cgaaagggac ggtcaacgct ggagtgtcct tgtccttcgg 32520
gtactcaccc gtgactggag cttgtgccat gttgacctcc tacttaggcc ggggttacgt 32580
cagtgccacc cttggtgaca gcgatccact tgtcggtcgg tgcttcacca gccgcttgga 32640
acaggactgg agcaccggag acaacgacgg tcaccagcga gccaacacgc ttgccggaga 32700
tcacgcggtc gttcagtacc gacttggcat cgctcagcag agcagcagcc acgactggca 32760
tgttgtgcag ggtgacgccg tacttctgga cgtctttgtg acctttctgg tcgccgatga 32820
tgtttggagc ttgggccatt gggcacctcc tagattctat ataagggaac cctctctctt 32880
agaaggagag agggagaata actactggag ccactgggag ctactaagtg ctaccatcac 32940
ccataggggc tactgggcac tcctttgcta cctgtggctt ctcctatact gcaacttaaa 33000
tacccatcgg gctacaggcc acggaatacg cggcctccag cggttttggt catttaatgt 33060
acagcagtct cacactaaat cactgtgaga ctaatgaccg gattgctcaa aatagtcaca 33120
gtctcacagc gttagactag ccccacgagc gccggggaag cccaccacga gtcgattggg 33180
cagaccctga gaagcggttg cccagcttct gaaagcccct gtcaacggcc atggcggcct 33240
ctgcggcgat gccgagcgtc atgttctgca tgtactcgac catctgtttc gggttgcgca 33300
tgatctcgaa gaaccggccc tgctgcttga tctgccgctg caccacgacc ttgagctggt 33360
cgtagtcgag gtctgcaacc acgatggcga cggctgctgc cacggcttcc aatcggtcgt 33420
cgtgtcgcaa gcagtccttc tctcgggtga ggttcgcaag ctggtagaac aggctgtagg 33480
acatgcgagt ctctgccggg tacttctgga tcgagtccca gtctgcctgc actacttcct 33540
gccgcaccac gaagcggtgg gtggacagca caggttcgag gttgtctatg atgcgaagtt 33600
ccttctggcc gacgctgtga acagcttcga tgaccacagg ccactcgcgc tcgaagtacg 33660
gcttgagtgc cgcgatgtgc gcaccgttac cgtagttgtc ctcgatgaag acttccttgc 33720
actcggcacg cttggcgatc tgcacaagct gcatcagctc ggactcgttg tagccaccct 33780
tcacgccgcc agcttcccac aggtagaccg tggtgccaat gagcttgatg atggcgtaac 33840
cagtttcgtc cccgttctta ccgccgcctg ccgggtcaat gaacatgaca gtacgctcga 33900
acttgccgag gtcgtagctg acctgcattg gcaggaagaa gcggtcggag ttacgggagc 33960
cgaacttcgg tgcggtctgc cagtgagtgg cagacgtgtt gcaccagatc ggcatgatcg 34020
ggccttgatg cagcgagaag ttcgccacga cacaatcgct gatacggagc gggtaacggt 34080
cggcgtcgga cagtccggtg ttgagcatga actgcaacat gaacttggcc ttgccttggg 34140
tcagctcctt ctcgttgagg atgtcgttcg ggtacatctc agggcaggtc ggttgcccaa 34200
gggagccatc caagccaccg ccgtattgca gggcagggtt gtcctcgatg tctcgcagga 34260
ggatcggtgc gagcttgtcg ccgtagtcct ccatttgagc cgctgttgga taccgccctg 34320
tccagatgcg gacttggtag ccacgcgacg gcaaccagtt gtagatggac tcgaccgact 34380
gtggcgtgcc caagtagatg atggaaccga actggttgat ggactcgaac tcaagcgagc 34440
tgtccatgag gatctgtcga cccccggctg ttcggctgtt ctgcaacgac tcgatgtcgt 34500
ccgcgataat gaggtcagca cgcgcaccct gcgcacccga ttcaatcgag tagcaggaca 34560
cggacggcga cttgtcacta ccgcgtaagc accagtggat gtcgaacgct tcaatggagc 34620
tgcggtcacc cgcgaacttg tcagggcgca agcactccaa gatgggcatg gcgtagaaga 34680
tcttgatgat ccagcctgcg atctccttgg ctcgcttcgc gttctgcgag aagatcacga 34740
tgcgatagtg cgggttgtgg attaacataa agacagcata gatcgcggtc agggttgtct 34800
tcgcctgacc acgctgtgcc atcaccattc ggtatttgtt acccatgagc aagaacgaca 34860
agatgtcggc ttgaatccgg ttgaggttcg gcttacccac gatcaacgtg ttgatgatga 34920
cttgcgccag atagcacaag cccatcaccg tgtaagggaa cgcctgctgg agttctacca 34980
acttcttgtt gatctctacc tgttgctcaa tggagagatt gcggcccgac attacgcctg 35040
acgctcgtgg ccgtcagtga acggcacaac gttggcgaac ccactgccgg actgctgctg 35100
cttgatctct gccaagcgct tggccagttc ggtttcctcg ctggcctctg gtgccgcgca 35160
ggtgatgccg ttcttgtcgg atacccacac accagcgtcc ttgatgatct tgtcgtcgaa 35220
caccatctcg atgtccgcgc cttcattcag caagtccagc atgcgctgca agcgcttggt 35280
gtacagggtg gtggtgagct ggtggataag acccagctcg tcttcggttg cagcggtctt 35340
gttgctgcgt cgttcaatag ccattagtcg ccctctactt tgataagcca gtggagagcg 35400
tagaacggtg tcatgcactt atgaatgtac gtgatggtgt aggagtgcga gtgctcgtct 35460
acgcccccgc cgaagttgcc ccaacgaacg tcgttggtgt cggcattctc cgtgcggtag 35520
ttcagtggcc gataccgagc gctgtgctct ggcaccgact tccagttgcc gtggtcactc 35580
tccacgcgca ccccgtaggc agtgaactgc gtttcgtagg tgtgctggtg aggtggaagg 35640
tgtgctgcaa acagcatggt cttctcctcg gcggcagacc cgtcagacgt cttggtgtag 35700
cgaacgtcaa tggttccgcc catgctgtgg atcgggtagt taccgcccgc acccacgacc 35760
atgcgatctc ggaagtcagg ccgaccattc gtaccatcca gaatccgcca gcctttcggg 35820
actgtgcggg agtcgcccca ccaaggggcg attgttccgg ttggcaggat ggctcttgcg 35880
agcgcctgaa tctcagcggc tgtgtacatg tcgcaatctg ctgctgtcaa atccgcgagc 35940
cgcttggtaa cccgagtgcg gtttgacata ctaaaattta gatcgccctc gtcgccatcg 36000
tcggcccctg ctgtgcgcat gatccaatac ttggtgacat aaggggcaat cgcctcgtgc 36060
ttgaaccggg cggagaagcc gtggctgtga ggctcagcaa ggccagtcgc ctgattgccg 36120
aactccatgc tggacttgta ccgcttggtc tgcttgttgg ctgcgtcctt cttcttctta 36180
cccgtccgct cagaggagcc gaggatgttg gaagtgtagc cgtgggtgtg aggtggcacc 36240
tccttggttg tcagggcatg accgtcagtc ttcccgtcga taatcaagtc gaagttgtac 36300
ttgccaccag tgctgttcag tgggaagttc ccaccggcac ctacaaccgt gcggttggtc 36360
aggttaggcg tgcgaccgcc caatccgttg cagatgctgt agccttcggg aacgtccgtg 36420
gcgtccccgt tccagacgaa gcacatgccc accggaatgg tggcggacac gagccgtcgg 36480
atctccccgc gcgtatagct gcccaagtcg tgggcagtca gcgcagagac ggacttgcga 36540
atgcgagtag tcatcctgtg ataacctcca gtcttacgcc catgttgtcg tagaatcgga 36600
caagctccgc aacctttgca ggcgtcggaa catccccggt cgattgttgg ctgagtacca 36660
agcggcagtc cactcggcga cggtaggcag ctcgtgccct ctcctcgctg aaatagagca 36720
gcttgtcaat cagagcatcc agctcagccg tggtcatgtc gttgaatgcg aagtccagct 36780
cggtggcctc tggcacgatg ccgaagtcta cgtccttgac cccgccacga cggaaccagc 36840
aggaggtgta gtgctgacca tcgcgtggca tgataagcgg cgagaacgcg cctgtcatgt 36900
tgtagcggtg gtacgtgcaa tccatctcca cctcaacctc cttgtcctct cccgttatcg 36960
ggtcaggtac aatggcaatc gggtactcag ggccggtgag gttgtagcct cccatgtcct 37020
ccaagatacc ctcctgaatc tgcgaaccgt cgccccagtc gatgctggtg gtggacactg 37080
gttcatcgtc ctcctcctcg gagtccaaag agtagtcgaa gacggcagac aggtggcggt 37140
ctggtcggcc ttccagcggg gagccgggag ggtagacagt ccactcaggc tggggtgcca 37200
gcatgttgca gaatgccagc gggtagtacg cggtgctccc cttacggcca atggcctgac 37260
gggtggcgaa cgctacagac ctacgagaca cgacagggtt gccatgggcc tcgatctcct 37320
ccgggttctc cgggttgacc aagtaccact gctccgtctt ctcgtccacg taggtcatcc 37380
gctgattgaa cactgtgcct tccgacacgc tgtactcaga tggcaaccag aacttgtcct 37440
gacgcgagat ctcgtgccag tcctcaacca gccgcagctc aaggttccag atcaccttgt 37500
ctttcggcaa ggcaccacca tcgttcttga acaccacgct gtcacggttc acctgagtcg 37560
aggcccaaat gagcgactgc atggggcggt tggctgcgtc gagcttggtg ttgctccagc 37620
tcaactggtg tgcgatgttg cgccacacac gtcctgtcgg gtctttgttt ggtgcgaatc 37680
caccaaggta gttcgtcttc tccactgggt aacctagctt gtcgaaagcg tagtcgcagt 37740
aggagttggt gaactcaagg tcagaccaga tgatggtgtc gtaggcttcg tactggaaga 37800
actcaaagtt cgggtacttc caatgctgga acgggaagtt gatgatcgga gtgatctcgg 37860
acttcgtggt gaagatctgc gggatgaacg tcagcgccga gaactcagcg tccgggtgtg 37920
cagcctgcgt ctcctccttg gcccgctggg tgtaaacccc taggctgtca cgtagccagt 37980
tggccgcgtc cagttcctgc tgcgttgcct tctgcttggt gaaggtagtg atgtccttcc 38040
acacaggcag gtcgataccg tcagcgagag ctgctcgctt ggtcggttca tcatacacga 38100
acagtcgccc gttctgatac gagccgtccc agtaccatgg ctcacctact tggaacaact 38160
tcttgaggcc cgctggcacg atgtccgcca gctccttgaa gcatcgaccc acatacgagc 38220
ggcctgcctc ctcctcgatg cgcgtcccga agaacgtgct cggagggttg taaccagtaa 38280
gtgctggctt gcccacggag tagtcgccgt accaaccacg gaagcgcttg tccagcttga 38340
gctgggtctt gtcctcgttg ggtacgtcgt tcacctcaag caacttgtac accgtctcct 38400
tgccgccgtc ctcggggtgt gcgaaccgga tgtcggctgc ccactccttg ttcgggttga 38460
acaagccctg atgctcccaa cctcctagga aggggttctc agtggatgac caagggtgct 38520
tgccctcgat cttgatgtac tcgtcgtcaa cctccatcac ttggaagccc tgacagagct 38580
gcatccagtg gcggtggttg tacttcacgt aatcgtagaa cacctccatg gacaccgcaa 38640
tgatgcactc gaagttgaag cgctggcact gttgcaggaa gtcctcgtgc cagaggcgaa 38700
ccacctcgtc caagcactcc tcgcgggaga gctggaactg ctgcgtgtcc tcgtagaaca 38760
ccagcttcgg gtagttactg atgcccatgt agtggttgat gacgccacgg tagcccagct 38820
tgtacatgtc ctcaaccacg cggcgcgggt tggtgttggc aatgtcgtcg aagctggtgg 38880
cgataccgag gtcggtctgg tacggcgtac cgtccgggtg catcggtcgt ccacgggcgt 38940
gggtctttgg tgcgccatcg ctcttgcgga agcagcggat gttgctgacc actacgtcgc 39000
cgagacgagg ctgcttgatt ggtgcccgag gcaagtcctc gttctccagc ccttcctcgt 39060
cgtaaccgcc gattgcgtag aagtccttgt ccaccacgtt gatcgacagc ctgcgcaggt 39120
cggtgactgg caccttctgc ttgaatgggt cgttcgggcc gaagccggtg tacaggttgt 39180
cgaagtccag caccacgtcc atcttgctcg gagtgctggt cagtgggtcg gcgtactgcc 39240
agaggcggat gtaccactcc ttgccgtctg ccgtggtgaa ggtcagggac gtaccgtagg 39300
ccatgtcagc agcacgatag gtgtctggtg tcatgtccat ggtgaacgtc atcttgtagc 39360
cggtgaagtc ccgctcctgt ggctcaacgt agctcttgag cttgttgtgc cgtggcaggt 39420
attcctcgcc gtccatgttg aacaccgcct gcgcgatgtg gtcgttggag aacagcttgg 39480
tagtcagggt gaacccgtcg tccatgctgt tgcggatcgc ggacttggag gggcgctgga 39540
acacggcaaa ccacagttgg ccgtagaaca taggcacccg ctcccactca tggttctctg 39600
gctccgtctc gatgtcaacg gttcggaagc cagagtcata agggcgttcc gcgtacatca 39660
gctcgtaatg gccgtcacgc gaaatcatgt cacctcctta ttcagcgacg tagttaagtg 39720
cgatgccgag gaagaacgca tcctcgctgg agtttgcgag cgtgtcctcg ggatgctgtg 39780
gaacccggct cacacgcagg tacagcactt ggctgatgtc tgctgccggg atggccgcta 39840
ctgcacggta gtgagtaacg tcctgtggtc gtaccgaaac ggtgaactcg atagggttcc 39900
cgaagtcagc ttggaactca ccggggcctt gcaaggcagt ctcgatgcgc caccgggtgt 39960
tgccagcgtt ctcgccggac accatgaagc gcatctccac gccagtagcc acgggcatat 40020
ctggaggagt aataaccacg gcctgacacg aacgggtctt gtcagcgaag aacgcatgag 40080
caggggactc gatcttgcct tgtgggcggt gggtgacgat ggtgctgcca tctgtcagtt 40140
ttgggcggaa gccgttagca ggccaccaca cacgggcgta gctcgacatg ctgtacgcac 40200

Claims (11)

1. The pseudomonas syringae phage is pseudomonas syringae kiwi pathopoiesia phage PSA-P1 (PSA-P1)Pseudomonas syringae pv. Actinidiae phase PSA-P1), and the preservation number is CCTCC NO: m2020252.
2. The Pseudomonas syringae bacteriophage of claim 1, wherein: the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phage PSA-P1) is a virulent phage, which has a polyhedral and three-dimensionally symmetrical head and a telescopic tail, wherein the diameter of the head is 50-55 nm, the length of the tail is 15-20 nm, and the diameter of the tail is 6-10 nm, and the phage belongs to the family Autograpiviridae.
3. The Pseudomonas syringae bacteriophage of claim 1, wherein: the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae The genome sequence of the phase PSA-P1) is shown as SEQ ID No. 1.
4. The Pseudomonas syringae bacteriophage of claim 1, wherein: the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) under the condition of MOI =0.000001 for 24h, the titer reaches 7 × 1010 PFU/mL or more.
5. The Pseudomonas syringae bacteriophage of claim 1, wherein: the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) is tolerant at pH = 3-12, with titers decreasing by no more than 4 orders of magnitude within 96 h.
6. The Pseudomonas syringae bacteriophage of claim 1, wherein: the pseudomonas syringae kiwi pathopoiesia variant phage PSA-P1(Pseudomonas syringae pv. Actinidiae phase PSA-P1) after 8h of ultraviolet radiation, the titer does not decrease by more than 1 order of magnitude.
7. A composition comprising the Pseudomonas syringae bacteriophage of any one of claims 1 to 6, wherein: the composition at least comprises one strain of pseudomonas syringae kiwi pathopoiesia variety phage PSA-P1 (A)Pseudomonas syringae pv. Actinidiae phage PSA-P1)。
8. The composition of Pseudomonas syringae phage of claim 7, wherein: the composition includes a chemical germicide.
9. A pseudomonas syringae bacteriophage kit is characterized in that: the kit contains Pseudomonas syringae Kiwi fruit var infestans phage PSA-P1 (PSA-P1) of claim 1Pseudomonas syringae pv. Actinidiae phage PSA-P1) or a bacterium comprising Pseudomonas syringae Actinidia var venetian phage PSA-P1 (see claim 7)Pseudomonas syringae pv. Actinidiae phage PSA-P1).
10. The application of the pseudomonas syringae bacteriophage is characterized in that: the Pseudomonas syringae Actinidia pathovar catarrhalis phage PSA-P1(Pseudomonas syringae pv. Actinidiae P) of claim 1hage PSA-P1) with a preservation number of CCTCC NO: m2020252, at 101 PFU/mL~108 PFU/mL, used for controlling Pseudomonas syringae.
11. The application of a pseudomonas syringae phage composition is characterized in that: the composition of Pseudomonas syringae and Actinidia chinensis var pathopoiesia phage PSA-P1 as claimed in any one of claims 7 to 8, used as an effective component of biological disinfectant or biological pesticide for preventing and treating bacterial diseases caused by Pseudomonas syringae.
CN202011276087.7A 2020-11-14 2020-11-14 Pseudomonas syringae bacteriophage and composition, kit and application thereof Active CN112359024B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011276087.7A CN112359024B (en) 2020-11-14 2020-11-14 Pseudomonas syringae bacteriophage and composition, kit and application thereof
KR1020217033436A KR20210142680A (en) 2020-11-14 2020-12-08 Pseudomonas siringe phage and combinations, kits and applications thereof
PCT/CN2020/134391 WO2022099837A1 (en) 2020-11-14 2020-12-08 Pseudomonas syringae phage and composition thereof, test kit and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011276087.7A CN112359024B (en) 2020-11-14 2020-11-14 Pseudomonas syringae bacteriophage and composition, kit and application thereof

Publications (2)

Publication Number Publication Date
CN112359024A CN112359024A (en) 2021-02-12
CN112359024B true CN112359024B (en) 2022-02-11

Family

ID=74515672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011276087.7A Active CN112359024B (en) 2020-11-14 2020-11-14 Pseudomonas syringae bacteriophage and composition, kit and application thereof

Country Status (2)

Country Link
CN (1) CN112359024B (en)
WO (1) WO2022099837A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201504B (en) * 2021-02-19 2022-09-06 青岛诺安百特生物技术有限公司 Bacteriophage for preventing and treating plant xanthomonas infection and application thereof
CN113151192B (en) * 2021-03-05 2023-11-24 菲吉乐科(南京)生物科技有限公司 Xanthomonas phage capable of cross-species lysis, composition, kit and application thereof
CN114807056B (en) * 2022-03-10 2023-12-05 苍溪县兴科现代农业科技研究院有限公司 Virulent phage PSA-Pe and application thereof
CN114934025B (en) * 2022-06-22 2024-05-28 北京林业大学 Pseudomonas syringae phage CXP1 and application thereof
CN116926017B (en) * 2022-12-05 2024-10-22 菲吉乐科(南京)生物科技有限公司 Xanthomonas phage applied to bacterial diseases of feed crops

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828999A (en) * 1986-07-21 1989-05-09 Jackson Le Roy E Bacteriophage prevention and control of harmful plant bacteria
JPH03502285A (en) * 1988-11-17 1991-05-30 イーストマン コダック カンパニー Phage-resistant, ice-nucleating Pseudomonas syringae
US20120129154A1 (en) * 2010-11-24 2012-05-24 Schofield David A Methods and compositions for the detection of bacterial blight
WO2016010439A1 (en) * 2014-07-16 2016-01-21 Seeka Kiwifruit Industries Limited Controlling microbial infection in plants
CN107083344A (en) * 2017-06-02 2017-08-22 四川省自然资源科学研究院 A kind of pseudomonad strain for preventing and treating Prospect on Kiwifruit Bacterial Canker and its application
CN110791505B (en) * 2019-11-19 2020-12-01 安徽农业大学 Kiwi fruit canker resistance gene AcLac35 and application thereof
CN111778216A (en) * 2020-06-10 2020-10-16 菲吉乐科(南京)生物科技有限公司 Xanthomonas carpet grass phage, and composition, kit and application thereof

Also Published As

Publication number Publication date
CN112359024A (en) 2021-02-12
WO2022099837A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN112359024B (en) Pseudomonas syringae bacteriophage and composition, kit and application thereof
CN113151192B (en) Xanthomonas phage capable of cross-species lysis, composition, kit and application thereof
Czajkowski et al. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’)
Anand et al. Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis)
CN113583972B (en) Escherichia coli bacteriophage capable of reducing antibiotic resistance and application thereof
CN107686832B (en) Novel vibrio parahaemolyticus bacteriophage, and composition, preparation method and application thereof
CN111778216A (en) Xanthomonas carpet grass phage, and composition, kit and application thereof
CN112029732A (en) High-temperature-resistant salmonella bacteriophage with wide lysis spectrum and composition thereof
CN108300681B (en) Streptomyces rochei and application thereof
CN113583971B (en) Salmonella bacteriophage capable of simultaneously cracking escherichia coli and application thereof
CN109207404A (en) Siam bacillus YJ15 and its application
Akbaba et al. Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey
CN104109645B (en) For preventing and treating bacterial strain and the biocontrol agent of postharvest disease of fruits and vegetables
CN111226986A (en) Spray disinfectant containing culture environment phage composition, preparation method and application thereof
Yeoh et al. The Vibrio-predatory filamentous bacteria effectively removed acute hepatopancreatic necrosis disease (AHPND) causative Vibrio parahaemolyticus in vitro
KR101859973B1 (en) Novel Aeromonas hydrophila bacteriophage Aer-HYP-1 and its use for preventing proliferation of Aeromonas hydrophila
US20230225329A1 (en) Boxwood endophyte burkholderia sp ssg as potential biocontrol agent against a wide range of pathogens
CN113583966B (en) Salmonella furciosus bacteriophage and application thereof
CN115725512B (en) Ralstonia solanaceae phage and composition, kit and application thereof
CN112538463B (en) Novel aeromonas hydrophila phage, and composition, kit and application thereof
CN115161288B (en) Acid-resistant and high-temperature-resistant Proteus mirabilis bacteriophage, composition and kit thereof, and application of acid-resistant and high-temperature-resistant Proteus mirabilis bacteriophage
CN116926017B (en) Xanthomonas phage applied to bacterial diseases of feed crops
CN112522214B (en) High-lytic pseudomonas aeruginosa bacteriophage RDP-PA-20001 and application thereof
CN116676272A (en) Phage and application thereof, primer sequence and microecological preparation
CN115418326A (en) Complex microbial inoculant and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant