CN112356521A - 一种低频减振轻质超材料点阵结构及其制作方法 - Google Patents

一种低频减振轻质超材料点阵结构及其制作方法 Download PDF

Info

Publication number
CN112356521A
CN112356521A CN202011200569.4A CN202011200569A CN112356521A CN 112356521 A CN112356521 A CN 112356521A CN 202011200569 A CN202011200569 A CN 202011200569A CN 112356521 A CN112356521 A CN 112356521A
Authority
CN
China
Prior art keywords
lattice structure
unit
resonance
frequency
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011200569.4A
Other languages
English (en)
Inventor
李冰
李�昊
胡亚斌
黄河源
王文智
侯赤
赵美英
万小朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011200569.4A priority Critical patent/CN112356521A/zh
Publication of CN112356521A publication Critical patent/CN112356521A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter

Abstract

本发明涉及工程结构减振技术领域,具体涉及一种低频减振轻质超材料点阵结构及其制作方法,该超材料点阵结构由二维周期排列的单胞组成,所述单胞包括基体结构和嵌入基体结构内的长方体形共振单元,所述基体结构包括上下面板和内部金字塔型夹芯结构;所述长方体形共振单元位于内部金字塔型夹芯结构内部,每个单元由上下两部分构成,上部采用硬质金属材料,下部采用玻璃纤维增强(GFR)尼龙材料。本发明通过设计周期排列的共振单元结构来产生低频范围内的宽频带隙,从而达到高效减振的目的。其具有承载‑减振功能一体化、减振频率范围宽、不改变结构外部几何特性、可在低频范围内有效抑制结构振动等特点。

Description

一种低频减振轻质超材料点阵结构及其制作方法
技术领域
本发明涉及工程结构减振技术领域,具体涉及一种低频减振轻质超材料点阵结构及其制作方法。
背景技术
作为一种新型夹芯三明治板状结构,轻质点阵结构由上下面板和内部轻质桁架核组成。与传统的蜂窝三明治结构和泡沫三明治结构不同,轻质点阵结构的内部核由周期排列的桁架单胞组成,典型的点阵桁架单胞有金字塔型(Pyramidal)、四面体型(Tetrahedral)、3-D Kagome型等。轻质点阵结构独特的开孔桁架构型使其除了具有传统三明治结构轻质、高强、抗冲击、吸能以及高效散热等性能外,还能产生更大的互联空间。因此,与传统的三明治结构相比,轻质点阵结构更适合进行多功能设计,已在承载功能一体化应用方面展现出巨大的发展潜力。
然而,目前关于轻质点阵结构的研究主要集中在结构的制备方法和力学特性上,关于其减振特性的研究却非常匮乏。在工程应用中,剧烈的振动会严重影响结构的稳定性,造成结构的损坏和整体性能的失效。因此,如何设计新型结构,在满足轻质承载的同时可以实现减振降噪等功能化设计,一直是航空航天、力学等科学领域和工程界共同关注的热点课题。
近年来,“超材料”概念的提出与飞速发展为工程中的轻质点阵结构的振动控制提供了全新的思路。超材料虽以材料命名,但实是一种特殊的人工合成结构,通过对构成其关键子结构的微妙设计,使其在动态响应时可获得自然界材料所不具备的、超常规的、全新等效物理性质。作为一类典型的超材料,局域共振超材料凭借局域共振产生的振动带隙,可有效突破低频振动噪声控制中存在的技术瓶颈,实现亚波长尺度下对低频振动的有效抑制。
目前关于薄板型超材料结构的技术研究还主要集中在均质板上,薄膜或薄板型超材料结构虽有望达到良好的减振效果,但其承载能力往往较差。相比之下,轻质点阵结构具有良好的承载能力,而且内部空间有利于进行结构设计。如何在保持轻质点阵结构良好承载能力的基础上实现其在低频宽带内的减振效果,并尽可能拓宽低频带隙带宽,仍有待进一步研究和完善。如何设计承载-减振一体化超材料结构,实现超材料在航空等工程领域的应用价值也是未来超材料发展的重要方向之一。
发明内容
针对上述现有技术存在的问题和不足,本发明提供了一种新型的基于弹性超材料理论的承载-减振一体化轻质点阵结构,通过在结构内部添加自行设计的共振单元,使该周期性轻质点阵结构在低频范围内具有良好的宽带减振特性。所述结构可以产生低频宽带带隙,从而达到低频范围内高效减振的目的,并且所述结构具备轻质点阵结构良好的承载特性,可以在高效减振的基础上,实现轻质承载功能一体化的目的。
为实现上述目的,本发明采用的技术方案为:
一种低频减振轻质超材料点阵结构,由二维周期排列的单胞构成,所述单胞包括基体结构和嵌入基体结构内的长方体形共振单元,所述基体结构包括上下面板和内部金字塔型夹芯结构;所述长方体形共振单元位于内部金字塔型夹芯结构内部,每个单元由上下两部分构成,上部采用硬质金属材料,下部采用玻璃纤维增强(GFR)尼龙材料。
进一步地,所述基体结构采用玻璃纤维增强(GFR)尼龙材料。
进一步地,所述单胞的边长和厚度均为a=40mm,上下面板的厚度e=2.3mm,内部金字塔型夹芯的圆杆的直径r=4mm,所述圆杆与下面板夹角为60度,长方体形共振单元的边长d=13mm,高度为16mm。
进一步地,弹性波禁带主要与共振单元的局域共振有关,周期排列的单胞可以用等效质量弹簧模型表述,根据等效质量理论,在等效质量为负值的频率区间内,弹性波的传播被抑制;在该区间外,弹性波的传播基本不受影响,不同h1的共振单元具有不同的共振频率,使轻质点阵结构具有不同频率范围的弹性波禁带,其中,h1为单元上部的高度,h2为单元下部的高度,h1+h2小于点阵结构内部总高度。
本发明还提供了上述的一种低频减振轻质超材料点阵结构的制作方法,包括如下步骤:
S1、将硬质金属材料、玻璃纤维增强(GFR)尼龙材料的材料密度、杨氏模量、泊松比分别记为ρ1,E1,v1和ρ2,E2,v2
S2、建立单胞的有限元模型,包括基体结构和内部的长方体形共振单元,并在模型的四周边界设置Bloch边界条件;在单胞的第一不可约布里渊区的边界上进行扫掠,计算不同波矢k对应的特征频率,得到所设计结构的频散曲线和弹性波禁带;
S3、选择具有不同h1和h2的共振单元的单胞计算频散曲线,使得到的弹性波禁带尽可能宽,以此作为周期排列超材料点阵结构的单胞;
S4、将单胞沿着平面两个方向进行周期排列,建立具有有限周期数的超材料点阵结构。
与现有技术相比,本发明具有以下有益效果:
本发明通过在金字塔型轻质点阵结构内部添加周期排列的共振单元来实现减振的效果。轻质点阵结构具有独特的开孔桁架构型,其作为基体结构使得该承载-减振一体化轻质点阵结构除了具有轻薄、高强、高抗冲击等性能外,还能在内部产生更大的互联空间,易于进行结构设计,从而在不影响结构承载特性的基础上实现在较宽频带范围下对低频振动的有效抑制。
同时,该设计思路并未改变结构的外部几何特性,并且可以根据实际情况设计具有不同尺寸的共振单元,可以适用于更多环境的使用需求。
附图说明
图1为超材料点阵结构单胞的等效质量弹簧模型;
图2为等效质量曲线;
图3为二维周期排列超材料点阵结构的第一布里渊区;
图4为本发明实施例超材料点阵结构单胞的模型示意图;
图5为本发明实施例超材料点阵结构的频散曲线;
图6为本发明实施例3×7周期排列超材料点阵结构的模型示意图;
图7为本发明实施例3×7周期排列超材料点阵结构的频响曲线;
图8为本发明实施例3×7周期排列超材料点阵结构在特定频率下的振动传播特性;
图中:Γ(0,0);X(π/a,0);M(π/a,π/a);1-激励点;2-拾取点;3-激励频率1005Hz对应的结构位移场;4-激励频率1300Hz对应的结构位移场;5-激励频率1515Hz对应的结构位移场。
具体实施方式
下面结合具体实施例对本发明进行进一步说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明实施例的超材料点阵结构的单胞能在一定频率范围内禁止弹性波的传播,即所述结构存在弹性波禁带。弹性波禁带形成的基本原理为局域共振原理,其可以用动态等效质量更直观的表述。如图1所示,将所述单胞视为具有动态等效质量的整体,其中,F(t)为结构受到的简谐激励,u1和u2分别为共振单元和基体结构的位移;m为共振单元的质量,M为基体的质量。对于本发明的轻质点阵结构,m为硬质金属材料部分的质量,M为金字塔型点阵结构单胞和长方形单元下部的质量;k为弹簧的刚度系数,c为阻尼器的阻尼系数。该线性系统的振动微分方程可以表述为
Figure BDA0002751341150000051
所述位移可以表示为ui=Uie-iωt(i=1,2),代入微分方程后可得到
Figure BDA0002751341150000052
其中,
Figure BDA0002751341150000053
U1、U2为振幅,ω为频率。
将整个单胞用动态等效质量Meff表示,即
Figure BDA0002751341150000054
联立上述方程,并代入嵌入共振单元的共振频率
Figure BDA0002751341150000055
即可推出等效质量公式
Figure BDA0002751341150000056
对于无阻尼系统,c=0。当h1=10mm,h2=6mm时,可以得到等效质量曲线如图2所示。从图中可以看出频率位于共振频率ω0和零点之间时,系统的等效质量为负值,根据等效质量理论,在此区间内,内部周期排列的共振单元的局域共振抑制了弹性波的传播;而在该区间外,弹性波的传播不受影响。不同高度h1的共振单元具有不同的共振频率,使轻质点阵结构具有不同频率范围的弹性波带隙。
本发明实施例为二维周期结构,所述结构的弹性波禁带范围可以通过计算频散曲线较方便地得到。根据Bloch定理,弹性波在无限周期结构中的响应可以只利用一个单胞结构进行计算,当波从一个单元传递到下一个单元时,波的振幅发生了相对变化而这一变化与单元在周期系统内的位置无关。弹性波在无损耗二维周期系统中的传播满足以下关系:
u(r+a)=u(r)eiωte-ik·a
其中,u为位移,r为二维位置矢量,a为晶格常数,k=(kx,ky)是二维Bloch波矢,kx和ky在(-π/a,π/a)这一范围发生变化,如图3所示,这一区域被称为第一布里渊区。因为周期结构的对称性,kx和ky仅需在第一不可约布里渊区(如图3中黑色阴影所示)的边界上取值即可确定禁带范围。因此,通过计算不同组合的相位常数所对应的特征频率,最终得到所设计结构的频散曲线。在没有频散曲线的频率范围内,所有方向的波都不能传播,也就是该频率范围是完全禁带。
本发明实施例的超材料点阵结构单胞如图4所示,包括基体结构和嵌入基体结构内的长方体形共振单元,所述基体结构包括上下面板和内部金字塔型夹芯结构;所述长方体形共振单元位于内部金字塔型夹芯结构内部,每个单元由上下两部分构成,上部采用硬质金属材料,下部采用玻璃纤维增强(GFR)尼龙材料,单胞的边长和厚度均为a=40mm,上下面板的厚度e=2.3mm,内部金字塔型夹芯的圆杆的直径r=4mm,所述圆杆与下面板夹角为60度,长方体形共振单元的边长d=13mm,高度为16mm,所述单元两部分的高度设置为h1=10mm,h2=6mm,此时可在低频范围内得到较宽的弹性波禁带。
本实施例的长方体形共振单元的上部材料为不锈钢,密度、杨氏模量和泊松比分别为7800kg/m3,210GPa,0.3;基体和长方体形共振单元下部材料为玻璃纤维增强(GFR)尼龙材料,密度、杨氏模量和泊松比分别为1200kg/m3,3.5GPa,0.368。采用COMSOLMultiphysics有限元分析软件建立图4所示的单胞的有限元模型。模型的四周边界设置Bloch边界条件,赋予模型相应部分材料属性,有限元模型采用自由四面体网格划分,采用固体力学模块在特征频率内加以计算,在单胞的对应的第一不可约布里渊区的边界上进行参数化扫描,计算不同波矢k对应的特征频率,得到所设计结构的频散曲线,如图5所示。
根据计算结果,本实施例可以在990-1159Hz(图5中深灰色区域)范围内产生完全禁带,此外,在1159-1427Hz(图5中斜线阴影区域)内为弯曲波禁带,在弯曲波禁带内也会产生一定的隔振效果。所述的两个弹性波禁带也与等效质量理论所得的禁带(图2阴影区域)基本吻合。
本实施例利用3×7有限周期数超材料点阵结构对完全禁带和弯曲波禁带的隔振效果进行验证,如图6所示。采用COMSOL Multiphysics有限元分析软件建立有限周期结构的有限元模型,在所述模型的一侧施加固支边界条件,简谐位移载荷激励位于同一侧的面板上,赋予模型相应部分材料属性,整体模型采用自由四面体网格划分,采用固体力学模块在频域内加以计算,在设置的频率范围内进行扫掠,利用公式
Figure BDA0002751341150000071
计算结构的振动传递,其中Xout为拾取点位移幅值,Xin为激励点位移幅值。最终获得有限周期数超材料点阵结构的频响曲线,如图7所示。
根据计算结果,在由频散曲线得到的弹性波带隙990-1427Hz(图7灰色阴影区域)内,振动传递率明显下降,最大衰减达到了70dB,弹性振动得到有效抑制,有限周期数超材料点阵结构满足高效减振的要求。
有限周期数超材料点阵结构在特定频率下的位移场分布如图8所示,通过计算所述结构的弹性波传递特性,更加直观地验证了结构的减振效果。当激励频率取在弹性波禁带外(1515Hz)时,振动基本没有被抑制;当激励频率取1005Hz和1300Hz时,即激励频率在弹性波禁带内,振动基本集中在激励点附近的单胞中,弹性波在整个点阵结构中的传播被完全抑制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (5)

1.一种低频减振轻质超材料点阵结构,由二维周期排列的单胞构成,其特征在于:所述单胞包括基体结构和嵌入基体结构内的长方体形共振单元,所述基体结构包括上下面板和内部金字塔型夹芯结构;所述长方体形共振单元位于内部金字塔型夹芯结构内部,每个单元由上下两部分构成,上部采用硬质金属材料,下部采用玻璃纤维增强(GFR)尼龙材料。
2.如权利要求1所述的一种低频减振轻质超材料点阵结构,其特征在于:所述基体结构采用玻璃纤维增强(GFR)尼龙材料。
3.如权利要求1所述的一种低频减振轻质超材料点阵结构,其特征在于:所述单胞的边长和厚度均为a=40mm,上下面板的厚度e=2.3mm,内部金字塔型夹芯的圆杆的直径r=4mm,所述圆杆与下面板夹角为60度,长方体形共振单元的边长d=13mm,高度为16mm。
4.如权利要求1所述的一种低频减振轻质超材料点阵结构,其特征在于:弹性波禁带与共振单元的局域共振有关,周期排列的单胞可以用等效质量弹簧模型表述,根据等效质量理论,在等效质量为负值的频率区间内,弹性波的传播被抑制;在该区间外,弹性波的传播基本不受影响,不同h1的共振单元具有不同的共振频率,使轻质点阵结构具有不同频率范围的弹性波禁带,其中,h1为单元上部的高度,h2为单元下部的高度,h1+h2小于点阵结构内部总高度。
5.如权利要求1-4任一项所述的一种低频减振轻质超材料点阵结构的制作方法,其特征在于:包括如下步骤:
S1、将硬质金属材料、玻璃纤维增强(GFR)尼龙材料的材料密度、杨氏模量、泊松比分别记为ρ1,E1,v1和ρ2,E2,v2
S2、建立单胞的有限元模型,包括基体结构和内部的长方体形共振单元,并在模型的四周边界设置Bloch边界条件;在单胞的第一不可约布里渊区的边界上进行扫掠,计算不同波矢k对应的特征频率,得到所设计结构的频散曲线和弹性波禁带;
S3、选择具有不同h1和h2的共振单元的单胞计算频散曲线,使得到的弹性波禁带尽可能宽,以此作为周期排列超材料点阵结构的单胞;
S4、将单胞沿着平面两个方向进行周期排列,建立具有有限周期数的超材料点阵结构。
CN202011200569.4A 2020-10-30 2020-10-30 一种低频减振轻质超材料点阵结构及其制作方法 Pending CN112356521A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011200569.4A CN112356521A (zh) 2020-10-30 2020-10-30 一种低频减振轻质超材料点阵结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011200569.4A CN112356521A (zh) 2020-10-30 2020-10-30 一种低频减振轻质超材料点阵结构及其制作方法

Publications (1)

Publication Number Publication Date
CN112356521A true CN112356521A (zh) 2021-02-12

Family

ID=74512505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011200569.4A Pending CN112356521A (zh) 2020-10-30 2020-10-30 一种低频减振轻质超材料点阵结构及其制作方法

Country Status (1)

Country Link
CN (1) CN112356521A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113761648A (zh) * 2021-08-05 2021-12-07 同济大学 一种低频减振双层波纹超结构
CN113806975A (zh) * 2021-08-12 2021-12-17 上海工程技术大学 一种手性声学超材料板的结构设计方法
CN113982183A (zh) * 2021-10-26 2022-01-28 北京建筑大学 一种禁带频率可调的减振超材料点阵夹芯梁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204919983U (zh) * 2015-07-13 2015-12-30 北京交通大学 一种含n型夹层的多功能周期点阵夹芯板结构
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN111114225A (zh) * 2019-12-24 2020-05-08 上海采埃孚伦福德底盘技术有限公司 一种基于阵列式减振器的车用悬架控制臂及参数计算方法
CN111259592A (zh) * 2020-01-20 2020-06-09 湖南工业大学 一种振动能量收集压电超材料薄板材料拓扑优化方法
CN111645846A (zh) * 2020-06-15 2020-09-11 哈尔滨工程大学 一种多频段减振的新型周期金字塔点阵超材料梁结构
CN111723496A (zh) * 2020-07-23 2020-09-29 西北工业大学 一种超薄全方位隔振超表面结构及其设计方法
CN111833834A (zh) * 2020-05-20 2020-10-27 东南大学 一种可形成具有多重带隙周期复合结构的超胞元

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204919983U (zh) * 2015-07-13 2015-12-30 北京交通大学 一种含n型夹层的多功能周期点阵夹芯板结构
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN111114225A (zh) * 2019-12-24 2020-05-08 上海采埃孚伦福德底盘技术有限公司 一种基于阵列式减振器的车用悬架控制臂及参数计算方法
CN111259592A (zh) * 2020-01-20 2020-06-09 湖南工业大学 一种振动能量收集压电超材料薄板材料拓扑优化方法
CN111833834A (zh) * 2020-05-20 2020-10-27 东南大学 一种可形成具有多重带隙周期复合结构的超胞元
CN111645846A (zh) * 2020-06-15 2020-09-11 哈尔滨工程大学 一种多频段减振的新型周期金字塔点阵超材料梁结构
CN111723496A (zh) * 2020-07-23 2020-09-29 西北工业大学 一种超薄全方位隔振超表面结构及其设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴九汇, 西安交通大学出版社, pages: 147 - 150 *
吴九汇: "《振动与噪声前沿理论及应用》", 31 December 2014, 西安交通大学出版社, pages: 143 - 148 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113761648A (zh) * 2021-08-05 2021-12-07 同济大学 一种低频减振双层波纹超结构
CN113806975A (zh) * 2021-08-12 2021-12-17 上海工程技术大学 一种手性声学超材料板的结构设计方法
CN113982183A (zh) * 2021-10-26 2022-01-28 北京建筑大学 一种禁带频率可调的减振超材料点阵夹芯梁

Similar Documents

Publication Publication Date Title
Gao et al. Acoustic metamaterials for noise reduction: a review
CN112356521A (zh) 一种低频减振轻质超材料点阵结构及其制作方法
Chen et al. Dynamic behaviour of sandwich structure containing spring-mass resonators
CN107701635B (zh) 具有超阻尼特性的低频宽带局域共振结构
Wang et al. Tunable low-frequency torsional-wave band gaps in a meta-shaft
CN112324827A (zh) 一种双层金字塔型轻质减振超材料点阵结构
Chen et al. Flexural wave propagation in metamaterial beams containing membrane-mass structures
Wang et al. Locally resonant band gaps in flexural vibrations of a Timoshenko beam with periodically attached multioscillators
Tian et al. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators
Zhou et al. An approach to broaden the low-frequency bandwidth of sound insulation by regulating dynamic effective parameters of acoustic metamaterials
Song et al. Analysis and enhancement of torsional vibration stopbands in a periodic shaft system
Gao et al. Effective negative mass nonlinear acoustic metamaterial with pure cubic oscillator
Zuo et al. Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures
CN109404478A (zh) 振子单元以及基于它的非线性声学超材料元胞结构
Li et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures
Li et al. Forming low-frequency complete vibration bandgaps in a thin nonmetallic elastic metamaterial plate
Paradeisiotis et al. Advanced negative stiffness absorber for low-frequency noise insulation of panels
Li et al. Design of novel two-dimensional single-phase chiral phononic crystal assembly structures and study of bandgap mechanism
Li et al. Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators
Cheng et al. Low and ultra-wide frequency wave attenuation performance and tunability of a new cruciate ligament structure
Sun et al. Coupled bandgap properties and wave attenuation in the piezoelectric metamaterial beam on periodic elastic foundation
Qiang et al. Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam
Liu et al. Acoustic bandgap characteristics of a duct with a cavity-backed and strip mass-attached membrane array mounted periodically
Yang et al. Performance evaluation of a dual-piezoelectric-beam vibration energy harvester with a lever and repulsive magnets
Hou et al. Extremely low frequency band gaps of beam-like inertial amplification metamaterials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210212

RJ01 Rejection of invention patent application after publication