CN112326162B - 一种机载分布式pos用机翼弹性变形测量方法 - Google Patents
一种机载分布式pos用机翼弹性变形测量方法 Download PDFInfo
- Publication number
- CN112326162B CN112326162B CN202010979146.0A CN202010979146A CN112326162B CN 112326162 B CN112326162 B CN 112326162B CN 202010979146 A CN202010979146 A CN 202010979146A CN 112326162 B CN112326162 B CN 112326162B
- Authority
- CN
- China
- Prior art keywords
- wing
- node
- sub
- deflection
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 230000005489 elastic deformation Effects 0.000 title claims abstract description 44
- 238000012546 transfer Methods 0.000 claims abstract description 45
- 238000006073 displacement reaction Methods 0.000 claims abstract description 38
- 238000001914 filtration Methods 0.000 claims abstract description 36
- 230000001133 acceleration Effects 0.000 claims abstract description 23
- 238000003384 imaging method Methods 0.000 claims abstract description 14
- 238000005452 bending Methods 0.000 claims description 40
- 230000009471 action Effects 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 32
- 238000004364 calculation method Methods 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 6
- 238000012916 structural analysis Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000011426 transformation method Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 210000001015 abdomen Anatomy 0.000 claims description 3
- 238000009795 derivation Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0016—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
本发明涉及一种机载分布式POS用机翼弹性变形测量方法,包括步骤:建立柔性基线上主节点和子节点的加速度关系模型;对主节点高精度陀螺仪数据以及主、子节点加速度计数据依次进行低通和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段;分别计算机翼挠曲变形时间段和机翼振动时间段中各子节点机翼对应的挠曲角;建立机翼总体挠度曲线方程,进而得到各子节点机翼对应的挠度;根据挠曲角及挠度计算机翼轴向位移变化量。本发明计算的上述信息可用于辅助机载分布式POS通过传递对准获取多个子节点的高精度运动信息,进而辅助阵列天线SAR等多任务机载对地观测遥感载荷进行高精度成像。
Description
技术领域
本发明涉及弹性变形测量技术领域,特别是涉及一种机载分布式POS用机翼弹性变形测量方法,可计算机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度和挠曲角,以及机翼弯曲时不可忽略的轴向位移,辅助机载对地观测多任务遥感载荷柔性基线上多节点高精度运动信息的获取,进而辅助多任务遥感载荷对地观测进行高精度成像。
背景技术
多任务遥感载荷是目前机载对地观测的重要发展方向之一,如集成高分辨率测绘相机、成像光谱仪、大视场红外扫描仪、合成孔径雷达(Synthetic Aperture Radar,SAR)于同一载机的多任务载荷,机载分布式阵列天线SAR和柔性多基线干涉SAR等。对于装备多任务遥感载荷的高性能航空遥感系统,需要对位于机腹的主节点和机翼上分布安装的多个载荷点即子节点的运动参数实现高精度测量。
对于主节点,往往使用高精度位置姿态测量系统(Position and OrientationSystem,POS)进行绝对运动信息的高精度测量。POS是目前机载对地观测中遥感载荷获取位置、速度、姿态等运动参数的主要手段,其主要组成包括高精度惯性测量单元(InertialMeasurement Unit,IMU)、全球导航卫星系统(Global Navigation Satellite System,GNSS)接收机、导航计算机和后处理软件。但对于子节点,受体积、重量、成本等限制,通常为体积小、轻量化的中低精度IMU。因此需要依靠主节点POS的高精度位置、速度、姿态等运动参数对子节点中低精度IMU进行传递对准以实现所在节点处运动信息的精确测量。由于阵风、湍流、发动机振动和机翼内部载荷变化等影响,飞机机翼存在复杂弹性变形,导致分布式POS各节点间的空间距离(基线)呈柔性变化,因此必须对机翼弹性变形进行高精度测量才能保证传递对准的精度。
目前国内外对弹性变形信息的测量、建模和估计的方法主要分为三类。第一类方法为被动式建模,代表性方法之一是将弹性变形角理想化为马尔科夫过程,并将其增广为卡尔曼滤波的状态变量进行估计(例如李端昌,钟麦英,郭丁飞.分布式POS传递对准中的误差检测与补偿[C].第25届中国控制与决策会议论文集.2013:4194-4199.),但机翼内部负载及外部受力复杂且时变,因此模型参数难以准确确定。另一种代表性方法是将机翼等效为悬臂梁,通过振动力学规律建模,之后将机体弹性变形角增广为卡尔曼滤波的状态变量进行估计,例如公开号为CN102621565A的专利采用ANSYS辅助建模的方法模拟机翼弹性变形。但该方法所建立的模型随飞机材质的变化而变化,并且没有考虑时变的外部气动载荷和自身载荷如油量等对飞机弹性变形中参数的影响。第二类方法是直接利用挠曲变形测量传感器测量各子节点处的弹性变形,例如视觉测量或光纤光栅形变测量系统。但这些传感器的数据更新频率较低,无法满足遥感载荷对高频实时运动参数数据的需求,且测量精度易受环境的影响。例如,光纤光栅传感器受温度影响较大,而且光纤脆弱、安装复杂;视觉测量易受遮挡和环境光强的影响。第三类方法是通过惯性测量单元计算挠曲变形信息,即通过主节点、子节点的陀螺仪或加速度计信息计算弹性变形信息。例如公开号为CN106679612A的专利将主节点、子节点的加速度计测量值之差和陀螺仪测量值之差作为量测,建立系统的非线性系统测量方程进而估计子节点处的挠曲变形和挠曲角,但该方法不可避免地用到子节点陀螺仪数据,对于分布式POS而言,子节点通常为中低精度IMU,其中陀螺仪漂移较大,可达0.1°/h至10°/h量级,而机载对地观测成像时间长达数小时,因此上述方法的测量精度无法保证。考虑到对于中低精度IMU,尽管陀螺仪漂移严重,但加速度计精度与高精度POS中的加速度计在一个数量级或者仅相差一个数量级,因此部分学者提出仅使用加速度计进行机体弹性变形估计的方法,例如公开号为CN104655132A的专利将主节点、子节点的加速度计测量值之差作为量测,建立系统的非线性系统量测方程,进而估计出机体弹性变形信息。但该方法建立的机体变形模型基于二阶马尔科夫过程,模型参数的选择多凭经验确定。在实际机载应用环境中,机体受到的内外载荷如大气扰动等复杂时变,导致模型参数难以准确确定和更新,上述问题严重影响了该方法的计算精度和实用性。由此可知,现有形变测量方法应用于机载对地观测环境时均存在各自不足。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提出一种机载分布式POS用机翼弹性变形测量方法,该方法可在仅安装分布式POS的情况下,通过主节点高精度POS和子节点加速度计计算机翼变形信息,包括机翼主要发生形变的横向弯曲对应的挠度和挠曲角,以及机翼弯曲时不可忽略的轴向位移。上述机翼形变信息可用于辅助机载分布式POS获取多个子节点的高精度运动信息,进而辅助阵列天线SAR等机载对地观测多任务遥感载荷进行高精度成像。
为解决上述技术问题,本发明采取如下的技术方案:
一种机载分布式POS用机翼弹性变形测量方法,所述方法包括以下步骤:
建立柔性基线上主节点和子节点的加速度关系模型;
对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段;
基于所述加速度关系模型分别计算机翼挠曲变形时间段和机翼振动时间段中各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角;
基于机翼结构分析和材料力学中的叠加原理建立机翼总体挠度曲线方程,并利用计算得到的所述挠曲角计算所述机翼总体挠度曲线方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度;
根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度计算机翼轴向位移变化量。
本发明与现有技术相比的优点在于:
针对机翼变形严重影响机载分布式POS子节点传递对准精度的问题,本发明提出了一种机载分布式POS用机翼弹性变形测量方法。该方法可在仅使用主节点高精度POS的角速度和加速度数据和子节点加速度计数据的情况下,结合机翼结构分析,计算得到机翼弹性变形信息,包括机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度和挠曲角,以及机翼轴向变形对应的形变位移。该方法直接根据机翼形变导致的加速度分量计算机翼变形信息,相比现有方法,有如下几个优势:一是无需计算机载环境下复杂时变的机翼内外载荷信息,且无需建立复杂的微分方程模型并进行时变参数的更新;二是无需利用子节点的陀螺仪,避免了子节点陀螺仪精度较低、漂移较大导致的形变测量误差,尤其适用于长航时的机载对地观测实验;三是与现有光纤光栅形变传感器和视觉测量等形变测量方式相比,该发明具有受环境影响小、可靠性高和安装简单的优点。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面对实施例描述中所需要使用的附图作简单地介绍:
图1为本发明一个实施例中的一种机载分布式POS用机翼弹性变形测量方法的流程图;
图2为本发明一个实施例中的一种机载分布式POS用机翼弹性变形测量方法的右侧机翼挠曲变形示意图;
图3为本发明一个实施例中的一种机载分布式POS用机翼弹性变形测量方法的悬臂梁加载示意图;
图4为本发明一个实施例中的一种机载分布式POS用机翼弹性变形测量方法的右侧机翼轴向位移示意图。
具体实施方式
下面将结合附图和较佳实施例对本发明的技术方案做进一步的详细介绍。
在下述介绍中,术语“第一”、“第二”仅为用于描述的目的,而不能理解为指示或暗示相对重要性。下述介绍提供了本公开的多个实施例,不同实施例之间可以替换或者合并组合,因此本发明也可认为包含所记载的相同和/或不同实施例的所有可能组合。因而,如果一个实施例包含特征A、B、C,另一个实施例包含特征B、D,那么本发明也应视为包括含有A、B、C、D的一个或多个所有其他可能的组合的实施例,尽管该实施例可能并未在以下内容中有明确的文字记载。
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明一种机载分布式POS用机翼弹性变形测量方法和装置的具体实施方式进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,为一个实施例中的一种机载分布式POS用机翼弹性变形测量方法的流程示意图,具体包括以下步骤:
步骤11,建立柔性基线上主节点和子节点的加速度关系模型;
步骤12,对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段;
步骤13,基于加速度关系模型分别计算机翼挠曲变形时间段和机翼振动时间段中各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角;
步骤14,基于机翼结构分析和材料力学中的叠加原理建立机翼总体挠度曲线方程,并利用计算得到的挠曲角计算机翼总体挠度曲线方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度;
步骤15,根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度计算机翼轴向位移变化量。
在本实施例中,提出一种机载分布式POS用机翼弹性变形测量方法,该方法可在仅安装分布式POS的情况下,通过主节点高精度POS和子节点加速度计计算机翼变形信息,包括机翼主要发生形变的横向弯曲对应的挠度和挠曲角,以及机翼弯曲时不可忽略的轴向位移。首先建立柔性基线上主节点和子节点的加速度关系模型。之后利用低通滤波器和高通滤波器对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段。之后基于前述建立的柔性基线上主节点和子节点的加速度关系模型,分别计算机翼挠曲变形时间段和机翼振动时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角。之后基于机翼结构分析和材料力学中的叠加原理,建立机翼受垂直于轴线的横向力作用发生弯曲时位移即机翼总体挠度曲线方程,并基于前述计算得到的挠曲角通过拟合等方式计算该方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度。最后根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度,计算机翼轴向位移变化量。由此最终确定机翼弹性变形信息,其包括机翼主要发生形变的横向弯曲对应的挠度和挠曲角,以及机翼弯曲时不可忽略的轴向位移。上述机翼形变信息可用于辅助机载分布式POS获取多个子节点的高精度运动信息,进而辅助阵列天线SAR等机载对地观测多任务遥感载荷进行高精度成像。
本实施例提出的一种机载分布式POS用机翼弹性变形测量方法直接根据机翼形变导致的加速度分量计算机翼变形信息,相比现有方法,有如下几个优势:一是无需计算机载环境下复杂时变的机翼内外载荷信息,且无需建立复杂的微分方程模型并进行时变参数的更新;二是无需利用子节点的陀螺仪,避免了子节点陀螺仪精度较低、漂移较大导致的形变测量误差,尤其适用于长航时的机载对地观测实验;三是与现有光纤光栅形变传感器和视觉测量等形变测量方式相比,该发明具有受环境影响小、可靠性高和安装简单的优点。
为了更加清晰与准确地理解与应用本发明所涉及的一种机载分布式POS用机翼弹性变形测量方法,进行以下示例。需要说明的是,本发明所保护的范围不限于以下示例。
作为一种具体的实施方式,步骤11,建立柔性基线上主节点和子节点的加速度关系模型具体包括以下步骤:
首先对本发明使用的几个假设说明如下:
①由于分布式POS主要应用于大展弦比柔性机翼,翼型近似于变截面悬臂梁,因此本发明将柔性机翼视作悬臂梁;
②将分布式POS主节点、子节点视为质点;
③考虑到机载环境中,分布式POS各子节点安装于机翼上,柔性基线的变化主要体现为机翼受垂直于轴线的横向力作用发生的弯曲变形,因此仅考虑机翼受垂直于轴线的横向力作用发生弯曲对应的一维挠曲角、挠度和机翼变形时不可忽略的轴向位移,在下文中分别简称为挠曲角、挠度和轴向位移。
(1)坐标系和向量定义
基于上述假设,考虑到左右机翼对称,因此以右侧机翼为例建立坐标系及所需向量,如图2所示。
图2中建立的坐标系说明如下:OmXmYmZm为主节点载体坐标系,坐标原点Om为分布式POS主节点,垂直右侧机翼平面向上为Zm轴,飞机机体主轴向前为Ym轴,机体主轴沿右侧机翼方向为Xm轴;OsXsYsZs为子节点载体坐标系,坐标原点Os为分布式POS子节点,垂直右侧机翼平面往上为Zs轴,机体主轴沿右侧机翼远离机舱方向为Xs轴,Ys轴根据右手定则确定。OiXiYiZi为地心惯性坐标系,坐标原点Oi为地心,Xi轴和Yi轴在地球赤道平面内,Xi轴指向春分点,Zi轴指向地球极轴,由右手定则确定Yi轴指向。
图2中使用的向量说明如下:l为初始时刻机翼未发生弯曲变形时子节点相对于主节点的位移矢量在主节点载体坐标系下的投影,设l=[l 0 0]T;rms为机翼存在弹性变形时子节点相对于主节点的位移矢量在主节点载体坐标系下的投影;△l为rms与l的差值即机翼形变量,△l=[0 0 lz(x)]T,其中lz(x)为挠度;λ(x)为子节点处机翼挠曲角,绕子节点载体坐标系Ys轴逆时针为正,x为机翼上子节点距离固定端的距离;rm为主节点在地心惯性坐标系下的坐标矢量,rs为子节点在地心惯性坐标系下的坐标矢量。
(2)基于前述定义的坐标系和向量,确定柔性基线上主节点和子节点的加速度关系模型的具体过程如下:
由上述定义可知:
rms=rs-rm
对上式求导并结合哥氏定理,可得:
其中,为主节点陀螺仪输出,为子节点相对于主节点的位置矢量在主节点载体坐标系下的投影,其中lz(x)=lzchange(x)+lzstatic(x)为挠度,挠度包括缓变分量lzstatic(x)和振动分量lzchange(x),为子节点在地心惯性坐标系下的坐标矢量的二阶导数,为主节点在地心惯性坐标系下的坐标矢量的二阶导数,上式在主节点载体坐标系的投影为:
由主节点、子节点三轴正交安装的加速度计测量公式可知:
其中,为主节点加速度计输出,为子节点加速度计输出,为从地球坐标系到主节点载体坐标系的转换矩阵,为从地球坐标系到子节点载体坐标系的转换矩阵,g为地球坐标系下表示的重力加速度矢量。其中,地球坐标系的定义说明如下:原点位于地心,x轴穿越本初子午线与赤道的交点,z轴穿越地球北极点,y轴穿越东经90°子午线与赤道的交点。该坐标系与地球固联。
将式(2)和式(3)代入式(1)可得:
其中,为子节点载体坐标系到主节点载体坐标系的转换矩阵,和分别为主节点、子节点加速度计输出,为主节点陀螺仪输出,为子节点相对于主节点的位置矢量在主节点载体坐标系下的投影,其中lz(x)=lzchange(x)+lzstatic(x)为挠度,挠度包括缓变分量lzstatic(x)和振动分量lzchange(x)。
考虑到机载对地观测时成像段是平稳飞行直线段,且挠曲角振动分量较小,因此为小量,可忽略。其中, 和分别为主节点陀螺仪输出在主节点载体坐标系下的三维矢量分量。为主节点陀螺仪输出在主节点载体坐标系的一阶导数。而对于悬臂梁,实验结果表明,相同负载情况下,挠曲角振动分量较小时该振动分量与挠度振动分量近似呈线性比例关系。设挠曲角λ(x)=λchange(x)+λstatic(x),λstatic(x)为挠曲角缓变分量,λchange(x)为挠曲角振动分量。因此可设子节点处的挠曲角振动分量λchange(x)与挠度振动分量lzchange的比例为m(x),即lz=-mλchange(x)+lzstatic(x)。此时,由于且因此根据前述假设可将式(4)化简并展开如下:
式(5)-(7)即为柔性基线上主节点和子节点的加速度关系模型。
作为一种具体的实施方式,步骤12,对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段包括:
(1)使用巴特沃斯低通滤波器对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据使用低通滤波去噪,可选地,频率阈值设置为30Hz,以减小高频量化噪声对原信号的影响。巴特沃斯低通滤波器的设计步骤如下:
A)确定通带边界频率Ωp、阻带边界频率Ωs、通带衰减ap和阻带衰减as。可选地,使用巴特沃斯低通滤波器进行低通滤波去噪时,此处设定通带截止频率Ωp=0.01Hz、阻带开始频率Ωs=30Hz、通带衰减ap=3dB和阻带衰减as=40dB。
B)确定滤波器的阶数N,阶数N为满足下列条件的最小整数:
E)由数字滤波器传递函数Ha(z)即可得主节点高精度陀螺仪数据以及主节点、子节点加速度计数据的差分方程,即通过前若干时刻数据计算当前时刻滤波结果的公式,并基于此差分方程计算主节点高精度陀螺仪数据以及主节点、子节点加速度计数据的低通滤波结果。
(2)使用巴特沃斯高通滤波器对前述步骤(1)得到的低通滤波去噪后的子节点X轴加速度计数据进行高通滤波,可选地,频率阈值设置为0.5Hz,以去除缓变分量,仅保留均值近似为零的振动分量。巴特沃斯高通滤波器的设计具体步骤如下:
a)确定通带边界频率Ωp、阻带边界频率Ωs、通带衰减ap和阻带衰减as。可选地,使用巴特沃斯高通滤波器进行高通滤波去噪时,此处设定通带截止频率Ωp=0.5Hz、阻带开始频率Ωs=30Hz、通带衰减ap=3dB和阻带衰减as=40dB。
b)确定滤波器的阶数N,阶数N为满足下列条件的最小整数:
e)由数字滤波器传递函数Ha(z)即可得子节点X轴加速度计数据的差分方程,即通过前若干时刻数据计算当前时刻滤波结果的公式,并基于此差分方程计算子节点X轴加速度计数据的高通滤波结果。
(3)对前述步骤(2)得到的X轴加速度计数据振动分量进行分析,根据该分析结果对机翼挠曲变形时间段和机翼振动时间段进行划分,即根据高通滤波去噪后的子节点X轴加速度计数据划分机翼挠曲变形时间段和机翼振动时间段。具体划分方法为将高通滤波去噪后的子节点X轴加速度计数据振动分量中幅值大于0.5m/s2且持续时间超过0.3s的时间段划分为机翼振动时间段,剩余时间段认为是缓慢挠曲变形的时间段,即剩余时间段划分为机翼挠曲变形时间段。
作为一种具体的实施方式,步骤13,基于加速度关系模型分别计算机翼挠曲变形时间段和机翼振动时间段中各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角包括:
(1)机翼挠曲变形时间段中挠曲角的计算
上述式(8)和式(10)中都含有挠曲角λ(x)。由于加速度计量化噪声及飞机平飞直行的运动特征导致易出现极小值,若采用式(10)(10)计算挠曲角λ(x),其计算结果易出现较大偏差。因此,本发明将式(8)(8)作为机翼挠曲变形时间段的挠曲角计算式,即根据式(8)计算机翼挠曲变形时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角。
(2)机翼振动时间段中挠曲角的计算
上述三式均含有挠曲角λ(x)。与机翼挠曲变形时间段挠曲角的计算类似,加速度计量化噪声及飞机平飞直行的运动特征会导致和易出现接近于零的极小值,因此采用式(11)或式(12)计算挠曲角时,结果易出现较大偏差。
事实上,简化后得到的式(13)仍很难求解,在此根据成像段飞机平飞直行的运动特征将式(13)进一步化简并通过积分来计算挠曲角λ(x)。在载机平飞直行时,较小且λ(x)通常为10度以内,因此为小量,可以忽略,由此得到下式:
对式(14)进行积分,即可得到机翼振动时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角λ(x)。
进一步地,根据式(14)即可通过积分获取机翼振动时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角λ(x)的结果,具体计算步骤如下:
首先确定积分初值,具体步骤如下:取机翼振动结束之后的0.05秒时间段内的挠曲角均值作为积分初值。其中振动结束后的时间段属于机翼挠曲变形时间段,其挠曲角已通过上述步骤13的具体实施方式计算得出。
设初始时刻挠曲角速度为零,将对式(14)的进行积分获得振动时挠曲角速度并使用频率阈值为0.5Hz的高通滤波滤除挠曲角速度中的低频分量。其中高通滤波仍使用巴特沃斯高通滤波器,巴特沃斯高通滤波器的设计步骤与前述具体实施方式中巴特沃斯高通滤波器的设计步骤类似,具体如下:
a)确定通带边界频率Ωp、阻带边界频率Ωs、通带衰减ap和阻带衰减as。此处设定通带截止频率Ωp=0.01Hz、阻带开始频率Ωs=0.5Hz、通带衰减ap=3dB和阻带衰减as=40dB。
b)确定滤波器的阶数N,阶数N为满足下列条件的最小整数:
上述机翼振动时间段连同机翼挠曲变形时间段的挠曲角计算结果即为整个测量实验过程中的挠曲角计算结果。此外,加速度计常值偏差会导致挠曲角计算结果存在一个近似为常值的误差,该误差可在实验开始时的地面静止段采用经纬仪进行标定补偿。
作为一种具体的实施方式,步骤14,基于机翼结构分析和材料力学中的叠加原理建立机翼总体挠度曲线方程,并利用计算得到的挠曲角计算机翼总体挠度曲线方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度包括:
(1)根据机翼结构分析和材料力学中的叠加原理建立机翼一维挠度曲线方程
首先根据实际机翼受力情况,将机翼受到的外力归纳为三类:第一类气动力属于分布力,合力作用在压力中心线上,大小与弦长成正比;第二类机翼质量力属于分布力,合力作用在重心线上,大小与弦长成正比;第三类部件质量力属于集中力,与部件质量和过载成正比合力作用于部件重心处。因此可将机翼受力简化为图3所示。
根据材料力学中的叠加原理可知,机翼受力可看作一个集中力及两个分布力作用的叠加,因此可由结构力学计算得到的机翼总体挠度曲线方程为:
其中,EI为抗弯刚度,其中E是弹性模量,I是截面惯性矩。a为集中力作用点距离机翼固定端的距离。,l为机翼展长,即悬臂梁长度,C1、C2和C3为待求参数。
(2)利用计算得到的各子节点的挠曲角对机翼总体挠度曲线方程进行求解
由于对方程(15)(15)求导即为机翼总体挠曲角方程,因此在认为机翼固定端不发生弯曲位移即式(15)常数项为零的情况下,机翼总体挠度曲线方程与机翼总体挠曲角方程的待求参数相同。因此由式(15)可知,可通过三个或三个以上子节点的挠曲角结果确定出式(15)的待求参数,也可通过至少四个子节点的挠曲角结果进行拟合来确定式(15)的待求参数,由此即可得到各子节点的挠度。此处选择采用至少四个子节点的挠曲角进行最小二乘法拟合的方法求解待求参数,进而求解子节点的挠度。最小二乘法拟合多项式的具体步骤如下:
设待拟合的子节点挠曲角的目标多项式如下:
其中,λ(xi)为挠曲角,xi∈R是i时刻的输入x的观测值,此处xi∈R为机翼上各子节点距离机翼固定端的距离,R为实数集。a0,a1,a2,a3,…,aM是M+1个待求参数。
对于给定数据点(xi,yi),1≤i≤N,定义目标损失函数如下:
其中,N为给定的数据点个数。
由目标损失函数最小即对目标损失函数求导并使导数等于零可得:
通过克莱姆法则求解上述方程组即可求得M+1个待求参数a0,a1,a2,a3,…,aM。求得的待求参数a0,a1,a2,a3,…,aM与下述挠度方程的待求参数一致,因此可根据下式确定各子节点的挠度:
其中,w(xi)为xi处子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度,此处xi∈R为机翼上各子节点距离机翼固定端的距离。
作为一种具体的实施方式,步骤15,根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度计算机翼轴向位移变化量包括:
其中,w(x)为x处子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度。
在挠曲角较小时,设机翼上距离机腹距离为x处的挠曲角为λ(x),则对于机翼该处的微元段下式近似成立:
此时式(17)变为:
由此将整个机翼按照0.1mm的距离间隔划分为小结构段,并从机翼(悬臂梁)固定端开始记为第一段、第二段、第三段……。此处忽略机翼形变导致的展长变化。依次通过积分确定机翼上各子节点的轴向位移,具体步骤如下:
i)计算第k段微小结构段的轴向位移变化量lx(k)及自身微段长度lall(k),单位为毫米,k的初始值为1。公式如下:
其中,λ(x)=a0x+a1x2+a2x3+a3x4,ai(i=0,1,2,3)为通过步骤14计算得到的机翼总体挠度曲线方程的待求参数,这里仅以采用四个子节点的挠曲角进行最小二乘法拟合的方法求解待求参数。
ii)计算前k段的微小结构段的轴向位移变化量Lx(k)及自身微段长度Lall(k),公式如下:
Lx(k)=Lx(k-1)+lx(k)
Lall(k)=Lall(k-1)+lall(k)
iii)判断前k段的微小结构段的自身微段长度Lall(k)是否近似等于所求节点距离机翼固定点的长度m。若|Lall(k)-m|≤0.05,则停止计算,将此时的前k段的微小结构段的自身微段长度Lx(k)作为柔性基线上该节点的轴向位移变化量。若|Lall(k)-m|>0.05,则令k加1后重复步骤i)和步骤ii)直至前k段的微小结构段的自身微段长度Lx(k)满足|Lall(k)-m|≤0.05。
由此,可实现在仅安装分布式POS的情况下,通过主节点高精度POS和子节点加速度计计算机翼变形信息,包括机翼主要发生形变的横向弯曲对应的挠度和挠曲角,以及机翼弯曲时不可忽略的轴向位移。上述机翼形变信息可用于辅助机载分布式POS获取多个子节点的高精度运动信息,进而辅助阵列天线SAR等机载对地观测多任务遥感载荷进行高精度成像。
综上所述,针对机翼变形严重影响机载分布式POS子节点传递对准精度的问题,基于分布式POS中的主节点高精度POS和子节点加速度计数据进行传递对准所需的机翼等柔性基线变形信息的测量。首先建立柔性基线上主节点、子节点的加速度关系模型;之后对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据进行去噪,并将实验全程划分为机翼挠曲变形时间段和机翼振动时间段;其次,分别计算两种时间段中机翼受垂直于轴线的横向力作用发生弯曲时导致的挠曲角,并基于此计算各子节点受垂直于轴线的横向力作用发生弯曲时对应的挠度;最后基于前述数据计算机翼轴向位移变化量。该方法无需计算机翼内外载荷信息和建立复杂时变的微分方程模型;无需利用子节点的漂移较大陀螺仪;且与现有光纤光栅形变传感器和视觉测量等形变测量方式相比,该发明具有受环境影响小、可靠性高和安装简单的优点。通过本发明计算得到的机翼变形信息可用于辅助机载分布式POS进行高精度的传递对准进而获取机翼上多个子节点的高精度运动信息,上述运动信息可用于辅助阵列天线SAR等多任务机载对地观测遥感载荷进行高精度成像。
以上,根据本发明实施例的一种机载分布式POS用机翼弹性变形测量方法,能够基于分布式POS中的主节点高精度POS和子节点加速度计数据实现机翼等柔性基线的变形测量,从而辅助机载分布式POS传递对准获取机翼上多个子节点的高精度运动信息。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,在本发明中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本发明的各个实施例必须具备的。另外,上述发明的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本发明为必须采用上述具体的细节来实现。
本发明中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
另外,如在此使用的,在以“至少一个”开始的项的列举中使用的“或”指示分离的列举,以便例如“A、B或C的至少一个”的列举意味着A或B或C,或AB或AC或BC,或ABC(即A和B和C)。此外,措辞“示例的”不意味着描述的例子是优选的或者比其他例子更好。
还需要指出的是,在本发明的方法中,各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。
可以不脱离由所附权利要求定义的教导的技术而进行对在此所述的技术的各种改变、替换和更改。此外,本发明的权利要求的范围不限于以上所述的处理、机器、制造、事件的组成、手段、方法和动作的具体方面。可以利用与在此所述的相应方面进行基本相同的功能或者实现基本相同的结果的当前存在的或者稍后要开发的处理、机器、制造、事件的组成、手段、方法或动作。因而,所附权利要求包括在其范围内的这样的处理、机器、制造、事件的组成、手段、方法或动作。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本发明。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本发明的范围。因此,本发明不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本公开的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。
Claims (10)
1.一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述方法包括以下步骤:
建立柔性基线上主节点和子节点的加速度关系模型;
对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段;
基于所述加速度关系模型分别计算机翼挠曲变形时间段和机翼振动时间段中各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角;
基于机翼结构分析和材料力学中的叠加原理建立机翼总体挠度曲线方程,并利用计算得到的所述挠曲角计算所述机翼总体挠度曲线方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度;
根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度计算机翼轴向位移变化量。
2.根据权利要求1所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述建立柔性基线上主节点和子节点的加速度关系模型包括:
(1)坐标系和向量定义
考虑到左右机翼对称,因此以右侧机翼为例建立坐标系及所需向量,建立的坐标系说明如下:OmXmYmZm为主节点载体坐标系,坐标原点Om为分布式POS主节点,垂直右侧机翼平面向上为Zm轴,飞机机体主轴向前为Ym轴,机体主轴沿右侧机翼方向为Xm轴;OsXsYsZs为子节点载体坐标系,坐标原点Os为分布式POS子节点,垂直右侧机翼平面往上为Zs轴,机体主轴沿右侧机翼远离机舱方向为Xs轴,Ys轴根据右手定则确定;OiXiYiZi为地心惯性坐标系,坐标原点Oi为地心,Xi轴和Yi轴在地球赤道平面内,Xi轴指向春分点,Zi轴指向地球极轴,由右手定则确定Yi轴指向;
向量说明如下:l为初始时刻机翼未发生弯曲变形时子节点相对于主节点的位移矢量在主节点载体坐标系下的投影,设l=[l 0 0]T;rms为机翼存在弹性变形时子节点相对于主节点的位移矢量在主节点载体坐标系下的投影;△l为rms与l的差值即机翼形变量,△l=[00 lz(x)]T,其中lz(x)为挠度;λ(x)为子节点处机翼挠曲角,绕子节点载体坐标系Ys轴逆时针为正,x为机翼上子节点距离固定端的距离;rm为主节点在地心惯性坐标系下的坐标矢量,rs为子节点在地心惯性坐标系下的坐标矢量;
(2)基于前述定义的坐标系和向量,确定柔性基线上主节点和子节点的加速度关系模型的具体过程如下:
由上述定义可知:
rms=rs-rm
对上式求导并结合哥氏定理,可得:
其中,为主节点陀螺仪输出,为子节点相对于主节点的位置矢量在主节点载体坐标系下的投影,其中lz(x)=lzchange(x)+lzstatic(x)为挠度,挠度包括缓变分量lzstatic(x)和振动分量lzchange(x),为子节点在地心惯性坐标系下的坐标矢量的二阶导数,为主节点在地心惯性坐标系下的坐标矢量的二阶导数,上式在主节点载体坐标系的投影为:
由主节点、子节点三轴正交安装的加速度计测量公式可知:
其中,为主节点加速度计输出,为子节点加速度计输出,为从地球坐标系到主节点载体坐标系的转换矩阵,为从地球坐标系到子节点载体坐标系的转换矩阵,g为地球坐标系下表示的重力加速度矢量;其中,地球坐标系的定义为:原点位于地心,x轴穿越本初子午线与赤道的交点,z轴穿越地球北极点,y轴穿越东经90°子午线与赤道的交点,地球坐标系与地球固联;
将式(2)和式(3)代入式(1)可得:
考虑到机载对地观测时成像段是平稳飞行直线段,因此 为小量,可忽略,其中和分别为在主节点载体坐标系下的三维分量,即主节点正交安装的三轴陀螺仪的输出;为主节点陀螺仪输出的一阶导数;此外,由于挠曲角振动分量较小,因此挠曲角振动分量与挠度振动分量近似呈线性比例关系,设挠曲角λ(x)=λchange(x)+λstatic(x),λstatic(x)为挠曲角缓变分量,λchange(x)为挠曲角振动分量,则可设子节点处的挠曲角振动分量λchange(x)与挠度振动分量lzchange的比例为m(x),即lz(x)=-m(x)λchange(x)+lzstatic(x),此时,由于且因此可将式(4)化简并展开如下:
式(5)-(7)即为柔性基线上主节点和子节点的加速度关系模型。
3.根据权利要求1或2所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据依次进行低通滤波和高通滤波去噪,并根据去噪后的数据划分机翼挠曲变形时间段和机翼振动时间段包括:
(1)使用巴特沃斯低通滤波器对主节点高精度陀螺仪数据以及主节点、子节点加速度计数据进行低通滤波去噪,所述巴特沃斯低通滤波器的设计步骤如下:
A)确定通带边界频率Ωp、阻带边界频率Ωs、通带衰减ap和阻带衰减as;
B)确定滤波器的阶数N;
D)使用双线性变换法由实际滤波器传输函数Ha(s)计算得到数字滤波器传递函数Ha(z);
E)根据数字滤波器传递函数Ha(z)可得主节点高精度陀螺仪数据以及主节点、子节点加速度计数据的差分方程,并基于此差分方程计算主节点高精度陀螺仪数据以及主节点、子节点加速度计数据的低通滤波结果;
(2)使用巴特沃斯高通滤波器对低通滤波去噪后的子节点X轴加速度计数据进行高通滤波去噪,所述巴特沃斯高通滤波器的设计步骤如下:
a)确定通带边界频率Ωp、阻带边界频率Ωs、通带衰减ap和阻带衰减as;b)确定滤波器的阶数N;
d)使用双线性变换法由实际滤波器传输函数Ha(s)计算得到数字滤波器传递函数Ha(z);
e)根据数字滤波器传递函数Ha(z)可得子节点X轴加速度计数据的差分方程,并基于此差分方程计算子节点X轴加速度计数据的高通滤波结果;
(3)根据高通滤波去噪后的子节点X轴加速度计数据划分机翼挠曲变形时间段和机翼振动时间段。
4.根据权利要求3所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,
使用巴特沃斯低通滤波器进行低通滤波去噪时,巴特沃斯低通滤波器的频率阈值设置为30Hz,通带截止频率Ωp=0.01Hz,阻带开始频率Ωs=30Hz,通带衰减ap=3dB,阻带衰减as=40dB。
5.根据权利要求3所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,
使用巴特沃斯高通滤波器进行高通滤波去噪时,巴特沃斯高通滤波器的频率阈值设置为0.5Hz,通带截止频率Ωp=0.5Hz,阻带开始频率Ωs=30Hz,通带衰减ap=3dB,阻带衰减as=40dB。
6.根据权利要求3所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,
将高通滤波去噪后的子节点X轴加速度计数据振动分量中幅值大于0.5m/s2且持续时间超过0.3s的时间段划分为机翼振动时间段,剩余时间段划分为机翼挠曲变形时间段。
7.根据权利要求1或2所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述基于所述加速度关系模型分别计算机翼挠曲变形时间段和机翼振动时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角包括:
(1)机翼挠曲变形时间段中挠曲角的计算
根据式(8)计算机翼挠曲变形时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角;
(2)机翼振动时间段中挠曲角的计算
通过对挠曲角λ(x)的小角度近似可将式(5)-式(7)简化为:
根据成像段飞机平飞直行的运动特征将式(13)进一步化简为:
对式(14)进行积分,得到机翼振动时间段中机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角。
9.根据权利要求1或2所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述基于机翼结构分析和材料力学中的叠加原理建立机翼总体挠度曲线方程,并利用计算得到的所述挠曲角计算所述机翼总体挠度曲线方程的待求参数,进而得到各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度包括:
(1)根据机翼结构分析和材料力学中的叠加原理建立机翼一维挠度曲线方程
根据实际机翼受力情况,将机翼受到的外力归纳为三类:第一类气动力属于分布力,合力作用在压力中心线上,大小与弦长成正比;第二类机翼质量力属于分布力,合力作用在重心线上,大小与弦长成正比;第三类部件质量力属于集中力,与部件质量和过载成正比合力作用于部件重心处;
根据材料力学中的叠加原理可知,机翼受力可看作一个集中力及两个分布力作用的叠加,因此可由结构力学计算得到的机翼总体挠度曲线方程为:
其中,EI为抗弯刚度,a为集中力作用点距离机翼固定端的距离,l为机翼展长即悬臂梁长度,C1、C2和C3为待求参数;
(2)利用计算得到的各子节点的挠曲角对机翼总体挠度曲线方程进行求解由于对方程(15)求导即为机翼总体挠曲角方程,因此在认为机翼固定端不发生弯曲位移即式(15)常数项为零的情况下,机翼总体挠度曲线方程与机翼总体挠曲角方程的待求参数相同,此处选择采用至少四个子节点的挠曲角进行最小二乘法拟合的方法求解待求参数;最小二乘法拟合多项式的具体步骤如下:
设待拟合的子节点挠曲角的目标多项式如下:
其中,λ(xi)为挠曲角,xi∈R是i时刻的输入x的观测值,xi∈R为机翼上各子节点距离机翼固定端的距离,R为实数集,a0,a1,a2,a3,…,aM是M+1个待求参数;
对于给定数据点(xi,yi),1≤i≤N,定义目标损失函数如下:
其中,N为给定数据的个数;
由目标损失函数最小即对目标损失函数求导并使导数等于零可得:
通过克莱姆法则求解上述方程组即可求得M+1个待求参数a0,a1,a2,a3,…,aM;求得的待求参数a0,a1,a2,a3,…,aM与下述挠度方程的待求参数一致,因此可根据下式确定各子节点的挠度:
其中,w(xi)为xi处子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度,xi∈R为机翼上各子节点距离机翼固定端的距离。
10.根据权利要求1或2所述的一种机载分布式POS用机翼弹性变形测量方法,其特征在于,所述根据各子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠曲角及挠度计算机翼轴向位移变化量包括:
其中,w(x)为x处子节点机翼受垂直于轴线的横向力作用发生弯曲时对应的挠度;
在挠曲角较小时,设机翼上距离机腹距离为x处的挠曲角为λ(x),则对于机翼该处的微元段下式近似成立:
此时式(17)变为:
由此将整个机翼按照0.1mm的距离间隔划分为小结构段,并从机翼固定端开始记为第一段、第二段、第三段……,依次通过积分确定机翼上各子节点的轴向位移,具体步骤如下:
i)计算第k段微小结构段的轴向位移变化量lx(k)及自身微段长度lall(k),单位为毫米,k的初始值为1,公式如下:
其中,λ(x)=a0x+a1x2+a2x3+a3x4,ai(i=0,1,2,3)为计算得到的机翼总体挠度曲线方程的待求参数;
ii)计算前k段的微小结构段的轴向位移变化量Lx(k)及自身微段长度Lall(k),公式如下:
Lx(k)=Lx(k-1)+lx(k)
Lall(k)=Lall(k-1)+lall(k)
iii)判断前k段的微小结构段的自身微段长度Lall(k)是否近似等于所求子节点距离机翼固定点的长度m,若|Lall(k)-m|≤0.05,则停止计算,将此时的前k段的微小结构段的轴向位移变化量Lx(k)作为柔性基线上该子节点的轴向位移变化量;若|Lall(k)-m|>0.05,则令k加1后重复步骤i)和步骤ii)直至|Lall(k)-m|≤0.05。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010979146.0A CN112326162B (zh) | 2020-09-17 | 2020-09-17 | 一种机载分布式pos用机翼弹性变形测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010979146.0A CN112326162B (zh) | 2020-09-17 | 2020-09-17 | 一种机载分布式pos用机翼弹性变形测量方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112326162A CN112326162A (zh) | 2021-02-05 |
CN112326162B true CN112326162B (zh) | 2021-07-06 |
Family
ID=74303156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010979146.0A Active CN112326162B (zh) | 2020-09-17 | 2020-09-17 | 一种机载分布式pos用机翼弹性变形测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112326162B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113188565B (zh) * | 2021-03-23 | 2023-09-29 | 北京航空航天大学 | 一种机载分布式pos传递对准量测异常处理方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10104055A (ja) * | 1996-10-01 | 1998-04-24 | Mitsubishi Heavy Ind Ltd | 翼振動計測装置 |
CN102322873A (zh) * | 2011-08-23 | 2012-01-18 | 北京航空航天大学 | 一种分布式pos地面演示验证系统 |
CN102621565A (zh) * | 2012-04-17 | 2012-08-01 | 北京航空航天大学 | 一种机载分布式pos的传递对准方法 |
CN104655132A (zh) * | 2015-02-11 | 2015-05-27 | 北京航空航天大学 | 一种基于加速度计的机体弹性变形角估计方法 |
JP2017161277A (ja) * | 2016-03-08 | 2017-09-14 | 三菱重工コンプレッサ株式会社 | 振動計測装置、振動計測システム及び振動計測方法 |
CN206892684U (zh) * | 2017-06-16 | 2018-01-16 | 华南理工大学 | 基于高速相机的柔性机翼振动检测与控制装置 |
CN107764261A (zh) * | 2017-10-13 | 2018-03-06 | 北京航空航天大学 | 一种分布式pos传递对准用模拟数据生成方法和系统 |
CN108413887A (zh) * | 2018-02-22 | 2018-08-17 | 北京航空航天大学 | 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台 |
CN108760022A (zh) * | 2018-06-20 | 2018-11-06 | 航天海鹰(镇江)特种材料有限公司 | 一种机翼类产品振动频率的数字化测量及动态模型建立的方法 |
CN109163868A (zh) * | 2018-10-17 | 2019-01-08 | 北京理工大学 | 一种悬臂梁类弹性元件的刚度测试系统及方法 |
-
2020
- 2020-09-17 CN CN202010979146.0A patent/CN112326162B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10104055A (ja) * | 1996-10-01 | 1998-04-24 | Mitsubishi Heavy Ind Ltd | 翼振動計測装置 |
CN102322873A (zh) * | 2011-08-23 | 2012-01-18 | 北京航空航天大学 | 一种分布式pos地面演示验证系统 |
CN102621565A (zh) * | 2012-04-17 | 2012-08-01 | 北京航空航天大学 | 一种机载分布式pos的传递对准方法 |
CN104655132A (zh) * | 2015-02-11 | 2015-05-27 | 北京航空航天大学 | 一种基于加速度计的机体弹性变形角估计方法 |
JP2017161277A (ja) * | 2016-03-08 | 2017-09-14 | 三菱重工コンプレッサ株式会社 | 振動計測装置、振動計測システム及び振動計測方法 |
CN206892684U (zh) * | 2017-06-16 | 2018-01-16 | 华南理工大学 | 基于高速相机的柔性机翼振动检测与控制装置 |
CN107764261A (zh) * | 2017-10-13 | 2018-03-06 | 北京航空航天大学 | 一种分布式pos传递对准用模拟数据生成方法和系统 |
CN108413887A (zh) * | 2018-02-22 | 2018-08-17 | 北京航空航天大学 | 光纤光栅辅助分布式pos的机翼形变测量方法、装置和平台 |
CN108760022A (zh) * | 2018-06-20 | 2018-11-06 | 航天海鹰(镇江)特种材料有限公司 | 一种机翼类产品振动频率的数字化测量及动态模型建立的方法 |
CN109163868A (zh) * | 2018-10-17 | 2019-01-08 | 北京理工大学 | 一种悬臂梁类弹性元件的刚度测试系统及方法 |
Non-Patent Citations (7)
Title |
---|
An equivalent model of corrugated panels with axial and bending coupling;Chen Wang 等;《Computers and Structures》;20170210;第61-72页 * |
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures;William.L.Ko;《ResearchGate》;20071231;第1-73页 * |
一种机载遥感成像用分布式POS传递对准方法;宫晓琳 等;《北京航空航天大学学报》;20120430;第38卷(第4期);第491-496页 * |
基于光纤光栅的分布式POS 柔性基线测量方法;顾宾 等;《中国惯性技术学报》;20190630;第27卷(第3期);第307-313页 * |
快速传递对准中机翼弹性变形估计方法比较;李四海 等;《中国惯性技术学报》;20140228;第22卷(第1期);第38-44页 * |
机载分布式POS传递对准建模与仿真;房建成 等;《中国惯性技术学报》;20120831;第20卷(第4期);第379-385页 * |
面向InSAR 的空气扰动影响机翼挠曲变形建模;朱庄生 等;《北京航空航天大学学报》;20200131;第46卷(第1期);第38-50页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112326162A (zh) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106289246B (zh) | 一种基于位置和姿态测量系统的柔性杆臂测量方法 | |
CN108801166B (zh) | 基于悬臂梁理论的光纤光栅机翼形变测量建模及标定方法 | |
CN107728182B (zh) | 基于相机辅助的柔性多基线测量方法和装置 | |
CN105698792A (zh) | 一种基于自适应鲁邦融合算法的动态mems惯性姿态测量系统 | |
CN107014371A (zh) | 基于扩展自适应区间卡尔曼的无人机组合导航方法与装置 | |
CN108731676B (zh) | 一种基于惯性导航技术的姿态融合增强测量方法及系统 | |
Teixeira et al. | Flight path reconstruction–A comparison of nonlinear Kalman filter and smoother algorithms | |
CN106989761B (zh) | 一种基于自适应滤波的空间飞行器制导工具在轨标定方法 | |
JP2003506702A (ja) | センサ用振動補償 | |
CN109086250B (zh) | 适用于带斜置光纤陀螺的mems惯组的数据融合方法 | |
CN111189442B (zh) | 基于cepf的无人机多源导航信息状态预测方法 | |
CN108458709B (zh) | 基于视觉辅助测量的机载分布式pos数据融合方法和装置 | |
CN110702113B (zh) | 基于mems传感器的捷联惯导系统数据预处理和姿态解算的方法 | |
CN111895988A (zh) | 无人机导航信息更新方法及装置 | |
CN112683274A (zh) | 一种基于无迹卡尔曼滤波的无人机组合导航方法和系统 | |
CN112326162B (zh) | 一种机载分布式pos用机翼弹性变形测量方法 | |
Gong et al. | An innovative distributed filter for airborne distributed position and orientation system | |
Pourtakdoust et al. | An adaptive unscented Kalman filter for quaternion‐based orientation estimation in low‐cost AHRS | |
CN110736459B (zh) | 惯性量匹配对准的角形变测量误差评估方法 | |
Perez Paina et al. | Experimental comparison of Kalman and complementary filter for attitude estimation | |
CN111982126A (zh) | 一种全源BeiDou/SINS弹性状态观测器模型设计方法 | |
Xing et al. | Offline calibration for MEMS gyroscope G-sensitivity error coefficients based on the newton iteration and least square methods | |
CN104655132A (zh) | 一种基于加速度计的机体弹性变形角估计方法 | |
CN107702718B (zh) | 一种基于瞬间可观测度模型的机载pos机动优化方法与装置 | |
Kaswekar et al. | Sensor fusion based vibration estimation using inertial sensors for a complex lightweight structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |