CN112333814A - 认知传感网络中基于放大转发双向协作的无线携能通信方法 - Google Patents

认知传感网络中基于放大转发双向协作的无线携能通信方法 Download PDF

Info

Publication number
CN112333814A
CN112333814A CN202011000218.9A CN202011000218A CN112333814A CN 112333814 A CN112333814 A CN 112333814A CN 202011000218 A CN202011000218 A CN 202011000218A CN 112333814 A CN112333814 A CN 112333814A
Authority
CN
China
Prior art keywords
sensor node
rsn
sensor
relay
cognitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011000218.9A
Other languages
English (en)
Other versions
CN112333814B (zh
Inventor
卢为党
杨城
方卢顺
黄国兴
张昱
彭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011000218.9A priority Critical patent/CN112333814B/zh
Publication of CN112333814A publication Critical patent/CN112333814A/zh
Application granted granted Critical
Publication of CN112333814B publication Critical patent/CN112333814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种认知传感网络中基于放大转发双向协作的无线携能通信方法,在该方法中,两个传感器节点通过中继传感器节点的帮助进行互相转发信息,中继传感器节点使用功率分割的方式分割接收到的信号,一半用于能量收集,另一半用于信息接收,中继传感器节点利用其收集到的全部能量E,采用放大转发中继协议,帮助两个传感器节点互相转发信息。本发明能够有效提高无线携能通信的频谱资源利用率,从而减少整个认知传感网络速率的损失。

Description

认知传感网络中基于放大转发双向协作的无线携能通信方法
技术领域
本发明属于认知传感网络领域中的无线携能通信技术领域,尤其是一种双向协作携能通信方法。
背景技术
无线传感器网络逐渐被广泛使用,由于无线传感器网络中的传感器节点可以通过协作的方式来感知、收集、处理和传输传感器网络所覆盖区域中被感知对象的信息,同时具备低成本和部署灵活的优点。随着无线传感器网络的长期使用,无线传感器网络的使用寿命受到自身储能电池的限制以及无线传感器网络的频谱资源逐渐稀缺由于传感器节点数量增加等缺点逐渐暴露出来。
为了解决无线传感器网络中传感器节点自身储能电池能量有限的问题,从而延长无线传感器网络的寿命,能量收集技术引起了广泛的关注。经过研究表明,无线携能通信技术能够稳定的从射频信号中同时收集能量和信息,适用于传感器节点这种低功耗应用。认知无线电是一种能够有效缓解频谱资源匮乏的手段,通过让认知用户感知并接入空闲的频谱从而缓解频谱资源紧张的问题。通过将无线携能通信技术和认知无线电应用到无线传感器网络中,形成了一种全新的采用了无线携能通信技术的认知传感网络,这种认知传感网络能够有效解决使用寿命过短以及频谱资源过度稀缺的问题。
在现有的采用无线携能通信技术的认知传感网络中,主用户和认知用户之间通过双向协作方式进行通信,使得原本就非常有限的频谱资源得不到充分利用,带来通信速率的损失。
发明内容
为了克服现有认知传感网络中双向协作无线携能方法频谱资源利用率低的缺陷,本发明在认知传感网络中提供一种有效提高频谱资源利用率的基于放大转发双向协作的无线携能通信方法。
本发明解决其技术问题所采用的技术方案是:
一种认知传感网络中基于放大转发双向协作的无线携能通信方法,本发明以认知传感网络为背景,认知传感网络由一个主网络和一个认知传感网络组成;主网络包含一对主用户,即主用户PU1和主用户PU2;认知网络由三个传感器节点组成,传感器节点SN1、传感器节点SN2和中继传感器节点RSN;整个传输过程被分为两个时隙,每个时隙各占传输时间的
Figure BDA0002694025590000021
所述认知传感网络中基于放大转发双向协作的无线携能通信方法包括以下步骤:
1)在第一时隙中,主用户PU1和主用户PU2互相发送信息,会对中继传感器节点产生干扰。传感器节点SN1和传感器节点SN2发送信息给中继传感器节点,中继传感器节点采用功率分割的方式分割接收到的信号,其中一半用于能量收集,另一半用于信息接收;
2)在第二时隙中,主用户PU1和主用户PU2继续互相发送信息,会对传感器节点SN1和传感器节点SN2造成干扰。中继传感器节点利用其收集到的全部能量E放大转发传感器节点SN1和传感器节点SN2的信息;
认知传感网络中传感器节点SN1和SN2的发送功率优化问题建模为:
Figure BDA0002694025590000022
满足以下条件
Figure BDA0002694025590000031
其中,
Figure BDA0002694025590000032
PS1,PS2和Pp分别表示传感器节点SN1,传感器节点SN2和主用户的发送功率,Pmax表示传感器节点SN1和SN2的最大发射功率,σa 2表示在中继传感器节点上接收信号的噪声功率,η表示能量转换效率,hSN1,PU1,hSN2,PU1,hSN1,PU2,hSN2,PU2,hPU1,RSN,hPU2,RSN,hSN1,RSN和hSN2,RSN分别表示传感器节点SN1到主用户PU1,传感器节点SN2到主用户PU1,传感器节点SN1到主用户PU2,传感器节点SN2到主用户PU2,主用户PU1到中继传感器节点,主用户PU2到中继传感器节点,传感器节点SN1到中继传感器节点和传感器节点SN2到中继传感器节点的信道系数,Ith表示认知传感器节点对主用户造成干扰的干扰门限,R表示认知传感网络的速率;
通过两步分解的方法获得上述的传感器节点SN2的最优发送功率为:
Figure BDA0002694025590000033
其中,
Figure BDA0002694025590000034
Figure BDA0002694025590000035
Figure BDA0002694025590000036
Figure BDA0002694025590000037
Figure BDA0002694025590000038
Figure BDA0002694025590000039
时,传感器节点SN1的最优发送功率为:
Figure BDA0002694025590000041
其中,X是当
Figure BDA0002694025590000042
时,方程
Figure BDA0002694025590000043
的对称轴,
Figure BDA0002694025590000044
Figure BDA0002694025590000045
Figure BDA0002694025590000046
Figure BDA0002694025590000047
Figure BDA0002694025590000048
Figure BDA0002694025590000049
Figure BDA00026940255900000410
Figure BDA00026940255900000411
Figure BDA00026940255900000412
ω1=|hSN1,PU2|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,PU2|22=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|2
Figure BDA00026940255900000413
时,传感器节点SN1的最优发送功率为:
Figure BDA00026940255900000414
其中,Y是当
Figure BDA00026940255900000415
时,方程
Figure BDA00026940255900000416
的对称轴,
Figure BDA00026940255900000417
Figure BDA00026940255900000418
Figure BDA00026940255900000419
Figure BDA00026940255900000420
Figure BDA00026940255900000421
Figure BDA0002694025590000051
Figure BDA0002694025590000052
Figure BDA0002694025590000053
Figure BDA0002694025590000054
ω3=|hSN1,PU1|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,PU1|24=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2,
Figure BDA0002694025590000055
Figure BDA0002694025590000056
时,传感器节点SN1的最优发送功率为:
Figure BDA0002694025590000057
其中,Z是当
Figure BDA0002694025590000058
时,方程
Figure BDA0002694025590000059
的对称轴,
Figure BDA00026940255900000510
Figure BDA00026940255900000511
Figure BDA00026940255900000512
Figure BDA00026940255900000513
G=ησb 2|hRSN,SN2|2
Figure BDA00026940255900000514
A=η|hSN2,RSN|2|hRSN,SN1|2,C=ησb 2|hRSN,SN1|2,B=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN1|2,E=η|hSN1,RSN|2|hRSN,SN2|2,D=PP|hPU1,SN1|2+PP|hPU2,SN1|2c 2,H=PP|hPU1,SN2|2+PP|hPU2,SN2|2d 2,F=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN2|2
Figure BDA00026940255900000515
Figure BDA00026940255900000516
Figure BDA00026940255900000517
ω5=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|26=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2,
Figure BDA0002694025590000061
Figure BDA0002694025590000062
Figure BDA0002694025590000063
Figure BDA0002694025590000064
σb 2表示在中继传感器节点上射频信号转换为基带信号产生的噪声功率,σc 2表示在传感器节点SN1上接收信号的噪声功率,σd 2表示在传感器节点SN2上接收信号的噪声功率;
Figure BDA0002694025590000065
时,传感器节点SN1的最优发送功率为:
Figure BDA0002694025590000066
其中,
Figure BDA0002694025590000067
Figure BDA0002694025590000068
Figure BDA0002694025590000069
Figure BDA00026940255900000610
进一步,所述步骤1)中,中继传感器节点获得的能量表示为:
Figure BDA00026940255900000611
再进一步,所述步骤2)中,传感器节点SN1和传感器节点SN2上获得的速率表示为:
Figure BDA00026940255900000612
Figure BDA0002694025590000071
其中,A=η|hSN2,RSN|2|hRSN,SN1|2,C=ησb 2|hRSN,SN1|2,G=ησb 2|hRSN,SN2|2,B=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN1|2,E=η|hSN1,RSN|2|hRSN,SN2|2,D=PP|hPU1,SN1|2+PP|hPU2,SN1|2c 2,H=PP|hPU1,SN2|2+PP|hPU2,SN2|2d 2,F=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN2|2
经过两个时隙的传输后,认知传感网络的速率表示为:
Figure BDA0002694025590000072
本发明的技术构思为:在现有的采用无线携能通信技术的认知传感网络中,认知传感器节点在进行单向协作通信时,有限的频谱资源得不到充分利用,从而会导致整个认知传感网络通信速率的损失。本发明提供一种基于放大转发双向协作的无线携能通信方法,能够有效提高无线携能通信的频谱资源利用率。
本发明的有益效果主要表现在:在认知传感网络提出一种基于放大转发双向协作的无线携能通信方法,有效提高无线携能通信的频谱资源利用率。
附图说明
图1是本发明方法的基于放大转发双向协作无线携能通信的认知传感网络模型图,其中PU1和PU2是主用户,SN1和SN2是传感器节点,RSN为中继传感器节点。
图2是认知传感器网络的速率随着主用户干扰门限值的大小的变化图。
具体实施方式
下面结合附图对本发明作出进一步的描述。
参考图1和图2,一种认知传感网络中基于放大转发双向协作的无线携能通信方法,是基于现有的认知传感网络实现的,所述的认知传感网络由一个主网络和一个认知网络组成;主网络包含一对主用户,分别是主用户PU1和主用户PU2;认知网络由三个传感器节点组成,分别是传感器节点SN1,传感器节点SN2以及中继传感器节点RSN;整个传输过程被分为两个时隙,每个时隙各占传输时间的
Figure BDA0002694025590000081
本实施方式的方法中,主用户PU1和主用户PU2在第一时隙互相发送信息,会对中继传感器节点产生干扰,同时传感器节点SN1和传感器节点SN2发送信息给中继传感器节点,中继传感器节点使用功率分割的方式分割接收到的信号,其中一半用于能量收集,另一半用于信息接收;在第二时隙,主用户PU1和主用户PU2继续互相发送信息,对传感器节点SN1和传感器节点SN2产生干扰,中继传感器节点利用其收集到的全部能量E放大转发SN1和SN2的信息。
本实施方式传感器节点SN1和传感器节点SN2上获得的速率表示为:
Figure BDA0002694025590000082
Figure BDA0002694025590000083
其中,A=η|hSN2,RSN|2|hRSN,SN1|2,C=ησb 2|hRSN,SN1|2,G=ησb 2|hRSN,SN2|2,B=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN1|2,E=η|hSN1,RSN|2|hRSN,SN2|2,D=PP|hPU1,SN1|2+PP|hPU2,SN1|2c 2,H=PP|hPU1,SN2|2+PP|hPU2,SN2|2d 2,F=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN2|2,PS1,PS2和Pp分别表示传感器节点SN1,传感器节点SN2和主用户的发送功率,η表示能量转换效率,σa 2表示在中继传感器节点上接收信号的噪声功率,σb 2表示在中继传感器节点上射频信号转换为基带信号产生的噪声功率,σc 2表示在传感器节点SN1上接收信号的噪声功率,σd 2表示在传感器节点SN2上接收信号的噪声功率,hSN1,PU1,hSN2,PU1,hSN1,PU2,hSN2,PU2,hPU1,RSN,hPU2,RSN,hSN1,RSN和hSN2,RSN分别表示传感器节点SN1到主用户PU1,传感器节点SN2到主用户PU1,传感器节点SN1到主用户PU2,传感器节点SN2到主用户PU2,主用户PU1到中继传感器节点,主用户PU2到中继传感器节点,传感器节点SN1到中继传感器节点和传感器节点SN2到中继传感器节点的信道系数。
经过两个时隙的传输后,认知传感网络的速率表示为:
Figure BDA0002694025590000091
本发明功率优化的具体实施方式为:
认知传感网络中传感器节点SN1和SN2的发送功率优化问题建模为:
Figure BDA0002694025590000092
满足以下条件
Figure BDA0002694025590000093
其中,
Figure BDA0002694025590000094
Pmax表示传感器节点SN1和SN2的最大发射功率,Ith表示认知传感器节点对主用户造成干扰的干扰门限,R表示认知传感网络的速率。
通过两步分解方法获得上述的最优传感器节点SN1发射功率和传感器节点SN2发射功率为:
Figure BDA0002694025590000101
其中,
Figure BDA0002694025590000102
Figure BDA0002694025590000103
Figure BDA0002694025590000104
Figure BDA0002694025590000105
Figure BDA0002694025590000106
Figure BDA0002694025590000107
时,传感器节点SN1的最优发送功率为:
Figure BDA0002694025590000108
其中,X是当
Figure BDA0002694025590000109
时,方程
Figure BDA00026940255900001010
的对称轴,
Figure BDA00026940255900001011
Figure BDA00026940255900001012
Figure BDA00026940255900001013
Figure BDA00026940255900001014
Figure BDA00026940255900001015
Figure BDA00026940255900001016
Figure BDA00026940255900001017
Figure BDA00026940255900001018
Figure BDA00026940255900001019
ω1=|hSN1,PU2|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,PU2|22=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|2
Figure BDA00026940255900001020
时,传感器节点SN1的最优发送功率为:
Figure BDA0002694025590000111
其中,Y是当
Figure BDA0002694025590000112
时,方程
Figure BDA0002694025590000113
的对称轴,
Figure BDA0002694025590000114
Figure BDA0002694025590000115
Figure BDA0002694025590000116
Figure BDA0002694025590000117
Figure BDA0002694025590000118
Figure BDA0002694025590000119
Figure BDA00026940255900001110
Figure BDA00026940255900001111
Figure BDA00026940255900001112
ω3=|hSN1,PU1|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,PU1|24=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2,
Figure BDA00026940255900001113
Figure BDA00026940255900001114
时,传感器节点SN1的最优发送功率为:
Figure BDA00026940255900001115
其中,Z是当
Figure BDA00026940255900001116
时,方程
Figure BDA00026940255900001117
的对称轴,
Figure BDA00026940255900001118
Figure BDA00026940255900001119
Figure BDA00026940255900001120
Figure BDA00026940255900001121
G=ησb 2|hRSN,SN2|2
Figure BDA0002694025590000121
A=η|hSN2,RSN|2|hRSN,SN1|2,C=ησb 2|hRSN,SN1|2,B=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN1|2,E=η|hSN1,RSN|2|hRSN,SN2|2,D=PP|hPU1,SN1|2+PP|hPU2,SN1|2c 2,H=PP|hPU1,SN2|2+PP|hPU2,SN2|2d 2,F=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN2|2
Figure BDA0002694025590000122
Figure BDA0002694025590000123
Figure BDA0002694025590000124
ω5=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|26=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2,
Figure BDA0002694025590000125
Figure BDA0002694025590000126
Figure BDA0002694025590000127
Figure BDA0002694025590000128
Figure BDA0002694025590000129
时,传感器节点SN1的最优发送功率为:
Figure BDA00026940255900001210
其中,
Figure BDA00026940255900001211
Figure BDA00026940255900001212
Figure BDA00026940255900001213
Figure BDA00026940255900001214
本实施例的认知传感网络中基于放大转发双向协作的无线携能通信方法,有效提高无线携能通信的频谱资源利用率。
在本实施方式中,SN1→RSN和SN2→RSN链路的距离的和为2m,SN1→PU1,SN2→PU2,PU1→RSN,PU2→RSN链路的距离固定为2m,所有链路的信道都假定为瑞利衰落信道。噪声功率设置为10-6W,能量转换效率为η=0.8,传感器节点SN1和SN2的最大发射功率为Pmax=2W,主用户PU1和主用户PU2的发送功率都为PP=3W。图2中显示了本发明的传感器节点的功率优化方法和遍历搜索法之间没有性能间隙,而且降低了获得最优传感器节点最优发射功率的复杂度。同时,从图2中显示了随着主用户受到干扰的干扰门限逐渐变大,认知传感网络的速率在逐渐变大。

Claims (3)

1.一种认知传感网络中基于放大转发双向协作的无线携能通信方法,认知传感网络由一个主网络和一个认知传感网络组成;主网络包含一对主用户,即主用户PU1和主用户PU2;认知网络由三个传感器节点组成,即传感器节点SN1,传感器节点SN2和中继传感器节点RSN;整个传输过程被分为两个时隙,每个时隙各占传输时间的
Figure FDA0002694025580000013
其特征在于:所述认知传感网络中基于放大转发双向协作的无线携能通信方法包括以下步骤:
1)在第一时隙中,主用户PU1和主用户PU2互相发送信息,会对中继传感器节点产生干扰,传感器节点SN1和传感器节点SN2发送信息给中继传感器节点,中继传感器节点采用功率分割的方式分割接收到的信号,其中一半用于能量收集,另一半用于信息接收;
2)在第二时隙中,主用户PU1和主用户PU2继续互相发送信息,会对传感器节点SN1和传感器节点SN2产生干扰,中继传感器节点利用其收集到的全部能量E放大转发SN1和SN2的信息;
认知传感网络中传感器节点SN1和SN2的发送功率的优化问题建模为:
Figure FDA0002694025580000011
满足以下条件
Figure FDA0002694025580000012
其中,
Figure FDA0002694025580000021
PS2和Pp分别表示传感器节点SN1,传感器节点SN2和主用户的发送功率,Pmax表示传感器节点SN1和SN2的最大发射功率,σa 2表示在中继传感器节点上接收信号的噪声功率,η表示能量转换效率,hSN1,PU1,hSN2,PU1,hSN1,PU2,hSN2,PU2,hPU1,RSN,hPU2,RSN,hSN1,RSN和hSN2,RSN分别表示传感器节点SN1到主用户PU1,传感器节点SN2到主用户PU1,传感器节点SN1到主用户PU2,传感器节点SN2到主用户PU2,主用户PU1到中继传感器节点,主用户PU2到中继传感器节点,传感器节点SN1到中继传感器节点和传感器节点SN2到中继传感器节点的信道系数,Ith表示认知传感器节点对主用户造成干扰的干扰门限,R表示认知传感网络的速率;
通过两步分解的方法获得上述的传感器节点SN2的最优发送功率为:
Figure FDA0002694025580000022
其中,
Figure FDA0002694025580000023
Figure FDA0002694025580000024
Figure FDA0002694025580000025
时,传感器节点SN1的最优发送功率为:
Figure FDA0002694025580000026
其中,X是当
Figure FDA0002694025580000027
时,方程
Figure FDA0002694025580000028
的对称轴,
Figure FDA0002694025580000031
Figure FDA0002694025580000032
Figure FDA0002694025580000033
Figure FDA0002694025580000034
ω1=|hSN1,PU2|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,PU2|22=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|2
Figure FDA0002694025580000035
时,传感器节点SN1的最优发送功率为:
Figure FDA0002694025580000036
其中,Y是当
Figure FDA0002694025580000037
时,方程
Figure FDA0002694025580000038
的对称轴,
Figure FDA0002694025580000039
Figure FDA00026940255800000310
Figure FDA00026940255800000311
Figure FDA00026940255800000312
ω3=|hSN1,PU1|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,PU1|2,ω4=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2
Figure FDA0002694025580000041
Figure FDA0002694025580000042
时,传感器节点SN1的最优发送功率为:
Figure FDA0002694025580000043
其中,Z是当
Figure FDA0002694025580000044
时,方程
Figure FDA0002694025580000045
的对称轴,
Figure FDA0002694025580000046
Figure FDA0002694025580000047
Figure FDA0002694025580000048
A=η|hSN2,RSN|2|hRSN,SN1|2,C=ησb 2|hRSN,SN1|2,B=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN1|2,E=η|hSN1,RSN|2|hRSN,SN2|2,D=PP|hPU1,SN1|2+PP|hPU2,SN1|2c 2,H=PP|hPU1,SN2|2+PP|hPU2,SN2|2d 2,F=η(PP|hPU1,RSN|2+PP|hPU2,RSN|2a 2)|hRSN,SN2|2
Figure FDA0002694025580000049
Figure FDA00026940255800000410
ω5=|hSN1,RSN|2|hSN2,PU1|2-|hSN1,PU1|2|hSN2,RSN|2,ω6=|hSN1,RSN|2|hSN2,PU2|2-|hSN1,PU2|2|hSN2,RSN|2
Figure FDA00026940255800000411
Figure FDA00026940255800000412
Figure FDA0002694025580000051
Figure FDA0002694025580000052
σb 2表示在中继传感器节点上射频信号转换为基带信号产生的噪声功率,σc 2表示在传感器节点SN1上接收信号的噪声功率,σd 2表示在传感器节点SN2上接收信号的噪声功率;
Figure FDA0002694025580000053
时,传感器节点SN1的最优发送功率为:
Figure FDA0002694025580000054
其中,
Figure FDA0002694025580000055
Figure FDA0002694025580000056
2.如权利要求1所述的基于放大转发双向协作的功率优化方法,其特征在于:所述步骤1)中,中继传感器节点获得的能量表示为:
Figure FDA0002694025580000057
3.如权利要求1或2所述的认知传感网络中基于放大转发双向协作的无线携能通信方法,其特征在于:所述步骤2)中,传感器节点SN1和传感器节点SN2上获得的速率表示为:
Figure FDA0002694025580000058
Figure FDA0002694025580000059
经过两个时隙的传输后,认知传感器网络的速率表示为:
Figure FDA0002694025580000061
CN202011000218.9A 2020-09-22 2020-09-22 认知传感网络中基于放大转发双向协作的无线携能通信方法 Active CN112333814B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011000218.9A CN112333814B (zh) 2020-09-22 2020-09-22 认知传感网络中基于放大转发双向协作的无线携能通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011000218.9A CN112333814B (zh) 2020-09-22 2020-09-22 认知传感网络中基于放大转发双向协作的无线携能通信方法

Publications (2)

Publication Number Publication Date
CN112333814A true CN112333814A (zh) 2021-02-05
CN112333814B CN112333814B (zh) 2022-07-15

Family

ID=74303984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011000218.9A Active CN112333814B (zh) 2020-09-22 2020-09-22 认知传感网络中基于放大转发双向协作的无线携能通信方法

Country Status (1)

Country Link
CN (1) CN112333814B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026913A1 (en) * 2015-07-26 2017-01-26 Macau University Of Science And Technology Power Allocation Optimization Under Constraints of Throughput Requirements and Interference Limit for Cognitive Radio Networks
CN108337734A (zh) * 2018-01-17 2018-07-27 浙江工业大学 认知传感网络中基于解码转发协作的无线携能通信方法
CN109219089A (zh) * 2018-08-20 2019-01-15 南京航空航天大学 无线携能双向中继网络中面向用户公平性的容量最大化传输方法
CN109413748A (zh) * 2018-11-19 2019-03-01 浙江工业大学 一种基于正交频分复用解码转发双向协作的无线携能通信方法
CN109547132A (zh) * 2018-11-19 2019-03-29 浙江工业大学 一种基于正交频分复用放大转发双向协作的无线携能通信方法
CN110602758A (zh) * 2019-08-22 2019-12-20 浙江工业大学 一种基于多时隙无线能量收集的认知携能中继通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026913A1 (en) * 2015-07-26 2017-01-26 Macau University Of Science And Technology Power Allocation Optimization Under Constraints of Throughput Requirements and Interference Limit for Cognitive Radio Networks
CN108337734A (zh) * 2018-01-17 2018-07-27 浙江工业大学 认知传感网络中基于解码转发协作的无线携能通信方法
CN109219089A (zh) * 2018-08-20 2019-01-15 南京航空航天大学 无线携能双向中继网络中面向用户公平性的容量最大化传输方法
CN109413748A (zh) * 2018-11-19 2019-03-01 浙江工业大学 一种基于正交频分复用解码转发双向协作的无线携能通信方法
CN109547132A (zh) * 2018-11-19 2019-03-29 浙江工业大学 一种基于正交频分复用放大转发双向协作的无线携能通信方法
CN110602758A (zh) * 2019-08-22 2019-12-20 浙江工业大学 一种基于多时隙无线能量收集的认知携能中继通信方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
张红: "一种改进的认知协作中继机制", 《电脑知识与技术》 *
张红: "一种改进的认知协作中继机制", 《电脑知识与技术》, no. 33, 25 November 2014 (2014-11-25) *
李玮等: "能量收集双向中继网络的中继选择和功率分配", 《电讯技术》 *
李玮等: "能量收集双向中继网络的中继选择和功率分配", 《电讯技术》, no. 11, 28 November 2016 (2016-11-28) *
罗轶等: "具有能量收集的多跳认知双向中继网络中断概率分析", 《重庆邮电大学学报(自然科学版)》 *
罗轶等: "具有能量收集的多跳认知双向中继网络中断概率分析", 《重庆邮电大学学报(自然科学版)》, no. 02, 15 April 2020 (2020-04-15) *

Also Published As

Publication number Publication date
CN112333814B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN106304112B (zh) 一种基于中继协作的蜂窝网络能量效率优化方法
CN108521666B (zh) 一种基于非线性能量采集模型的多中继系统动态功率分配方法
CN109195169B (zh) 一种基于能量采集技术的认知窃听网络物理层安全传输方法
CN104507144A (zh) 无线携能中继网络联合中继选择及资源分配方法
CN108601042A (zh) 基于时隙切换的中继辅助信息与能量传输方法
CN106131918A (zh) 无线传感网中能量采集节点的联合路径选择和功率分配方法
CN110602758B (zh) 一种基于多时隙无线能量收集的认知携能中继通信方法
CN108112084A (zh) 一种蜂窝d2d通信系统中联合模式选择和资源分配方法
CN114024640B (zh) 全双工能量收集中继系统中鲁棒的中继节点选择方法
CN101291169A (zh) 无线中继站的选择方法
CN108632830B (zh) 一种基于信息与能量协同传输的抗干扰协作频谱接入方法
Zhang et al. Optimizing network sustainability and efficiency in green cellular networks
CN106535202A (zh) 一种中继辅助非授权用户的半双工/全双工混合传输方法
CN105848245A (zh) 一种多用户能量采集中继系统的信息传输方法
Fu et al. Optimization of energy consumption in the MEC-assisted multi-user FD-SWIPT system
CN111542109A (zh) 非正交多址下基于功率分割的用户对等协作方法
Bhat et al. Lifetime ratio improvement in relay nodes using CWSN for cooperative wireless sensor networks
CN108174448B (zh) 蜂窝d2d通信的资源分配方法
CN112261662B (zh) 一种提升noma协作通信系统能量效率的传输方法
CN108337734A (zh) 认知传感网络中基于解码转发协作的无线携能通信方法
CN101483817B (zh) 基于再生网络编码的组播网络中发射节点功率分配方法
CN110677176A (zh) 一种基于能量效率与频谱效率的联合折中优化方法
CN112333814B (zh) 认知传感网络中基于放大转发双向协作的无线携能通信方法
CN111629420A (zh) 适用于hdaf中继系统的传输方法
CN110730025B (zh) 一种适用于携能非正交多址通信系统的增量中继方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant