CN112347913B - 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统 - Google Patents

基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统 Download PDF

Info

Publication number
CN112347913B
CN112347913B CN202011223280.4A CN202011223280A CN112347913B CN 112347913 B CN112347913 B CN 112347913B CN 202011223280 A CN202011223280 A CN 202011223280A CN 112347913 B CN112347913 B CN 112347913B
Authority
CN
China
Prior art keywords
disaster
target
huynen
jump angle
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011223280.4A
Other languages
English (en)
Other versions
CN112347913A (zh
Inventor
梁莉婷
张云华
李东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Science Center of CAS
Original Assignee
National Space Science Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Science Center of CAS filed Critical National Space Science Center of CAS
Priority to CN202011223280.4A priority Critical patent/CN112347913B/zh
Publication of CN112347913A publication Critical patent/CN112347913A/zh
Application granted granted Critical
Publication of CN112347913B publication Critical patent/CN112347913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Astronomy & Astrophysics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了基于快速Huynen‑Euler分解的受灾建筑物损坏等级估计方法及系统,所述方法包括:根据全极化合成孔径雷达的极化数据,分别获得目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2];根据目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2],分别计算目标灾前Huynen参数和目标灾后的Huynen参数;根据目标灾前Huynen参数和目标灾后的Huynen参数,利用快速Huynen‑Euler分解,分别计算目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2;根据目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2,计算目标跳跃角变化率参数Δvn;根据跳跃角变化率参数Δνn,估计受灾建筑物损坏等级DL。该方法解决了自然灾害突发时对城区受灾程度进行评估的过程耗时较大的问题,实现对受灾地区受灾程度快速准确的估计。

Description

基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法 及系统
技术领域
本发明涉及全极化合成孔径雷达数据的极化分解领域,特别涉及基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统。
背景技术
随着微波技术的发展,能够有效获取目标的全极化散射特性的极化合成孔径雷达作为微波遥感的重要手段之一,被广泛应用于目标检测与识别、地物分类、地表参数反演等方面。近年来,由于自然灾害的频发及其程度的加剧,灾害监测和建筑区域损坏评估作为极化合成孔径雷达的新兴应用引起了广泛关注,因为其能够全天时、全天候、不受云雨气象条件的影响、经由遥感的方式迅速的获取大范围的有关受灾区域的数据。经由比较并分析灾前与灾后该区域的散射特性的变化,可以将其准确识别为损坏区域、水淹区域、未受损区域,等等。模型分解提取的二次散射功率是目前最常用的进行受灾区域状态判断的参数,因为其被认为是由建筑竖直的墙体和地表构成的二面角结构所产生的。故已有算法通过比较二次散射功率的变化来判断建筑区域受损程度,如文献1[S.-W.Chen,X.-S.Wang,andM.Sato,“Urban damage level mapping based on scattering mechanisminvestigation using fully polarimetric SAR data for the 3.11east japanearthquake,”IEEE Trans.Geosci.Remote Sens.,vol.54,no.12,pp.6919–6929,2016.]。然而,采用模型分解得到二次散射功率的过程相对耗时,因为在对这一参数进行求解的过程中需要经过去取向、同极化功率相对大小判断、根据判断结果选择求解方法、消除负功率影响等多个步骤,而灾害应用对参数提取的时效性要求很高——为了保证能够迅速的检测到灾害、对城区受灾程度进行快速评估以制定高效及时的救援措施,挽救人民群众生命安全和财产。
Huynen-Euler分解是Huynen提出的对目标极化散射矩阵进行的一种分解算法(文献2[J.R.Huynen,“Phenomenological theory of radar targets,”Ph.D.dissertation,Dept.Elect.Eng.,Math.Comput.Sci.,Tech.Univ.Delft,Delft,The Netherlands,1970.]),分解得到的五个欧拉参数能够有效反应目标不同方面的散射特性。其中跳跃角参数v与信号的反射次数相关,其本质上反应了与二次散射功率相同的信息。尽管理论上可行,Huynen提出的跳跃角参数在实际应用中存在角度模糊问题。采用快速Huynen-Euler分解可以通过解析的方式提取改进的跳跃角参数vn,不仅避免了旧跳跃角参数角度模糊的问题,而且实现了速度远超于模型分解的对建筑区域的快速识别,从而达到对受灾地区快速检测和受灾程度迅速估计的目的。
发明内容
本发明的目的在于解决自然灾害突发时对城区受灾程度进行评估的过程耗时较大的问题。
为了实现上述目的,本发明提供了一种基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法,所述方法包括:
根据全极化合成孔径雷达的极化数据,分别获得目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2];
根据目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2],分别计算目标灾前Huynen参数和目标灾后的Huynen参数;
根据目标灾前Huynen参数和目标灾后的Huynen参数,利用快速Huynen-Euler分解,分别计算目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2
根据目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2,计算目标跳跃角变化率参数Δvn
根据跳跃角变化率参数Δvn,估计受灾建筑物损坏等级DL。
作为上述方法的一种改进,所述目标灾前的相干矩阵[T1]为;
其中,T111、T112、T113、T121、T122、T123、T131、T132和T133为目标灾前的相干矩阵[T1]的元素;
目标灾后的相干矩阵[T2]为:
其中,T211、T212、T213、T221、T222、T223、T231、T232和T233为目标灾后的相干矩阵[T2]。
作为上述方法的一种改进,所述根据目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2],分别计算目标灾前Huynen参数和目标灾后的Huynen参数;具体包括:
将目标灾前和灾后的Huynen参数分别记为A01,B01,B1,C1,D1,E1,F1、G1和H1,其计算公式为:
C1=Re{T112}
D1=-Im{T112}
E1=Re{T123}
F1=Im{T123}
G1=Im{T113}
H1=Re{T113}
将目标灾后的Huynen参数分别记为A02,B02,B2,C2,D2,E2,F2,G2和H2,其计算公式为:
C2=Re{T212}
D2=-Im{T212}
E2=Re{T223}
F2=Im{T223}
G2=Im{T213}
H2=Re{T213}
其中,Re{·}表示取实部,Im{·}表示取虚部。
作为上述方法的一种改进,所述根据目标灾前Huynen参数和目标灾后的Huynen参数,利用快速Huynen-Euler分解,分别计算目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2;具体包括:
计算目标灾前的跳跃角参数vn1的公式为:
计算目标灾后的跳跃角参数vn2的公式为:
其中,vn1∈[0,45°],vn2∈[0,45°]。
作为上述方法的一种改进,所述根据目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2,计算目标跳跃角变化率参数Δvn;具体包括:
计算跳跃角变化率参数Δvn的公式为:
其中,Δvn∈[0,1]。
作为上述方法的一种改进,所述根据跳跃角变化率参数Δvn,估计受灾建筑物损坏等级DL,具体包括:
受灾建筑物损坏等级DL为:
其中,损坏等级DL∈[0,1]。
本发明还提出了一种基于快速Huynen-Euler分解的受灾建筑物损坏等级估计系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
本发明的优势在于:
本发明提出的方法和系统解决了自然灾害突发时对城区受灾程度进行评估的过程耗时较大的问题,既避免了旧跳跃角参数的角度模糊问题,通过快速分解方法实现对建筑区域的快速识别,解决了自然灾害突发时对城区受灾程度进行评估的过程耗时较大的问题,能够得到对受灾地区受灾程度快速准确的估计。
附图说明
图1为本发明的基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法的流程图;
图2(a)为受灾地区日本石卷市的灾前的光学图像;
图2(b)为受灾地区日本石卷市的灾后的光学图像;
图3为建筑物损坏等级估计结果的示意图;
图4为利用模型分解方法得到的建筑物损坏等级估计结果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细的说明。
Huynen-Euler分解提取的跳跃角参数v与信号的反射次数相关,理论上能够对城区进行识别,但在实际应用中其存在角度模糊的问题。采用快速Huynen-Euler分解可以通过解析的方式提取改进的跳跃角参数vn,既能够有效避免旧跳跃角参数角度模糊的问题,而且求解速度极快。本发明通过提出改进的跳跃角参数vn并提出求解vn的快速Huynen-Euler分解方法,以解决自然灾害突发时对城区受灾程度进行评估的过程耗时较大的问题,从而得到一种既能避免旧跳跃角参数的角度模糊,又能对建筑区域快速识别,进而实现对受灾地区受灾程度快速准确估计的方法。
如图1所示,本发明的实施例1提出了的基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法,包括以下步骤:
步骤1)根据灾前和灾后的全极化合成孔径雷达的极化数据,分别获得目标灾前和灾后的相干矩阵[T1]和[T2],分别计算灾前和灾后的Huynen参数A0,B0,B,C,D,E,F,G和H,并分别记为A01,B01,B1,C1,D1,E1,F1,G1,H1(灾前)和A02,B02,B2,C2,D2,E2,F2,G2,H2(灾后);
步骤2)根据步骤1)得到的灾前和灾后的Huynen参数A01,B01,B1,C1,D1,E1,F1,G1,H1(灾前)和A02,B02,B2,C2,D2,E2,F2,G2,H2(灾后),通过快速Huynen-Euler算法,分别计算目标灾前和灾后的改进的跳跃角vn1和vn2
步骤3)根据步骤2)得到的目标灾前和灾后的改进的跳跃角vn1和vn2,计算目标的跳跃角变化率Δvn
步骤4)根据步骤3)得到的目标的跳跃角变化率Δvn,估计受灾建筑物损坏等级DL;
下面通过实例进一步描述。
在一个实例中,受灾地区日本石卷市的灾前与灾后的光学图像如图2(a)和图2(b)所示,该图像由Google Earth分别在2010年6月25日和2011年4月6日获取。在2011年3月11日,发生了9.0级的日本东北地方太平洋近海地震,并引发最大爬高40.1米的海啸,是日本史上最大的天然灾难。地震造成至少15893人死亡、2553人失踪、伤者6152人,遭受破坏的房屋1292417栋,为日本二战后伤亡最惨重的自然灾害。由图2可以看出,灾前灾后的沿海城区发生了明显变化,远离海边的地区则没有明显的变化。这是因为沿海城区受灾极其严重,多数房屋倒塌且残骸被随之而来的海啸冲走,而内陆地区受这两种灾害的影响则较小。该实施例中采用的全极化合成孔径雷达数据是由JAXA的星载ALOS PALSAR系统分别在2009年4月2日和2011年4月8日获取。
在步骤1)中,根据灾前和灾后的全极化合成孔径雷达的极化数据,分别获得目标灾前和灾后的相干矩阵[T1]和[T2],分别计算灾前和灾后的Huynen参数A0,B0,B,C,D,E,F,G和H,并分别记为A01,B01,B1,C1,D1,E1,F1,G1,H1(灾前)和A02,B02,B2,C2,D2,E2,F2,G2,H2(灾后);其中,
目标的相干矩阵[T]表示如下:
将目标灾前灾后的相干矩阵分别记为[T1]和[T2]。
Huynen参数A0,B0,B,C,D,E,F,G和H的计算公式如下:
其中,Huynen参数A0,B0,B,C,D,E,F,G和H都是实数。将目标的相干矩阵[T]采用实数参数表示具有清晰明了的优点,此外还能够方便的应用快速惠能欧拉分解。利用Huynen参数进行目标散射信息的表示具有简洁直观的优点。上述两种表示是等价的。将目标灾前和灾后的Huynen参数分别记为A01,B01,B1,C1,D1,E1,F1,G1,H1(灾前)和A02,B02,B2,C2,D2,E2,F2,G2,H2(灾后)。
在步骤2)中,根据步骤1)得到的灾前和灾后的Huynen参数A01,B01,B1,C1,D1,E1,F1,G1,H1(灾前)和A02,B02,B2,C2,D2,E2,F2,G2,H2(灾后),通过快速Huynen-Euler算法,分别计算目标灾前和灾后的改进的跳跃角vn1和vn2;其中,
快速Huynen-Euler算法是本发明提出的一种能够快速实现Huynen-Euler分解并提取相应的Huynen-Euler参数的算法。Huynen-Euler分解是Huynen基于包含目标的全部极化信息的散射矩阵[S]提出的一种分解方法,表示如下:
其中,
各参数都具备特定的与目标散射特性相关的含义:m2表示目标的最大雷达散射截面积;是目标的取向角,与目标绕雷达视线取向有关;τ是螺旋角,与目标对称性有关(人造目标τ=0,自然地物τ=45°);γ是极化度角,与目标极化敏感度有关(线性目标γ=0,如偶极子;球或平面目标γ=45°);v是跳跃角,与多次散射有关(单次散射v=0,二次散射v=45°)。由此可以看出v能够有效识别城区等二次散射目标,与二次散射功率参数具有相似的性质。Huynen对各个参数的取值范围给出了描述:
已有的算法通过对[S]进行伪特征分解或对进行特征分解来求解五个Huynen-Euler参数(其中上标干表示取共轭转置),但这一过程较为耗时。本发明通过将散射矩阵[S]转化为与其等价的相干矩阵[T],并进一步利用Huynen参数对目标全部的散射信息进行表示,推导出五个Huynen-Euler参数的解析解形式,实现快速Huynen-Euler分解并得到五个Huynen-Euler参数。其中,将散射矩阵[S]转化为与其等价的相干矩阵[T]利用如下变换:
然后再根据式(2)便可以获得目标的Huynen参数。根据式(2)、(3)和(6),我们可以将Huynen参数用五个Huynen-Euler参数表示,如下:
利用式(7)可以推导出Huynen-Euler参数的解析解如下:
需要说明的是,原Huynen-Euler分解提取的跳跃角参数v对于建筑物的识别存在角度模糊问题,例如,对于两个散射矩阵为如下所示对角阵的目标[S1]和[S2]
原Huynen-Euler分解提取的跳跃角参数v1=-45°,v2=45°,即将[S1]和[S2]识别为不同的目标,而实际上可以推导出
[S1]=ej180°[S2] (14)即二者实际上只相差一个绝对相位。考虑到跳跃角参数v反映的是与目标二次散射有关的信息,而标准二次散射最重要的特点是同极化通道的相位相反,因此本发明认为v的取值只需要反应同极化通道的相对相位即可,即,采用|v|对目标的二次散射信息进行描述。综上,本发明对于旧的跳跃角参数进行了改进,通过令
vn=|v| (15)
本发明采用vn对目标的二次散射信息进行描述,且有
因此,本发明根据式(8)-(11)和(16),实现对目标的快速Huynen-Euler分解,并利用式(16)分别计算得到目标灾前和灾后的改进的跳跃角参数vn1和vn2
在步骤3)中,根据步骤2)得到的目标灾前和灾后的改进的跳跃角vn1和vn2,计算目标的跳跃角变化率Δvn;其中,
Δvn反映了目标跳跃角vn在受灾前后的变化情况,能够反映二面散射减少的相对量,从而反映出受灾城区的受损程度。
在步骤4)中,根据步骤3)得到的目标的跳跃角变化率Δvn,估计受灾建筑物损坏等级DL;其中,
受灾建筑物损坏等级DL的估计方法如下:
其中,Δvn<0.2时候我们认为目标受灾程度为0,这是因为尽管理论上vn的变化只与二次散射相关,但实际上由于获取数据具有一定的时间间隔,目标的散射特性极有可能发生变化,噪声等因素的影响也会导致vn一定程度的变化,因此为了避免随机因素和时间因素的影响,本发明采取了这一措施。同理,我们将Δvn≤1也作为基本的约束条件,以保证获得的建筑物受灾程度结果有意义。
在本实施例中,利用快速Huynen-Euler分解估计得到的受灾建筑物损坏等级如图3所示,可以看出,其能够准确表示严重受损的沿海城区的与非沿海区域的无损特点,而且不受海洋、山区和植被区域的干扰,即这些非城区得到的受灾程度估计结果都近乎为0。已有的利用模型分解得到的二次散射功率进行城区受损程度估计的算法的估计结果如图4所示,可以看出,其结果与本发明的结果很相近,二者的相干性高达0.7471,但很显然,已有算法不能避免海洋、山区和植被区域的干扰,其在这些地区都有较高的DL值。
除此之外,本发明的快速Huynen-Euler分解另一巨大优势在于求解的高效性。通过对本组实施例数据的计算时间记录(本实施例数据为复数矩阵1248×18432),可以得到:本发明提出的算法得到计算DL值所需参数vn的时间是0.2458秒,而已有算法通过模型分解得到计算DL值所需参数二次散射功率的时间是4.9178,差距不可谓之不大。因而,本发明——快速Huynen-Euler分解——的求解的高效性对于灾害检测、受灾城区受损程度估计、救援措施的迅速制定与执行有着重要意义。
本发明的实施例2提出了一种基于快速Huynen-Euler分解的受灾建筑物损坏等级估计系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例1的方法。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法,所述方法包括:
根据全极化合成孔径雷达的极化数据,分别获得目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2];
根据目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2],分别计算目标灾前Huynen参数和目标灾后的Huynen参数;
根据目标灾前Huynen参数和目标灾后的Huynen参数,利用快速Huynen-Euler分解,分别计算目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2
根据目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2,计算目标跳跃角变化率参数Δνn
根据跳跃角变化率参数Δvn,估计受灾建筑物损坏等级DL;
所述目标灾前的相干矩阵[T1]为;
其中,T111、T112、T113、T121、T122、T123、T131、T132和T133为目标灾前的相干矩阵[T1]的元素;
目标灾后的相干矩阵[T2]为:
其中,T211、T212、T213、T221、T222、T223、T231、T232和T233为目标灾后的相干矩阵[T2];
所述根据目标灾前的相干矩阵[T1]和目标灾后的相干矩阵[T2],分别计算目标灾前Huynen参数和目标灾后的Huynen参数;具体包括:
将目标灾前和灾后的Huynen参数分别记为A01,B01,B1,C1,D1,E1,F1、G1和H1,其计算公式为:
C1=Re{T112}
D1=-Im{T112}
E1=Re{T123}
F1=Im{T123}
G1=Im{T113}
H1=Re{T113}
将目标灾后的Huynen参数分别记为A02,B02,B2,C2,D2,E2,F2,G2和H2,其计算公式为:
C2=Re{T212}
D2=-Im{T212}
E2=Re{T223}
F2=Im{T223}
G2=Im{T213}
H2=Re{T213}
其中,Re{·}表示取实部,Im{·}表示取虚部;
所述根据目标灾前Huynen参数和目标灾后的Huynen参数,利用快速Huynen-Euler分解,分别计算目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2;具体包括:
计算目标灾前的跳跃角参数vn1的公式为:
计算目标灾后的跳跃角参数νn2的公式为:
其中,νn1∈[0,45°],νn2∈[0,45°]。
2.根据权利要求1所述的基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法,其特征在于,所述根据目标灾前的跳跃角参数vn1和目标灾后的跳跃角参数vn2,计算目标跳跃角变化率参数Δvn;具体包括:
计算跳跃角变化率参数Δvn的公式为:
其中,Δvn∈[0,1]。
3.根据权利要求2所述的基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法,其特征在于,所述根据跳跃角变化率参数Δvn,估计受灾建筑物损坏等级DL,具体包括:
受灾建筑物损坏等级DL为:
其中,损坏等级DL∈[0,1]。
4.一种基于快速Huynen-Euler分解的受灾建筑物损坏等级估计系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-3任一项所述的方法。
CN202011223280.4A 2020-11-05 2020-11-05 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统 Active CN112347913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011223280.4A CN112347913B (zh) 2020-11-05 2020-11-05 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011223280.4A CN112347913B (zh) 2020-11-05 2020-11-05 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统

Publications (2)

Publication Number Publication Date
CN112347913A CN112347913A (zh) 2021-02-09
CN112347913B true CN112347913B (zh) 2024-03-29

Family

ID=74429230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011223280.4A Active CN112347913B (zh) 2020-11-05 2020-11-05 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统

Country Status (1)

Country Link
CN (1) CN112347913B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104268879A (zh) * 2014-09-28 2015-01-07 民政部国家减灾中心 基于遥感多光谱图像的建筑物实物量损毁评估方法
CN104331707A (zh) * 2014-11-02 2015-02-04 西安电子科技大学 基于深度pca网络和svm的极化sar图像分类方法
CN108601346A (zh) * 2016-01-04 2018-09-28 农业部长代表的美国 用于二色视动物的驱避剂和引诱剂组合物
JP2019039861A (ja) * 2017-08-28 2019-03-14 アズビル株式会社 建物被災推定システムおよび方法
CN109633583A (zh) * 2018-10-22 2019-04-16 上海无线电设备研究所 基于近场包围面扫描极化散射数据的目标外形反演方法
CN109799503A (zh) * 2019-03-06 2019-05-24 中科卫星应用德清研究院 建筑物损毁评估制图方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104268879A (zh) * 2014-09-28 2015-01-07 民政部国家减灾中心 基于遥感多光谱图像的建筑物实物量损毁评估方法
CN104331707A (zh) * 2014-11-02 2015-02-04 西安电子科技大学 基于深度pca网络和svm的极化sar图像分类方法
CN108601346A (zh) * 2016-01-04 2018-09-28 农业部长代表的美国 用于二色视动物的驱避剂和引诱剂组合物
JP2019039861A (ja) * 2017-08-28 2019-03-14 アズビル株式会社 建物被災推定システムおよび方法
CN109633583A (zh) * 2018-10-22 2019-04-16 上海无线电设备研究所 基于近场包围面扫描极化散射数据的目标外形反演方法
CN109799503A (zh) * 2019-03-06 2019-05-24 中科卫星应用德清研究院 建筑物损毁评估制图方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fast Huynen–Euler Decomposition and its Application in Disaster Monitoring";Liting Liang等;《 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing ( Volume: 14)》;第14卷;第 4231 - 4243页 *
"极化散射的各向异性分析及应用";李岳涵等;《复旦学报( 自然科学版)》;第56卷(第5期);第628-635页 *

Also Published As

Publication number Publication date
CN112347913A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Yu et al. A landslide intelligent detection method based on CNN and RSG_R
CN106525762A (zh) 一种基于自适应模型的水质监测方法和水质监测装置
Zhou et al. Community-scale multi-level post-hurricane damage assessment of residential buildings using multi-temporal airborne LiDAR data
Alvarez-Ellacuria et al. Decoupling spatial and temporal patterns in short-term beach shoreline response to wave climate
CN113643284B (zh) 基于卷积神经网络的极化合成孔径雷达图像舰船检测方法
CN105389799B (zh) 基于素描图与低秩分解的sar图像目标检测方法
CN105512622B (zh) 一种基于图分割和监督学习的可见光遥感图像海陆分割方法
Wang et al. Coastline interpretation from multispectral remote sensing images using an association rule algorithm
CN110516552B (zh) 一种基于时序曲线的多极化雷达图像分类方法及系统
CN113469097B (zh) 一种基于ssd网络的水面漂浮物多相机实时检测方法
CN110823190A (zh) 基于随机森林的岛礁浅海水深预测方法
Li et al. High-spatiotemporal-resolution dynamic water monitoring using LightGBM model and Sentinel-2 MSI data
CN112347913B (zh) 基于快速Huynen-Euler分解的受灾建筑物损坏等级估计方法及系统
CN113870224A (zh) 一种洪水监测方法、系统、设备和介质
Rimba et al. Evaluating the extraction approaches of flood extended area by using ALOS-2/PALSAR-2 images as a rapid response to flood disaster
CN112101250A (zh) 一种基于上下文语义感知的近岸舰船目标检测方法
CN103903258B (zh) 基于次序统计量谱聚类的遥感图像变化检测方法
CN116167936A (zh) 一种用于洪水监测的山体阴影去除方法及装置
CN105551021B (zh) 基于多时相全极化sar的建筑物倒损率估计方法
CN105551029A (zh) 一种多光谱遥感图像舰船检测方法
CN115346115A (zh) 图像目标检测方法、装置、设备和存储介质
CN107748875A (zh) 一种基于多时相雷达图像纹理特征的震害建筑物识别方法
Moumtzidou et al. Flood detection with Sentinel-2 satellite images in crisis management systems.
CN103198478A (zh) 基于协整理论的光谱匹配检测方法
Liu et al. Double polarization SAR image classification based on object-oriented technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant