CN112345951A - 一种复合电源动力系统中电池的交流阻抗测量方法 - Google Patents

一种复合电源动力系统中电池的交流阻抗测量方法 Download PDF

Info

Publication number
CN112345951A
CN112345951A CN202011304030.3A CN202011304030A CN112345951A CN 112345951 A CN112345951 A CN 112345951A CN 202011304030 A CN202011304030 A CN 202011304030A CN 112345951 A CN112345951 A CN 112345951A
Authority
CN
China
Prior art keywords
signal
fuel cell
impedance
lithium battery
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011304030.3A
Other languages
English (en)
Other versions
CN112345951B (zh
Inventor
马天才
杨彦博
宋凯航
林维康
姚乃元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202011304030.3A priority Critical patent/CN112345951B/zh
Publication of CN112345951A publication Critical patent/CN112345951A/zh
Application granted granted Critical
Publication of CN112345951B publication Critical patent/CN112345951B/zh
Priority to US17/519,577 priority patent/US11971457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及一种复合电源动力系统中电池的交流阻抗测量方法,包括以下步骤:确定交流扰动信号幅值,DC/DC电压变换器工作,产生交流扰动信号,采集燃料电池和锂电池的输出信号,计算燃料电池和锂电池的输出功率;计算负载的需求功率,当负载的需求功率稳定时,分别计算锂电池和燃料电池的阻抗,否则,只计算燃料电池的阻抗。与现有技术相比,本发明在现有控制方法中增加检测负载需求功率是否稳定的步骤,在负载需求功率稳定时,利用车辆自身的交流阻抗测量装置同时测量得到燃料电池和锂电池的阻抗,降低了复合电源动力系统内部状态识别的难度,极大地减少了成本,能够一体化识别复合电源系统的内部状态。

Description

一种复合电源动力系统中电池的交流阻抗测量方法
技术领域
本发明涉及电池检测技术领域,尤其是涉及一种复合电源动力系统中电池的交流阻抗测量方法
背景技术
随着能源与环境问题越来越严峻,传统化石能源的过度消耗引起人们对能源枯竭的担忧,新能源的开发与利用受到了人们的广泛关注,尤其是在新能源汽车领域,燃料电池与锂电池都成为发展的新趋势。但是燃料电池的动态响应慢,独立使用将无法满足车用工况下的功率频繁变化,而锂电池功率密度高、响应速率快,因此将燃料电池与锂电池结合的复合电源动力系统是更好的解决方案。燃料电池和锂电池的内部状态均无法通过测量直接获取,这将给车用复合电源系统的控制、安全监控和故障诊断带来较大困难。
现有技术中,一般通过测量电池的电化学交流阻抗来识别电池内部状态并基于此进行故障诊断分析。但是,复合电源动力系统中包括燃料电池和锂电池,由于车辆运行过程中,负载需求功率会发生变化,燃料电池和锂电池会随之调整输出电流,需要为两个电池分别安装交流阻抗测量装置才能测量两个电池的交流阻抗。考虑到成本和体积问题,车辆一般只安装一个交流阻抗测量装置,使用该装置测量对燃料电池的交流阻抗进行测量,使用其他装置或复杂的控制方法识别锂电池的内部状态,难以一体化识别复合电源系统的内部状态。
发明内容
经过发明人的分析和研究,发现当车辆稳定运行时,负载的需求功率不变,此时,通过DC/DC电压变换器向燃料电池施加交流扰动信号,燃料电池的输出信号为直流信号和正弦交变信号的叠加,功率改变,为保持输入至负载的功率不变,锂电池也会调整其功率,并与燃料电池功率具有相同的波动形式,锂电池输出功率与燃料电池输出功率间存在线性关系。因为小幅波动下锂电池可认为是线性系统,所以当调整过程结束后,锂电池的输出信号也调整为直流信号和正弦交变信号的叠加,可以根据该正弦交变信号计算得到锂电池的阻抗。本发明的目的就是为了提供一种复合电源动力系统中电池的交流阻抗测量方法,在现有控制方法中增加检测负载需求功率是否稳定的步骤,在负载需求功率稳定时,可以利用车辆自身的交流阻抗测量装置同时测量得到燃料电池和锂电池的阻抗,降低了复合电源动力系统内部状态识别的难度,减少了成本,能够一体化识别复合电源系统的内部状态。
本发明的目的可以通过以下技术方案来实现:
一种复合电源动力系统中电池的交流阻抗测量方法,基于交流阻抗测量装置测量燃料电池和锂电池的阻抗,包括以下步骤:
S1:确定交流扰动信号的幅值,控制系统控制DC/DC电压变换器工作,产生交流扰动信号,燃料电池的输出信号改变,锂电池的输出信号也随之发生相应的改变,所述输出信号包括电流信号和电压信号;
S2:实时采集燃料电池的电流信号和电压信号,实时采集锂电池的电流信号和电压信号,分别计算燃料电池和锂电池的实时输出功率;
S3:根据燃料电池和锂电池的实时输出功率计算负载的实时需求功率P负载需求,并计算P负载需求的实时变化率,若P负载需求的实时变化率小于预设置的稳定阈值,则执行步骤S4,否则,计算燃料电池的阻抗,等待预设置的时间长度T1后,执行步骤S5;
S4:分别计算燃料电池和锂电池的阻抗,等待预设置的时间长度T2后,执行步骤S5;
S5:控制系统获取阻抗测量控制信号,若控制信号为结束信号,则结束阻抗测量,否则,执行步骤S1。
进一步的,所述步骤S1中,交流扰动信号的幅值大小是根据燃料电池的扰动信号幅值和锂电池的扰动信号幅值确定的,包括以下步骤:
S11:根据阻抗测量精度需求和燃料电池的直流输出信号确定燃料电池扰动信号的幅值范围[λ1,λ2];
S12:根据阻抗测量精度需求和锂电池的直流输出信号确定锂电池扰动信号的幅值范围[λ3,λ4];
S13:若[λ1,λ2]和[λ3,λ4]之间没有交集,则DC/DC电压变换器工作,调整燃料电池和锂电池的直流输出信号,重复步骤S11,否则,自[λ1,λ2]和[λ3,λ4]的交集中选取一个值作为交流扰动信号的幅值。
更进一步的,所述步骤S11中,燃料电池扰动信号的幅值范围[λ1,λ2]具体为[a*2%,a*10%],其中,a代表燃料电池的直流输出信号。
更进一步的,所述步骤S12中,锂电池扰动信号的幅值范围[λ3,λ4]具体为[b*2%,b*10%],其中,b代表锂电池的直流输出信号。
进一步的,所述步骤S2中,实时采集燃料电池的电流信号和电压信号具体为:采集燃料电池的电流信号I和整体电压信号V,采集待测量的单片燃料电池的电压信号V燃p,0<p<n+1,n为燃料电池中单片电池的数量;实时采集锂电池的电流信号和电压信号具体为:采集锂电池的电流信号I和整体电压信号V,采集待测量的单片锂电池的电压信号V锂q,0<q<m+1,m为锂电池中单片电池的数量。
进一步的,所述步骤S3中,负载的实时需求功率P负载需求的计算公式为:
P负载需求=PDCDC-out+P锂电池
PDCDC-out=η*PDCDC-in
PDCDC-in=P燃料电池
其中,P负载需求为负载的实时需求功率,PDCDC-out为DC/DC电压变换器的输出功率,P锂电池为锂电池池的输出功率,η为DC/DC电压变换器的转换效率,PDCDC-in为DC/DC电压变换器的输入功率,P燃料电池为燃料电池的输出功率。
进一步的,所述步骤S3中,预设置的稳定阈值为1%。
更进一步的,所述步骤S3和步骤S4中,燃料电池阻抗、待测量的单片燃料电池阻抗、锂电池阻抗和待测量的单片锂电池阻抗的计算公式具体为:
Figure BDA0002787732680000031
V(t)=VD+VAsin(ωt+θ1)
I(t)=ID+IAsin(ωt+θ2)
其中,Z(ω)代表阻抗,V(t)代表采集的电压信号,VD代表采集的电压信号中的直流电压信号,VA代表采集的电压信号中的交流电压信号,I(t)代表采集的电流信号,ID代表采集的电压信号中的直流电流信号,IA代表采集的电压信号中的交流电流信号,ω代表交流信号的频率,t代表时间,θ1和θ2分别代表交流电压信号和交流电流信号的初相。
进一步的,所述步骤S3中,预设置的时间长度T1为2秒。
进一步的,所述步骤S4中,预设置的时间长度T2为5秒。
与现有技术相比,本发明具有以下有益效果:
(1)在现有控制方法中增加检测负载需求功率是否稳定的步骤,在负载需求功率稳定时,利用车辆自身的交流阻抗测量装置同时测量得到燃料电池和锂电池的阻抗,降低了复合电源动力系统内部状态识别的难度,极大地减少了成本,能够一体化识别复合电源系统的内部状态。
(2)根据燃料电池的扰动信号幅值范围和锂电池的扰动信号幅值范围确定扰动信号的幅值大小,既考虑了阻抗测量精度,也考虑到不影响电池的稳定性,选取的扰动信号幅值大小较为合理。
(3)在信号采集过程中,若负载需求功率的变化率小于1%,则认为车辆平稳运行,可以同时计算燃料电池和锂电池的阻抗,若变化率超过1%,则认为车辆运行不稳定,只根据采集的数据计算燃料电池的阻抗。
(4)当负载需求功率的变化率小于1%时,认为车辆平稳运行,在较为稳定情况下,电池状态变化缓慢,故等待5秒后再进行下一次测量,当负载需求功率的变化率超过1%时,电池内部状态变化较快,需要提高测量频率,故等待2秒后进行下一次测量,测量得到的阻抗数据更有代表性。
附图说明
图1为本发明的流程图;
图2为实施例中复合电源动力系统的结构示意图;
图3为实施例中交流阻抗测量装置的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
一种新能源动力汽车的复合电源动力系统的结构如图2所示,包括燃料电池和锂电池,在车辆运行过程中,负载需求功率会发生变化,燃料电池和锂电池会随之调整输出电流,考虑到成本和体积问题,只安装了一个交流阻抗测量装置,使用该装置测量对燃料电池的交流阻抗进行测量,难以一体化识别复合电源系统的内部状态。现有技术中,直接通过DC/DC电压变换器向燃料电池施加交流扰动信号计算燃料电池的阻抗,不考虑锂电池的状态。
经过发明人的分析和研究,发现当车辆稳定运行时,负载的需求功率不变,此时,通过DC/DC电压变换器向燃料电池施加交流扰动信号,燃料电池的输出信号为直流信号和正弦交变信号的叠加,功率改变,为保持输入至负载的功率不变,锂电池也会调整其功率,并与燃料电池功率具有相同的波动形式,锂电池输出功率与燃料电池输出功率间存在线性关系,具体为:
P负载需求=PDCDC-out+P锂电池=η*PDCDC-in+P锂电池=η*P燃料电池+P锂电池
其中,P负载需求为负载的实时需求功率,PDCDC-out为DC/DC电压变换器的输出功率,P锂电池为锂电池池的输出功率,η为DC/DC电压变换器的转换效率,PDCDC-in为DC/DC电压变换器的输入功率,P燃料电池为燃料电池的输出功率。
因为小幅波动下锂电池可认为是线性系统,所以当调整过程结束后,锂电池的输出信号也调整为直流信号和正弦交变信号的叠加,可以根据该正弦交变信号计算得到锂电池的阻抗。
本发明在现有控制方法中增加检测负载需求功率是否稳定的步骤,在负载需求功率稳定时,可以利用车辆自身的交流阻抗测量装置同时测量得到燃料电池和锂电池的阻抗,降低了复合电源动力系统内部状态识别的难度,极大地减少了成本,能够一体化识别复合电源系统的内部状态。
一种复合电源动力系统中电池的交流阻抗测量方法,基于交流阻抗测量装置测量燃料电池和锂电池的阻抗,具体流程如图1所示,包括以下步骤:
一种复合电源动力系统中电池的交流阻抗测量方法,基于交流阻抗测量装置测量燃料电池和锂电池的阻抗,包括以下步骤:
S1:确定交流扰动信号的幅值,控制系统控制DC/DC电压变换器工作,产生交流扰动信号,燃料电池的输出信号改变,锂电池的输出信号也随之发生相应的改变,输出信号包括电流信号和电压信号。
交流扰动信号的幅值大小是根据燃料电池的扰动信号幅值和锂电池的扰动信号幅值确定的,包括以下步骤:
S11:根据阻抗测量精度需求和燃料电池的直流输出信号确定燃料电池扰动信号的幅值范围[λ1,λ2];
S12:根据阻抗测量精度需求和锂电池的直流输出信号确定锂电池扰动信号的幅值范围[λ3,λ4];
S13:若[λ1,λ2]和[λ3,λ4]之间没有交集,则DC/DC电压变换器工作,调整燃料电池和锂电池的直流输出信号,重复步骤S11,否则,自[λ1,λ2]和[λ3,λ4]的交集中选取一个值作为交流扰动信号的幅值。
本实施例中,燃料电池扰动信号的幅值范围为[a*2%,a*10%],其中,a代表燃料电池的直流输出信号;锂电池扰动信号的幅值范围为[b*2%,b*10%],其中,b代表锂电池的直流输出信号;如果扰动信号幅值过大会导致电池系统不稳定,测量结果无意义,如果扰动信号幅值较小会导致信噪比小,测量精度差,综合考虑后,通过DC/DC电压变换器调整燃料电池的输出信号和锂电池的输出信号为近似值,在[λ1,λ2]和[λ3,λ4]的重叠部分中选择扰动信号幅值。在其他实施方式中,可以根据精度需要调整扰动信号的幅值范围。
S2:实时采集燃料电池的电流信号和电压信号,实时采集锂电池的电流信号和电压信号,分别计算燃料电池和锂电池的实时输出功率。
实时采集燃料电池的电流信号和电压信号具体为:采集燃料电池的电流信号I和整体电压信号V,采集待测量的单片燃料电池的电压信号V燃p,0<p<n+1,n为燃料电池中单片电池的数量;实时采集锂电池的电流信号和电压信号具体为:采集锂电池的电流信号I和整体电压信号V,采集待测量的单片锂电池的电压信号V锂q,0<q<m+1,m为锂电池中单片电池的数量。
如图3所示,燃料电池和锂电池中均包括多片单片电池,不仅需要计算整个电池的阻抗,也需要计算单片电池的阻抗,对单片电池的状态进行识别。
采集到的燃料电池的电流信号I和各个单片燃料电池的电流是相同的,不需要重复采集,各个单片燃料电池上均设有电压测量电路,电压信号选通电路用于选择需要测量的单片燃料电池/整体燃料电池的电压信号。采集的信号经信号调理放大电路调理放大,再经过模数转换电路将电压电流信号从模拟量转换为数字量,输入数字信号处理器。
采集到的锂电池的电流信号I和各个单片锂电池的电流是相同的,不需要多次采集,各个单片锂电池上均设有电压测量电路,电压信号选通电路用于选择需要测量的单片锂电池/整体锂电池的电压信号。采集的信号经信号调理放大电路调理放大,再经过模数转换电路将电压电流信号从模拟量转换为数字量,输入数字信号处理器。
S3:根据燃料电池和锂电池的实时输出功率计算负载的实时需求功率P负载需求,并计算P负载需求的实时变化率,若P负载需求的实时变化率小于预设置的稳定阈值,则执行步骤S4,否则,计算燃料电池的阻抗,等待预设置的时间长度T1后,执行步骤S5。
交流阻抗测量装置的结构如图3所示,燃料电池与DC/DC电压变换器的输入端相连,DC/DC电压变换器的输出端与锂电池并联后连接DC/AC电压变换器的输入端,DC/AC电压变换器的输出端与负载连接。因此,DC/DC电压变换器的输入功率大小即燃料电池的输出功率大小,由于DC/DC电压变换器的转换效率波动微弱,可以认为η是常值,DC/DC电压变换器的输出功率与锂电池的输出功率之和即DC/AC电压变换器的输入功率,也等于负载的需求功率。
故负载的实时需求功率P负载需求的计算公式为:
P负载需求=PDCDC-out+P锂电池
PDCDC-out=η*PDCDC-in
PDCDC-in=P燃料电池
其中,P负载需求为负载的实时需求功率,PDCDC-out为DC/DC电压变换器的输出功率,P锂电池为锂电池池的输出功率,η为DC/DC电压变换器的转换效率,PDCDC-in为DC/DC电压变换器的输入功率,P燃料电池为燃料电池的输出功率。
由于在车辆行驶过程中,负载的需求功率随时会发生改变,因此,在计算阻抗前,还需要确定在信号采集过程中负载的需求功率是否发生了较大的波动。事实上,在测量高频段的阻抗时,整个测量过程只需几秒甚至几毫秒,而负载需求功率的变化越小,阻抗测量结果越可靠。本实施例中,预设置的稳定阈值为1%,如果计算得到的负载实时需求功率的变化率超过1%,则不再根据锂电池的输出信号计算锂电池的阻抗,只计算燃料电池的阻抗。
本实施例中,预设置的时间长度T1为2秒。当负载需求功率的变化率超过1%时,电池内部状态变化较快,需要提高测量频率,故等待2秒后进行下一次测量,测量得到的阻抗数据更有代表性。
S4:分别计算燃料电池和锂电池的阻抗,等待预设置的时间长度T2后,执行步骤S5。
阻抗的计算是在数字信号处理器中实现的,燃料电池阻抗、待测量的单片燃料电池阻抗、锂电池阻抗和待测量的单片锂电池阻抗的计算公式具体为:
Figure BDA0002787732680000081
V(t)=VD+VAsin(ωt+θ1)
I(t)=ID+IAsin(ωt+θ2)
其中,Z(ω)代表阻抗,V(t)代表采集的电压信号,VD代表采集的电压信号中的直流电压信号,VA代表采集的电压信号中的交流电压信号,I(t)代表采集的电流信号,ID代表采集的电压信号中的直流电流信号,IA代表采集的电压信号中的交流电流信号,ω代表交流信号的频率,t代表时间,θ1和θ2分别代表交流电压信号和交流电流信号的初相。
本实施例中,预设置的时间长度T2为5秒。当负载需求功率的变化率小于1%时,认为车辆平稳运行,在较为稳定情况下,电池状态变化缓慢,故等待5秒后再进行下一次测量。
S5:控制系统获取阻抗测量控制信号,若控制信号为结束信号,则结束阻抗测量,否则,执行步骤S1。
计算出燃料电池、单片燃料电池、锂电池、单片锂电池的阻抗后,可以根据阻抗值、对应的特征参数和两个电池的阻抗谱模型,实现对燃料电池与锂电池的状态一体化辨识、安全监控与故障诊断,如燃料电池的系统含水量、锂电池的工作温度和健康状态等。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,基于交流阻抗测量装置测量燃料电池和锂电池的阻抗,包括以下步骤:
S1:确定交流扰动信号的幅值,控制系统控制DC/DC电压变换器工作,产生交流扰动信号,燃料电池的输出信号改变,锂电池的输出信号也随之发生相应的改变,所述输出信号包括电流信号和电压信号;
S2:实时采集燃料电池的电流信号和电压信号,实时采集锂电池的电流信号和电压信号,分别计算燃料电池和锂电池的实时输出功率;
S3:根据燃料电池和锂电池的实时输出功率计算负载的实时需求功率P负载需求,并计算P负载需求的实时变化率,若P负载需求的实时变化率小于预设置的稳定阈值,则执行步骤S4,否则,计算燃料电池的阻抗,等待预设置的时间长度T1后,执行步骤S5;
S4:分别计算燃料电池和锂电池的阻抗,等待预设置的时间长度T2后,执行步骤S5;
S5:控制系统获取阻抗测量控制信号,若控制信号为结束信号,则结束阻抗测量,否则,执行步骤S1。
2.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S1中,交流扰动信号的幅值大小是根据燃料电池的扰动信号幅值和锂电池的扰动信号幅值确定的,包括以下步骤:
S11:根据阻抗测量精度需求和燃料电池的直流输出信号确定燃料电池扰动信号的幅值范围[λ1,λ2];
S12:根据阻抗测量精度需求和锂电池的直流输出信号确定锂电池扰动信号的幅值范围[λ3,λ4];
S13:若[λ1,λ2]和[λ3,λ4]之间没有交集,则DC/DC电压变换器工作,调整燃料电池和锂电池的直流输出信号,重复步骤S11,否则,自[λ1,λ2]和[λ3,λ4]的交集中选取一个值作为交流扰动信号的幅值。
3.根据权利要求2所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,步骤S11中,燃料电池扰动信号的幅值范围[λ1,λ2]为[a*2%,a*10%],其中,a代表燃料电池的直流输出信号。
4.根据权利要求2所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,步骤S12中,锂电池扰动信号的幅值范围[λ3,λ4]为[b*2%,b*10%],其中,b代表锂电池的直流输出信号。
5.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S2中,实时采集燃料电池的电流信号和电压信号具体为:采集燃料电池的电流信号I和整体电压信号V,采集待测量的单片燃料电池的电压信号V燃p,0<p<n+1,n为燃料电池中单片电池的数量;实时采集锂电池的电流信号和电压信号具体为:采集锂电池的电流信号I和整体电压信号V,采集待测量的单片锂电池的电压信号V锂q,0<q<m+1,m为锂电池中单片电池的数量。
6.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S3中,负载的实时需求功率P负载需求的计算公式为:
P负载需求=PDCDC-out+P锂电池
PDCDC-out=η*PDCDC-in
PDCDC-in=P燃料电池
其中,P负载需求为负载的实时需求功率,PDCDC-out为DC/DC电压变换器的输出功率,P锂电池为锂电池池的输出功率,η为DC/DC电压变换器的转换效率,PDCDC-in为DC/DC电压变换器的输入功率,P燃料电池为燃料电池的输出功率。
7.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S3中,预设置的稳定阈值为1%。
8.根据权利要求5所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S3和步骤S4中,燃料电池阻抗、待测量的单片燃料电池阻抗、锂电池阻抗和待测量的单片锂电池阻抗的计算公式具体为:
Figure FDA0002787732670000021
V(t)=VD+VAsin(ωt+θ1)
I(t)=ID+IAsin(ωt+θ2)
其中,Z(ω)代表阻抗,V(t)代表采集的电压信号,VD代表采集的电压信号中的直流电压信号,VA代表采集的电压信号中的交流电压信号,I(t)代表采集的电流信号,ID代表采集的电压信号中的直流电流信号,IA代表采集的电压信号中的交流电流信号,ω代表交流信号的频率,t代表时间,θ1和θ2分别代表交流电压信号和交流电流信号的初相。
9.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S3中,预设置的时间长度T1为2秒。
10.根据权利要求1所述的一种复合电源动力系统中电池的交流阻抗测量方法,其特征在于,所述步骤S4中,预设置的时间长度T2为5秒。
CN202011304030.3A 2020-11-19 2020-11-19 一种复合电源动力系统中电池的交流阻抗测量方法 Active CN112345951B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011304030.3A CN112345951B (zh) 2020-11-19 2020-11-19 一种复合电源动力系统中电池的交流阻抗测量方法
US17/519,577 US11971457B2 (en) 2020-11-19 2021-11-05 Method for measuring AC impedance of battery in composite power supply power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011304030.3A CN112345951B (zh) 2020-11-19 2020-11-19 一种复合电源动力系统中电池的交流阻抗测量方法

Publications (2)

Publication Number Publication Date
CN112345951A true CN112345951A (zh) 2021-02-09
CN112345951B CN112345951B (zh) 2021-09-03

Family

ID=74364367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011304030.3A Active CN112345951B (zh) 2020-11-19 2020-11-19 一种复合电源动力系统中电池的交流阻抗测量方法

Country Status (2)

Country Link
US (1) US11971457B2 (zh)
CN (1) CN112345951B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253123A (zh) * 2021-04-26 2021-08-13 清华大学 一种燃料电池全工况在线阻抗测试装置和方法
CN113314740A (zh) * 2021-07-30 2021-08-27 北京亿华通科技股份有限公司 一种集成交流阻抗功能的燃料电池系统及其控制方法
CN114895207A (zh) * 2022-05-28 2022-08-12 上海交通大学 锂离子电池交流阻抗在线测量方法及测量系统
CN114976114A (zh) * 2022-05-25 2022-08-30 上海氢晨新能源科技有限公司 一种大功率燃料电池交流阻抗测试系统和方法
CN115117973A (zh) * 2022-07-15 2022-09-27 首凯汽车零部件(江苏)有限公司 一种电压叠加型复合电源系统
CN115991123A (zh) * 2023-03-22 2023-04-21 长安新能源南京研究院有限公司 一种功率负荷状态识别方法、系统、设备和介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11999258B2 (en) * 2021-07-08 2024-06-04 Guangzhou Automobile Group Co., Ltd. Method for detecting state of battery installed in vehicle, and vehicle-mounted battery-monitoring device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149830A1 (ja) * 2007-05-31 2008-12-11 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
CN104827922A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 燃料电池汽车及其控制方法和控制系统
CN104868180A (zh) * 2014-09-30 2015-08-26 北汽福田汽车股份有限公司 单体电池配组方法及系统
CN104931784A (zh) * 2014-03-17 2015-09-23 福特全球技术公司 基于频率的电池模型参数估计
WO2016059709A1 (ja) * 2014-10-16 2016-04-21 日産自動車株式会社 燃料電池システム及びインピーダンス測定方法
CN206074690U (zh) * 2016-09-22 2017-04-05 清华大学 燃料电池的交流阻抗测试系统
CN107783054A (zh) * 2016-08-25 2018-03-09 丰田自动车株式会社 锂离子二次电池的诊断装置和诊断方法
CN108556672A (zh) * 2018-05-25 2018-09-21 中车青岛四方机车车辆股份有限公司 一种燃料电池混合动力系统的控制方法及系统
CN109212431A (zh) * 2018-09-19 2019-01-15 同济大学 一种燃料电池阻抗测量系统及方法
CN110126813A (zh) * 2019-05-17 2019-08-16 吉林大学 一种车载燃料电池混合动力系统的能量管理方法
CN110606076A (zh) * 2019-09-30 2019-12-24 潍柴动力股份有限公司 一种混合动力车辆能量分配方法及装置
KR20200060899A (ko) * 2018-11-23 2020-06-02 현대자동차주식회사 차량용 연료전지 스택의 임피던스 측정 방법
CN111381174A (zh) * 2018-12-28 2020-07-07 天津银隆新能源有限公司 燃料电池测试与锂离子电池化成分容耦合系统及方法
JP2020182287A (ja) * 2019-04-24 2020-11-05 スズキ株式会社 車両用電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136945B2 (ja) * 2005-07-05 2013-02-06 トヨタ自動車株式会社 燃料電池システム
US9718455B2 (en) * 2014-02-20 2017-08-01 Ford Global Technologies, Llc Active battery parameter identification using conditional extended kalman filter
JP2019079631A (ja) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 燃料電池システム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149830A1 (ja) * 2007-05-31 2008-12-11 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
CN104931784A (zh) * 2014-03-17 2015-09-23 福特全球技术公司 基于频率的电池模型参数估计
CN104868180A (zh) * 2014-09-30 2015-08-26 北汽福田汽车股份有限公司 单体电池配组方法及系统
WO2016059709A1 (ja) * 2014-10-16 2016-04-21 日産自動車株式会社 燃料電池システム及びインピーダンス測定方法
CN104827922A (zh) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 燃料电池汽车及其控制方法和控制系统
CN107783054A (zh) * 2016-08-25 2018-03-09 丰田自动车株式会社 锂离子二次电池的诊断装置和诊断方法
CN206074690U (zh) * 2016-09-22 2017-04-05 清华大学 燃料电池的交流阻抗测试系统
CN108556672A (zh) * 2018-05-25 2018-09-21 中车青岛四方机车车辆股份有限公司 一种燃料电池混合动力系统的控制方法及系统
CN109212431A (zh) * 2018-09-19 2019-01-15 同济大学 一种燃料电池阻抗测量系统及方法
KR20200060899A (ko) * 2018-11-23 2020-06-02 현대자동차주식회사 차량용 연료전지 스택의 임피던스 측정 방법
CN111381174A (zh) * 2018-12-28 2020-07-07 天津银隆新能源有限公司 燃料电池测试与锂离子电池化成分容耦合系统及方法
JP2020182287A (ja) * 2019-04-24 2020-11-05 スズキ株式会社 車両用電源装置
CN110126813A (zh) * 2019-05-17 2019-08-16 吉林大学 一种车载燃料电池混合动力系统的能量管理方法
CN110606076A (zh) * 2019-09-30 2019-12-24 潍柴动力股份有限公司 一种混合动力车辆能量分配方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MEILING YUE ET AL.: "Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles:Degradation models and strategies", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
NOBUYUKI KITAMURA ET AL.: "Development of water content control system for fuel cell hybrid vehicles based on AC impedance", 《SAE TECHNICAL PAPER》 *
洪坡: "车用燃料电池电堆与单片水含量状态估计与控制研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
王坤玉: "基于粒子群算法的増程式电动汽车能量管理策略研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
韩奎红: "基于Advisor增程式城市商用车动力系统匹配设计及仿真研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253123A (zh) * 2021-04-26 2021-08-13 清华大学 一种燃料电池全工况在线阻抗测试装置和方法
CN113253123B (zh) * 2021-04-26 2022-05-31 清华大学 一种燃料电池全工况在线阻抗测试装置和方法
CN113314740A (zh) * 2021-07-30 2021-08-27 北京亿华通科技股份有限公司 一种集成交流阻抗功能的燃料电池系统及其控制方法
CN113314740B (zh) * 2021-07-30 2021-11-05 北京亿华通科技股份有限公司 一种集成交流阻抗功能的燃料电池系统及其控制方法
CN114976114B (zh) * 2022-05-25 2023-09-01 上海氢晨新能源科技有限公司 一种大功率燃料电池交流阻抗测试系统和方法
CN114976114A (zh) * 2022-05-25 2022-08-30 上海氢晨新能源科技有限公司 一种大功率燃料电池交流阻抗测试系统和方法
WO2023227056A1 (zh) * 2022-05-25 2023-11-30 上海氢晨新能源科技有限公司 一种大功率燃料电池交流阻抗测试系统和方法
CN114895207A (zh) * 2022-05-28 2022-08-12 上海交通大学 锂离子电池交流阻抗在线测量方法及测量系统
CN114895207B (zh) * 2022-05-28 2024-02-13 上海交通大学 锂离子电池交流阻抗在线测量方法及测量系统
CN115117973A (zh) * 2022-07-15 2022-09-27 首凯汽车零部件(江苏)有限公司 一种电压叠加型复合电源系统
CN115117973B (zh) * 2022-07-15 2023-09-26 首凯高科技(江苏)有限公司 一种电压叠加型复合电源系统
CN115991123A (zh) * 2023-03-22 2023-04-21 长安新能源南京研究院有限公司 一种功率负荷状态识别方法、系统、设备和介质
CN115991123B (zh) * 2023-03-22 2023-07-18 长安新能源南京研究院有限公司 一种功率负荷状态识别方法、系统、设备和介质

Also Published As

Publication number Publication date
US20220155377A1 (en) 2022-05-19
US11971457B2 (en) 2024-04-30
CN112345951B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN112345951B (zh) 一种复合电源动力系统中电池的交流阻抗测量方法
CN100520425C (zh) 电力暂态信号小波分析后处理方法及其装置
CN203299350U (zh) 电池内阻在线测量仪
CN100498367C (zh) 一种电动汽车蓄电池内阻脉冲检测方法
CN102262184B (zh) 蓄电池内阻在线检测仪及内阻检测方法
CN106772072A (zh) 一种基于电池特性曲线的soc估算方法及装置
WO2023227060A1 (zh) 一种车载燃料电池在线诊断方法和系统
CN111948546A (zh) 一种锂电池健康度评估方法及系统
CN111669202B (zh) 一种通信模块的功耗测试装置及方法
CN205157637U (zh) 发电机碳刷电流分布监测系统
CN102156260B (zh) 有源式高压直流开关振荡回路状态评估系统及其方法
CN105044440A (zh) 一种基于ltc6803的燃料电池单片电压巡检系统
CN110554328A (zh) 一种基于hht的蓄电池内阻测量方法和系统
CN111007404B (zh) 一种基于关键频率点的燃料电池阻抗测量分析系统及方法
CN201293825Y (zh) 一种电池内阻测试装置
CN201145709Y (zh) 一种电池内阻测试装置
CN102814292A (zh) 锂离子电池一致性配组方法和系统
CN205246835U (zh) 基于ds2788的锂电池电量管理系统
WO2023165027A1 (zh) 一种燃料电池组在线阻抗测量装置
CN204945219U (zh) 一种基于ltc6803的燃料电池单片电压巡检系统
CN112924883A (zh) 一种基于dc/ac的电池阻抗谱在线检测系统及检测方法
CN113447825B (zh) 一种退役动力电池一致性评估和分选重组装置
CN214201716U (zh) 一种在线车载氢燃料电池阻抗谱测量装置
CN112924882A (zh) 一种基于dcdc的电池阻抗谱在线检测系统及检测方法
CN107085139A (zh) 一种电动汽车直流充电桩的能效计量系统与计量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant