CN112331725A - Waveguide type germanium photoelectric detector based on photonic crystal and preparation method - Google Patents

Waveguide type germanium photoelectric detector based on photonic crystal and preparation method Download PDF

Info

Publication number
CN112331725A
CN112331725A CN201910717527.9A CN201910717527A CN112331725A CN 112331725 A CN112331725 A CN 112331725A CN 201910717527 A CN201910717527 A CN 201910717527A CN 112331725 A CN112331725 A CN 112331725A
Authority
CN
China
Prior art keywords
germanium
region
photonic crystal
silicon
absorption region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910717527.9A
Other languages
Chinese (zh)
Inventor
汪巍
方青
涂芝娟
曾友宏
蔡艳
余明斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Industrial Utechnology Research Institute
Original Assignee
Shanghai Industrial Utechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Industrial Utechnology Research Institute filed Critical Shanghai Industrial Utechnology Research Institute
Priority to CN201910717527.9A priority Critical patent/CN112331725A/en
Priority to PCT/CN2019/100559 priority patent/WO2021022576A1/en
Publication of CN112331725A publication Critical patent/CN112331725A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

The invention provides a waveguide type germanium photoelectric detector based on photonic crystals and a preparation method thereof, wherein the germanium photoelectric detector comprises: a silicon waveguide structure; the germanium photoelectric detector is connected with the silicon waveguide structure, and periodically arranged dielectric materials are arranged in a germanium absorption region of the germanium photoelectric detector and a peripheral silicon material region at the periphery of the germanium absorption region to form a photonic crystal structure with a slow light effect. Compared with the traditional waveguide type germanium photoelectric detector, the invention can realize more efficient light absorption efficiency, and realize the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity by reducing the size of the device.

Description

Waveguide type germanium photoelectric detector based on photonic crystal and preparation method
Technical Field
The invention belongs to the field of semiconductor manufacturing and the field of optical communication, and particularly relates to a waveguide type germanium photoelectric detector based on photonic crystals and a preparation method thereof.
Background
The photoelectric detector has wide application in various fields of military and national economy. The optical fiber is mainly used for optical communication, ray measurement and detection, industrial automatic control, photometric measurement and the like in visible light or near infrared wave bands; the infrared band is mainly used for missile guidance, infrared thermal imaging, infrared remote sensing and the like.
Germanium (Ge) photodetectors, because of their ease of integration with silicon (Si), have found wide application in the fields of optical communications, optical interconnects, and optical sensing. However, there is a large lattice mismatch between germanium (Ge) materials and silicon (Si) materials, and epitaxial growth of high quality germanium (Ge) materials is extremely challenging. Recent studies have revealed that when a germanium (Ge) material is epitaxially grown in a narrow channel, linear dislocations are annihilated at the channel sidewalls, thereby ensuring high-quality germanium (Ge) material epitaxial growth. Limited by the relatively low absorption coefficient of germanium (Ge) materials in the C, L communication band, the detector must be long enough to achieve high responsivity, which makes the high speed characteristics and dark current of the detector difficult to further optimize.
Disclosure of Invention
In view of the above disadvantages of the prior art, an object of the present invention is to provide a waveguide type germanium photodetector based on photonic crystal and a method for manufacturing the same, which are used to solve the problem that the capacitance and dark current of the germanium photodetector in the prior art are difficult to be further optimized.
To achieve the above and other related objects, the present invention provides a photonic crystal-based waveguide type germanium photodetector, comprising: a silicon waveguide structure; the germanium photoelectric detector is connected with the silicon waveguide structure, and periodically arranged dielectric materials are arranged in a germanium absorption region of the germanium photoelectric detector and a peripheral silicon material region at the periphery of the germanium absorption region to form a photonic crystal structure with a slow light effect.
Optionally, the silicon waveguide structure is connected with the peripheral silicon material region of the photonic crystal structure, and the germanium absorption region is opposite to the silicon waveguide structure.
Optionally, the light in the peripheral silicon material region enters the germanium absorption region by direct coupling or evanescent coupling.
Optionally, the germanium photodetector comprises: a germanium absorbing region having a peripheral silicon material region at a periphery thereof, the germanium absorbing region having opposite first and second ends and opposite first and second sides, the first end of the germanium absorbing region being disposed opposite to the silicon waveguide structure; a first contact layer and a second contact layer formed in the peripheral silicon material region on the first side and the second side of the germanium absorption region, respectively; and the first electrode and the second electrode are respectively formed on the first contact layer and the second contact layer.
Optionally, the material of the germanium absorption region includes one of SiGe, Ge, GeSn, and GePb.
Optionally, the dielectric material is cylindrical and vertically penetrates through the germanium absorption region and the peripheral silicon material region.
Optionally, the dielectric material, the germanium absorption region and the peripheral silicon material region form a resonant cavity with a periodic structure.
Optionally, the dielectric material comprises silicon dioxide.
The invention also provides a preparation method of the waveguide type germanium photoelectric detector based on the photonic crystal, which comprises the following steps: step 1), providing an SOI substrate, and etching a silicon waveguide structure on a top silicon layer of the SOI substrate; step 2), etching a germanium-based material selective epitaxial region on the top silicon layer of the SOI substrate, wherein a top silicon layer bottom layer with partial thickness is reserved at the bottom of the germanium-based material selective epitaxial region; step 3), selectively epitaxially growing a germanium absorption region in the germanium-based material selective epitaxial region, and forming a first contact layer and a second contact layer in a peripheral silicon material region at the periphery of the germanium absorption region by adopting an ion implantation and annealing method; step 4), forming periodically arranged grooves in the germanium absorption region and the peripheral silicon material region through photoetching and etching processes, and filling dielectric materials in the grooves to form a photonic crystal structure with a slow light effect; and 5) defining a first electrode area and a second electrode area in the first contact layer and the second contact layer by photoetching and etching methods, and forming a first electrode and a second electrode.
Optionally, the height of the germanium absorption region is greater than the depth of the selective epitaxial region of germanium-based material.
As described above, the waveguide type germanium photodetector based on photonic crystal and the manufacturing method thereof of the present invention have the following beneficial effects:
the invention introduces a photonic crystal structure into the waveguide type germanium photoelectric detector, and the resonant cavity formed by the periodic structure has the effect of slow light, so that the absorption efficiency of the detector can be improved, the size of the detector is reduced, and the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity is easier to realize. Meanwhile, the periodic germanium/dielectric layer (such as silicon dioxide) structure can effectively reduce the stress of the germanium material and is beneficial to improving the quality of the germanium material.
Compared with the traditional waveguide type germanium photoelectric detector, the invention can realize more efficient light absorption efficiency, and realize the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity by reducing the size of the device.
Drawings
Fig. 1 to fig. 3 are schematic structural diagrams of a waveguide type photonic crystal-based germanium photodetector according to an embodiment of the present invention, in which fig. 2 is a schematic structural diagram of a cross section at a-a 'of fig. 1, and fig. 3 is a schematic structural diagram of a cross section at B-B' of fig. 1.
Fig. 4 is a schematic structural diagram showing steps of a method for manufacturing a waveguide type germanium photodetector based on a photonic crystal according to an embodiment of the present invention.
Description of the element reference numerals
10 silicon waveguide structure
20 germanium photodetector
201 dielectric material
202 germanium absorption region
203 peripheral silicon material region
204 first contact layer
205 second contact layer
206 first electrode
207 second electrode
210 bottom silicon layer
211 insulating layer
212 top silicon layer
30 reflective structure
S11-S15 steps 1) -5)
Detailed Description
The embodiments of the present invention are described below with reference to specific embodiments, and other advantages and effects of the present invention will be easily understood by those skilled in the art from the disclosure of the present specification. The invention is capable of other and different embodiments and of being practiced or of being carried out in various ways, and its several details are capable of modification in various respects, all without departing from the spirit and scope of the present invention.
As in the detailed description of the embodiments of the present invention, the cross-sectional views illustrating the device structures are not partially enlarged in general scale for convenience of illustration, and the schematic views are only examples, which should not limit the scope of the present invention. In addition, the three-dimensional dimensions of length, width and depth should be included in the actual fabrication.
For convenience in description, spatial relational terms such as "below," "beneath," "below," "under," "over," "upper," and the like may be used herein to describe one element or feature's relationship to another element or feature as illustrated in the figures. It will be understood that these terms of spatial relationship are intended to encompass other orientations of the device in use or operation in addition to the orientation depicted in the figures. Further, when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
In the context of this application, a structure described as having a first feature "on" a second feature may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features are formed in between the first and second features, such that the first and second features may not be in direct contact.
It should be noted that the drawings provided in the present embodiment are only for illustrating the basic idea of the present invention, and the drawings only show the components related to the present invention rather than being drawn according to the number, shape and size of the components in actual implementation, and the type, quantity and proportion of each component in actual implementation may be changed arbitrarily, and the layout of the components may be more complicated.
As shown in fig. 1 to 3, wherein fig. 2 is a schematic cross-sectional structure at a-a 'of fig. 1, and fig. 3 is a schematic cross-sectional structure at B-B' of fig. 1. The embodiment provides a waveguide type germanium photodetector based on photonic crystal, which comprises a silicon waveguide structure 10 and a germanium photodetector 20.
The silicon waveguide structure 10 and the germanium photodetector 20 are fabricated on the basis of an SOI substrate, in which the top silicon layer 212 is partially removed to form a germanium-based material selective epitaxial region, and a bottom layer of the top silicon layer with a partial thickness is reserved at the bottom of the germanium-based material selective epitaxial region, which is used for the epitaxial fabrication of the germanium absorbing region 202.
The germanium photodetector 20 is connected to the silicon waveguide structure 10, and the germanium absorption region 202 of the germanium photodetector 20 and the peripheral silicon material region 203 at the periphery of the germanium absorption region 202 have periodically arranged dielectric materials 201 therein to form a photonic crystal structure with slow light effect. The germanium photodetector 20 includes: a germanium absorption region 202, first and second contact layers 204, 205, and first and second electrodes 206, 207.
As shown in fig. 2 and 3, the germanium absorption region 202 is formed in the germanium-based material selective epitaxial region, and the germanium absorption region 202 has a peripheral silicon material region 203 at the periphery. The germanium absorption region 202 has a first end and a second end opposite to each other, and a first side and a second side opposite to each other, the first end of the germanium absorption region 202 is disposed opposite to the silicon waveguide structure 10, specifically, as shown in fig. 1, the silicon waveguide structure 10 is connected to the peripheral silicon material region 203 of the photonic crystal structure, and the germanium absorption region 202 faces the silicon waveguide structure 10. The germanium absorption region 202 may be one of SiGe, Ge, GeSn, and GePb. For example, in the present embodiment, the material of the germanium absorption region 202 may be selected to be SiGe, so as to reduce lattice mismatch between the germanium absorption region 202 and the top silicon layer 212, and improve the material quality of the germanium absorption region 202.
The first contact layer 204 and the second contact layer 205 are formed in the peripheral silicon material region 203 on a first side and a second side of the germanium absorption region 202, respectively. Specifically, the first contact layer 204 may be formed by performing P-type ion implantation on the peripheral silicon material region 203 on the first side of the germanium absorption region 202 to form heavily doped P-type silicon as the first contact layer 204; the second contact layer 205 may be formed by N-type ion implantation into the peripheral silicon material region 203 on the second side of the germanium absorption region 202 to form heavily doped N-type silicon as the second contact layer 205, and both the first contact layer 204 and the second contact layer 205 are in direct contact with the germanium absorption region 202.
The first electrode 206 and the second electrode 207 are formed on the first contact layer 204 and the second contact layer 205, respectively. For example, the first electrode 206 and the second electrode 207 may be formed by metal deposition, photolithography, and etching processes; for another example, the first electrode 206 and the second electrode 207 may be formed by a metal stripping process, and are not limited to the examples listed herein.
Light in the peripheral silicon material region 203 enters the germanium absorption region 202 by direct coupling or evanescent coupling to reduce optical loss.
As shown in fig. 1, the dielectric material 201 is cylindrical and vertically penetrates the ge absorption region 202 and the peripheral silicon material region 203. The dielectric material 201 forms a resonant cavity with a periodic structure with the germanium absorption region 202 and the peripheral silicon material region 203. The dielectric material 201 may be silicon dioxide. Of course, the dielectric material 201 may be selected from other materials with refractive index such as air, vacuum, silicon oxynitride, etc., and is not limited to the examples listed herein. The dielectric material 201 penetrates the germanium absorption region 202, which effectively reduces the stress of the germanium absorption region 202.
As shown in fig. 1 and 2, in the present embodiment, the spacing between the dielectric materials 201 in the germanium absorption region 202 is larger than the spacing between the dielectric materials 201 in the peripheral silicon material region 203, so as to ensure the absorption effect of the germanium absorption region 202.
As shown in fig. 1, the second end of the germanium photodetector is connected to a reflective structure 30 having a photonic crystal structure, which can achieve a reflective effect, and further increase the absorption efficiency of the germanium photodetector 20.
The invention introduces a photonic crystal structure into the waveguide type germanium photoelectric detector 20, and because a resonant cavity formed by a periodic structure has a slow light effect, the group velocity can be greatly reduced when the guided mode of the photonic crystal is subjected to the periodic structure dispersion of the photonic crystal, thereby realizing the slow light effect of the photonic crystal. The photonic crystal has the advantages of flexible structural design, small volume, convenience for integration with the existing optical communication device and easiness in control, and can realize optical cache, thereby improving the absorption efficiency of the detector, reducing the size of the detector and more easily realizing the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity. Meanwhile, the periodic germanium/dielectric layer (such as silicon dioxide) structure can effectively reduce the stress of the germanium material and is beneficial to improving the quality of the germanium material.
As shown in fig. 1 to 4, this embodiment further provides a method for manufacturing a waveguide type germanium photodetector based on a photonic crystal, where the method includes the steps of:
as shown in fig. 4, step 1) S11 is performed first, and a SOI substrate is provided, and the silicon waveguide structure 10 is etched on the top silicon layer 212 of the SOI substrate.
Specifically, the SOI substrate specifically includes a bottom silicon layer 210, an insulating layer 211, and a top silicon layer 212. The silicon waveguide structure 10 is formed in the top silicon layer 212 by a photolithography and etching process.
As shown in fig. 4, step 2) S12 is then performed to etch a germanium-based material selective epitaxial region in the top silicon layer 212 of the SOI substrate, wherein a bottom layer of the top silicon layer is left at the bottom of the germanium-based material selective epitaxial region for a partial thickness.
For example, a dielectric layer may be deposited on the top silicon layer 212 of the SOI substrate as a hard mask, a transfer window may be formed in the dielectric layer by photolithography and etching processes, and the top silicon layer 212 may be further etched to etch a germanium-based material selective epitaxial region in the top silicon layer 212. The germanium-based material selectively leaves a bottom layer of the top silicon layer at the bottom of the epitaxial region of partial thickness to facilitate subsequent epitaxial growth of the germanium-absorbing region 202.
As shown in fig. 4, step 3) S13 is performed to selectively epitaxially grow a germanium absorption region 202 in the germanium-based material selective epitaxial region, and a first contact layer 204 and a second contact layer 205 are formed in the peripheral silicon material region 203 at the periphery of the germanium absorption region 202 by ion implantation and annealing.
The germanium absorption region 202 may be one of SiGe, Ge, GeSn, and GePb. For example, in the present embodiment, the material of the germanium absorption region 202 may be selected to be SiGe, so as to reduce lattice mismatch between the germanium absorption region 202 and the top silicon layer 212, and improve the material quality of the germanium absorption region 202.
The height of the germanium absorption region 202 is greater than the depth of the selective epitaxial region of germanium-based material to further improve the absorption efficiency of the germanium absorption region 202 without increasing the length of the germanium absorption region.
Specifically, the first contact layer 204 may be formed by performing P-type ion implantation on the peripheral silicon material region 203 on the first side of the germanium absorption region 202 to form heavily doped P-type silicon as the first contact layer 204; the second contact layer 205 may be formed by N-type ion implantation into the peripheral silicon material region 203 on the second side of the germanium absorption region 202 to form heavily doped N-type silicon as the second contact layer 205, and both the first contact layer 204 and the second contact layer 205 are in direct contact with the germanium absorption region 202.
As shown in fig. 4, step 4) S14 is then performed, wherein periodically arranged grooves are formed in the germanium absorption region 202 and the peripheral silicon material region 203 through photolithography and etching processes, and the grooves are filled with a dielectric material 201, so as to form a photonic crystal structure with a slow light effect.
As shown in fig. 1, the recess and the dielectric material 201 are cylindrically shaped and vertically penetrate the germanium absorption region 202 and the peripheral silicon material region 203. The dielectric material 201 forms a resonant cavity with a periodic structure with the germanium absorption region 202 and the peripheral silicon material region 203. The dielectric material 201 may be silicon dioxide. Of course, the dielectric material 201 may also be selected from other materials with refractive index such as silicon oxynitride, and is not limited to the examples listed herein. The dielectric material 201 penetrates the germanium absorption region 202, and the stress of the germanium absorption region can be released in the process of forming the periodically arranged grooves, so that the stress of the germanium absorption region 202 is effectively reduced.
As shown in fig. 4, step 5) S15 is finally performed, a first electrode 206 region and a second electrode 207 region are defined in the first contact layer 204 and the second contact layer 205 by photolithography and etching methods, and the first electrode 206 and the second electrode 207 are formed.
For example, the first electrode 206 and the second electrode 207 may be formed by metal deposition, photolithography, and etching processes; for another example, the first electrode 206 and the second electrode 207 may be formed by a metal stripping process, and are not limited to the examples listed herein.
The first electrode 206 and the second electrode 207 may form ohmic contacts with the first contact layer 204 and the second contact layer 205 by thermal annealing, etc. to reduce the resistance and the parasitic capacitance.
As described above, the waveguide type germanium photodetector based on photonic crystal and the manufacturing method thereof of the present invention have the following beneficial effects:
the invention introduces a photonic crystal structure into the waveguide type germanium photoelectric detector, and the resonant cavity formed by the periodic structure has the effect of slow light, so that the absorption efficiency of the detector can be improved, the size of the detector is reduced, and the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity is easier to realize. Meanwhile, the periodic germanium/dielectric layer (such as silicon dioxide) structure can effectively reduce the stress of the germanium material and is beneficial to improving the quality of the germanium material.
Compared with the traditional waveguide type germanium photoelectric detector, the invention can realize more efficient light absorption efficiency, and can realize the preparation of the photoelectric detector with low dark current, low capacitance and high responsivity by reducing the size of the device.
Therefore, the invention effectively overcomes various defects in the prior art and has high industrial utilization value.
The foregoing embodiments are merely illustrative of the principles and utilities of the present invention and are not intended to limit the invention. Any person skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Accordingly, it is intended that all equivalent modifications or changes which can be made by those skilled in the art without departing from the spirit and technical spirit of the present invention be covered by the claims of the present invention.

Claims (10)

1. A photonic crystal based waveguide type germanium photodetector, comprising:
a silicon waveguide structure;
the germanium photoelectric detector is connected with the silicon waveguide structure, and periodically arranged dielectric materials are arranged in a germanium absorption region of the germanium photoelectric detector and a peripheral silicon material region at the periphery of the germanium absorption region to form a photonic crystal structure with a slow light effect.
2. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the silicon waveguide structure is connected with the peripheral silicon material region of the photonic crystal structure, and the germanium absorption region is opposite to the silicon waveguide structure.
3. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the light of the peripheral silicon material region enters the germanium absorption region through direct coupling or evanescent coupling.
4. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the germanium photodetector includes:
a germanium absorbing region having a peripheral silicon material region at a periphery thereof, the germanium absorbing region having opposite first and second ends and opposite first and second sides, the first end of the germanium absorbing region being disposed opposite to the silicon waveguide structure;
a first contact layer and a second contact layer formed in the peripheral silicon material region on the first side and the second side of the germanium absorption region, respectively;
and the first electrode and the second electrode are respectively formed on the first contact layer and the second contact layer.
5. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the germanium absorption region is made of one of SiGe, Ge, GeSn and GePb.
6. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the dielectric material is cylindrical and vertically penetrates through the germanium absorption region and the peripheral silicon material region.
7. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the dielectric material, the germanium absorption region and the peripheral silicon material region form a resonant cavity with a periodic structure.
8. The photonic crystal based waveguide type germanium photodetector of claim 1, wherein: the dielectric material comprises air or silicon dioxide.
9. The method for preparing a waveguide type germanium photodetector based on photonic crystal according to any one of claims 1 to 8, wherein the method comprises the steps of:
step 1), providing an SOI substrate, and etching a silicon waveguide structure on a top silicon layer of the SOI substrate;
step 2), etching a germanium-based material selective epitaxial region on the top silicon layer of the SOI substrate, wherein a top silicon layer bottom layer with partial thickness is reserved at the bottom of the germanium-based material selective epitaxial region;
step 3), selectively epitaxially growing a germanium absorption region in the germanium-based material selective epitaxial region, and forming a first contact layer and a second contact layer in a peripheral silicon material region at the periphery of the germanium absorption region by adopting an ion implantation and annealing method;
step 4), forming periodically arranged grooves in the germanium absorption region and the peripheral silicon material region through photoetching and etching processes, and filling dielectric materials in the grooves to form a photonic crystal structure with a slow light effect;
and 5) defining a first electrode area and a second electrode area in the first contact layer and the second contact layer by photoetching and etching methods, and forming a first electrode and a second electrode.
10. The method for preparing a waveguide type germanium photodetector based on photonic crystal as claimed in claim 9, wherein: the height of the germanium absorption region is greater than the depth of the selective epitaxial region of the germanium-based material.
CN201910717527.9A 2019-08-05 2019-08-05 Waveguide type germanium photoelectric detector based on photonic crystal and preparation method Pending CN112331725A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910717527.9A CN112331725A (en) 2019-08-05 2019-08-05 Waveguide type germanium photoelectric detector based on photonic crystal and preparation method
PCT/CN2019/100559 WO2021022576A1 (en) 2019-08-05 2019-08-14 Waveguide-type germanium photoelectric detector employing photonic crystal, and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910717527.9A CN112331725A (en) 2019-08-05 2019-08-05 Waveguide type germanium photoelectric detector based on photonic crystal and preparation method

Publications (1)

Publication Number Publication Date
CN112331725A true CN112331725A (en) 2021-02-05

Family

ID=74319634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910717527.9A Pending CN112331725A (en) 2019-08-05 2019-08-05 Waveguide type germanium photoelectric detector based on photonic crystal and preparation method

Country Status (1)

Country Link
CN (1) CN112331725A (en)

Similar Documents

Publication Publication Date Title
CN210040212U (en) Waveguide type germanium photoelectric detector based on photonic crystal
CN110729373B (en) GeSn infrared photoelectric detector based on Ge waveguide and manufacturing method thereof
KR101750742B1 (en) Photodetector structure
KR100244046B1 (en) Photodetection semiconductor device
EP3038167A1 (en) Integrated avalanche germanium photodetector
US10901150B2 (en) Metal contact free photodetector with sidewall doping
CN108010982B (en) Waveguide composite coupling type single-row carrier detector
EP1946164A1 (en) Integrated waveguide photodetector apparatus with matching propagation constants and related coupling methods
WO2007055739A1 (en) Laterally-integrated waveguide photodetector apparatus and related coupling methods
CN111834486B (en) Waveguide type GePb infrared photoelectric detector and manufacturing method thereof
US8728850B2 (en) Photodetector structure and method of manufacturing the same
US11923466B2 (en) Photodetector with integrated reflective grating structure
CN109786497B (en) Single-row carrier photodetector
WO2018100157A1 (en) Waveguide optoelectronic device
CN110896112B (en) Waveguide integrated GeSn photoelectric detector and manufacturing method thereof
CN112614910B (en) Ultraviolet photoelectric detector based on PIN-type gallium nitride micro-wire and preparation method thereof
WO2021022576A1 (en) Waveguide-type germanium photoelectric detector employing photonic crystal, and preparation method
EP3497511B1 (en) Optical structure and method of fabricating an optical structure
CN112635611A (en) Method for producing at least one tensile-strained planar photodiode
US20190353845A1 (en) Reducing back reflection in a photodiode
US9035409B2 (en) Germanium photodetector having absorption enhanced under slow-light mode
CN112331725A (en) Waveguide type germanium photoelectric detector based on photonic crystal and preparation method
CN112366235A (en) Waveguide type germanium-based photoelectric detector and preparation method thereof
JP4117285B2 (en) Optical device and manufacturing method thereof
CN113793879B (en) Absorption enhancement type silicon-based photoelectric detector and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination