CN112316966A - 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用 - Google Patents

一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112316966A
CN112316966A CN202011077183.9A CN202011077183A CN112316966A CN 112316966 A CN112316966 A CN 112316966A CN 202011077183 A CN202011077183 A CN 202011077183A CN 112316966 A CN112316966 A CN 112316966A
Authority
CN
China
Prior art keywords
pto
preparation
photocatalyst
ternary
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011077183.9A
Other languages
English (en)
Other versions
CN112316966B (zh
Inventor
李岚
郭欣
孔丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202011077183.9A priority Critical patent/CN112316966B/zh
Publication of CN112316966A publication Critical patent/CN112316966A/zh
Application granted granted Critical
Publication of CN112316966B publication Critical patent/CN112316966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Au‑Pt/PtO三元助催化剂痕量负载g‑C3N4光催化剂及其制备方法和应用,该光催化剂g‑C3N4‑Au‑Pt/PtO中在痕量的三元助催化剂负载情况下表现出高效的光催化水解产氢性能,模拟太阳光照射下的光催化水解产氢速率达到20mmol/h/g以上,其420nm单色波长照射下的表观量子效率达到16.0%左右。本发明通过发挥Au的局域等离子体共振效应调控了Pt/PtO的形成,Au‑Pt/PtO三元助催化剂的协同作用发挥出优异的光催化产氢性能并极大地节约了贵金属用量,降低成本。

Description

一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制 备方法和应用
技术领域
本发明涉及光催化产氢技术领域,具体涉及一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用。
背景技术
石墨相氮化碳(g-C3N4)是一种稳定的聚合物半导体,包含着地球富有的C、N元素,具有C-N核心结构的富N前驱体被广泛用来制备g-C3N4。g-C3N4具有独特的层状类石墨相结构和有利于载流子迁移的π-共轭体系,目前已广泛用于光催化水分解制氢、CO2重组储能、环境治理等领域。由于g-C3N4具有较高的HOMO能级(-1.3V) 和适当的禁带宽度(~2.8eV),大量的研究工作将g-C3N4应用于光催化水分解制氢。助催化剂负载g-C3N4极大地提升了光催化水分解产氢性能,其中以贵金属的优势最为明显,然而贵金属价格昂贵,成本高昂,如何在降低贵金属成本的情况下发挥出最优的光催化水解产氢性能成为亟待解决的问题。
发明内容
有鉴于此,本发明旨在提出Au-Pt/PtO三元助催化剂痕量负载 g-C3N4光催化剂及其制备方法和应用,保持了g-C3N4光生电子的还原能力,拓宽了g-C3N4对可见至近红外光谱的吸收,促进了光生电子的迁移,提供更多的表面活性位点促进水分解反应的进行。
为达到上述目的,本发明的技术方案是这样实现的:
一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,该方法包括如下步骤:首先通过高温煅烧的方法制得g-C3N4,然后将Au纳米颗粒利用光沉积还原的方法负载在g-C3N4的表面制得 g-C3N4-Au,之后将Pt/PtO纳米颗粒利用光沉积还原的方法负载在g-C3N4-Au的表面制得。
进一步,该方法包括如下步骤:
(1)制备g-C3N4
取尿素均匀装入坩埚中,在马弗炉中煅烧后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将g-C3N4溶于去离子水和甲醇的混合溶剂中,持续超声30分钟;然后将四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度 N2去除溶解O2;连续搅拌混合溶液,用氙灯作为模拟太阳光光源照射,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将g-C3N4-Au溶于去离子水和甲醇的混合溶剂中,持续超声30 分钟;然后将氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述(2) 同样的步骤,得到样品g-C3N4-Au-Pt/PtO。
进一步,所述步骤(1)中尿素的用量为10g;所述煅烧的温度为500℃,煅烧时间4h,升温速率为10℃/min。
进一步,所述氙灯为300W,照射时间为30min。
进一步,所述甲醇的纯度≥99.5%,g-C3N4、去离子水和甲醇的质量比为1:250:40,g-C3N4混合溶剂的浓度为0.036M;g-C3N4-Au、去离子水和甲醇的质量比为1:250:40,g-C3N4-Au混合溶剂的浓度为 0.0115M。
进一步,所述步骤(2)中Au相对于g-C3N4的质量百分比为0.3%-1.0%。
进一步,所述步骤(3)中Pt相对于g-C3N4的质量百分比 0.3%-1.0%。
进一步,所述四氯金酸的乙醇溶液的浓度为0.1M,氯铂酸的乙醇溶液的浓度为0.1M。
本发明还提供了一种根据上述所述的制备方法制备得到的 Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂。
本发明还提供了一种根据上述所述的制备方法制备得到的 Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂在光催化水分解产氢上的应用。
相对于现有技术,本发明所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法剂和应用具有以下优势:
本发明所述提供的g-C3N4-Au-Pt/PtO光催化剂实现高效光解水制氢速率达到20mmol/h/g以上,在420nm单色波长下的表观量子效率达到16.0%左右。相对于别的研究中助催化剂含量的60%,其表观量子效率增长了7-8倍。
附图说明
图1为g-C3N4、g-C3N4-Au、和g-C3N4-Au-Pt/PtO的XRD图谱;
图2为g-C3N4-Au、g-C3N4-Au-Pt/PtO的Au 4f、Pt 4f XPS图谱;
图3为g-C3N4、g-C3N4-Au、和g-C3N4-Au-Pt/PtO的DRS图谱;
图4为g-C3N4、g-C3N4-Au、和g-C3N4-Au-Pt/PtO在模拟太阳光下的光催化水解产氢速率图谱;
图5为实施例1-4、对比例1-2和对照例的光催化产氢性能对比图;
图6为本发明所述的光催化剂的原理图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合实施例来详细说明本发明。
实例1:
一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,该方法包括如下步骤:
(1)制备g-C3N4
取10g尿素均匀装入坩埚中,在马弗炉中500℃煅烧4h,升温速率为10℃/min,之后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将200mg的g-C3N4溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为0.3%的30μL 0.1M 的四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度N2去除溶解O2;连续搅拌混合溶液,用300W氙灯HAYASHILA 410-UV 作为模拟太阳光光源照射30min,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将200mg g-C3N4-Au溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量百分比为0.3%的30μL 0.1M的氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述2)同样的步骤,得到样品g-C3N4-Au-Pt/PtO,简称为g-A(0.3)-P(0.3),(g代表g-C3N4,A代表Au,P代表Pt)。
实例2:
一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,该方法包括如下步骤:
(1)制备g-C3N4
取10g尿素均匀装入坩埚中,在马弗炉中500℃煅烧4h,升温速率为10℃/min,之后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将200mg的g-C3N4溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为0.3%的30μL 0.1M 的四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度N2去除溶解O2;连续搅拌混合溶液,用300W氙灯HAYASHILA 410-UV 作为模拟太阳光光源照射30min,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将200mg g-C3N4-Au溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为0.5%的50μL 0.1M的氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述2)同样的步骤,得到样品g-C3N4-Au-Pt/PtO,简称为g-A(0.3)-P(0.5),(g代表g-C3N4,A代表Au,P代表Pt)。
实例3:
一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,该方法包括如下步骤:
(1)制备g-C3N4
取10g尿素均匀装入坩埚中,在马弗炉中500℃煅烧4h,升温速率为10℃/min,之后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将200mg的g-C3N4溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为0.5%的50μL 0.1M 的四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度N2去除溶解O2;连续搅拌混合溶液,用300W氙灯HAYASHILA 410-UV 作为模拟太阳光光源照射30min,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将200mg g-C3N4-Au溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为0.5%的50μL 0.1M的氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述(2)同样的步骤,得到样品g-C3N4-Au-Pt/PtO,简称为g-A(0.5)-P(0.5),(g 代表g-C3N4,A代表Au,P代表Pt)。
实例4:
一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,该方法包括如下步骤:
(1)制备g-C3N4
取10g尿素均匀装入坩埚中,在马弗炉中500℃煅烧4h,升温速率为10℃/min,之后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将200mg的g-C3N4溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为1.0%的100μL 0.1M的四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度 N2去除溶解O2;连续搅拌混合溶液,用300W氙灯HAYASHILA 410-UV,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将200mg g-C3N4-Au溶于50mL去离子水和10mL甲醇混合溶剂中,持续超声30分钟;然后将相对于g-C3N4质量为1.0%的100μL 0.1M的氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述2)同样的步骤,得到样品g-C3N4-Au-Pt/PtO,简称为g-A(1)-P(1),(g代表 g-C3N4,A代表Au,P代表Pt)。
对比例1
在实施例1的基础上,仅制备g-C3N4
对比例2
在实施例1的基础上,仅制备g-C3N4-Au。
光催化水解产氢试验:
采用等量的实施例1-4制备的g-C3N4-Au-Pt/PtO、对比例1制备的g-C3N4、对比例2制备的g-C3N4-Au分别在同样的真空系统环境下的光催化水解产氢。首先将催化剂溶解超声注入到光催化反应瓶内;然后连接光催化反应瓶与光催化反应系统,将系统内环境抽至真空状态;最后300W的氙灯光源照射光催化剂溶液,1h之后停止光照,气相色谱仪检测H2的浓度。另外,采用常用的催化剂TiO2进行催化产氢作为对照组。
如图5所示,实施例1-4、对比例1-2和对照组在同样的真空系统环境下的光催化水解产氢速率分别为21.3mmol/h/g、22.8mmol/h/g、 27.5mmol/h/g、20.4mmol/h/g、0mmol/h/g、9.3mmol/h/g、1.7mmol/h/g。说明了Au/Pt掺杂g-C3N4更有利于提高光催化水解产氢速率,相对于单一负载Au纳米粒子的g-C3N4和TiO2的光催化水解产氢性能明显提升。其中,实例1-4在420nm单色波长下的表观量子效率达到16%左右。
图5还说明了随着Au和Pt含量的增多,随着Au的局部等离子体共振效应的增强和更多Pt/PtO生成,g-A(0.5)-P(0.5)(g代表g-C3N4, A代表Au,P代表Pt)达到最优的光催化水解产氢速率27.5mmol/h/g,而g-A(1.0)-P(1.0)的光催化水解产氢速率最低是归因于过多的Au和 Pt含量影响了g-C3N4对可见光谱的吸收。
如图4所示为对比例1的g-C3N4、对比例2的g-C3N4-Au、实施例1的g-C3N4-Au-Pt/PtO的光催化水解产氢图谱。g-C3N4-Au相对于 g-C3N4具有较高的光催化水解产氢活性,这是由于Au的等离子体共振效应,拓展了g-C3N4对可见至近红外光谱的吸收,增强的局域电场有效避免了光生载流子的复合,Au的热电子注入到g-C3N4的导带增大了电子浓度。g-C3N4-Au-Pt/PtO除了上述中Au的LSPR效应, Pt/PtO纳米颗粒与g-C3N4的有效解除促进了光生电子的迁移,PtO 抑制了H2的逆反应,具有优异电子传导能力的金属Pt加速了H+被还原成H2,从而表现出高效率的光催化产氢性能。
如图1所示为g-C3N4、g-C3N4-Au、和g-C3N4-Au-Pt/PtO的XRD 图谱,所有样品在13.1°和27.4°出现了g-C3N4的衍射峰,分别对应于g-C3N4的(100)晶面和(002)晶面。g-C3N4-Au和g-C3N4-Au-Pt/PtO 位于38.44°出现了Au纳米颗粒的(111)晶面的衍射峰,这说明Au 纳米颗粒结晶性良好。然而没有出现关于Pt/PtO的衍射峰,这是由于PtO的非晶态和较少的金属Pt。
如图2(a)所示为g-C3N4-Au和g-C3N4-Au-Pt/PtO的Au 4f电子的XPS图谱,g-C3N4-Au和g-C3N4-Au-Pt/PtO的Au 4f7/2/Au 4f5/2结合能峰位如图所示,这是归因于Au的存在,与XRD结果一致。图2 (b)所示为Pt 4f电子的XPS图谱,结合能峰位如图所示,证明了 Pt以Pt0和Pt2+的形式存在。
如图3所示为g-C3N4、g-C3N4-Au、g-C3N4-Au-Pt/PtO的DRS 图谱。由于Au的等离子体共振效应,g-C3N4-Au与g-C3N4-Au-Pt/PtO 在500-800nm光谱范围内有稳定的吸收,而g-C3N4-Au-Pt/PtO对可见光谱至近红外有进一步的吸收增强,这是归因于金属Pt对光子的多重散射作用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:该方法包括如下步骤:首先通过高温煅烧的方法制得g-C3N4,然后将Au纳米颗粒利用光沉积还原的方法负载在g-C3N4的表面制得g-C3N4-Au,之后将Pt/PtO纳米颗粒利用光沉积还原的方法负载在g-C3N4-Au的表面制得。
2.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:该方法包括如下步骤:
(1)制备g-C3N4
取尿素均匀装入坩埚中,在马弗炉中煅烧后自然降至室温,获得明黄色g-C3N4粉末;
(2)制备g-C3N4-Au:
将g-C3N4溶于去离子水和甲醇的混合溶剂中,持续超声30分钟;然后将四氯金酸的乙醇溶液滴入上述溶液中,在密封光反应器中倒入上述混合溶液,在连续搅拌混合溶液的过程中注入5分钟的高纯度N2去除溶解O2;用氙灯作为模拟太阳光光源照射,整个光沉积过程持续注入N2;随后用大量去离子水抽滤清洗光催化剂,并将其干燥,得到样品g-C3N4-Au;
(3)制备g-C3N4-Au-Pt/PtO:
将g-C3N4-Au溶于去离子水和甲醇的混合溶剂中,持续超声30分钟;然后将氯铂酸的乙醇溶液滴入上述溶液中,之后进行与上述(2)同样的步骤,得到样品g-C3N4-Au-Pt/PtO。
3.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述步骤(1)中尿素的用量为10g,所述煅烧的温度为500℃,煅烧时间4h,升温速率为10℃/min。
4.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述氙灯为300W,照射时间为30min。
5.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述甲醇的纯度≥99.5%,g-C3N4、去离子水和甲醇的质量比为1:250:40,g-C3N4混合溶剂的浓度为0.036M;g-C3N4-Au、去离子水和甲醇的质量比为1:250:40,g-C3N4-Au混合溶剂的浓度为0.0115M。
6.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述步骤(2)中Au相对于g-C3N4的质量百分比为0.3%-1.0%。
7.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述步骤(3)中Pt相对于g-C3N4的质量百分比为0.3%-1.0%。
8.根据权利要求1所述的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂的制备方法,其特征在于:所述四氯金酸的乙醇溶液的浓度为0.1M,氯铂酸的乙醇溶液的浓度为0.1M。
9.一种根据权利要求1-8任一项所述的制备方法制备得到的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂。
10.一种根据权利要求1-8任一项所述的制备方法制备得到的Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂在光催化水分解产氢上的应用。
CN202011077183.9A 2020-10-10 2020-10-10 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用 Active CN112316966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011077183.9A CN112316966B (zh) 2020-10-10 2020-10-10 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011077183.9A CN112316966B (zh) 2020-10-10 2020-10-10 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112316966A true CN112316966A (zh) 2021-02-05
CN112316966B CN112316966B (zh) 2022-10-18

Family

ID=74314659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011077183.9A Active CN112316966B (zh) 2020-10-10 2020-10-10 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112316966B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740430A (zh) * 2022-11-10 2023-03-07 苏州大学 一种光驱动微纳米马达及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109201102A (zh) * 2018-09-28 2019-01-15 商丘师范学院 一种Z型异质结M-C3N4/CdS复合光催化剂的制备方法
WO2019239129A1 (en) * 2018-06-12 2019-12-19 Oxford University Innovation Limited Photocatalyst and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239129A1 (en) * 2018-06-12 2019-12-19 Oxford University Innovation Limited Photocatalyst and use thereof
CN109201102A (zh) * 2018-09-28 2019-01-15 商丘师范学院 一种Z型异质结M-C3N4/CdS复合光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING JIANG.ETAL: "Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
SHIJING LIANGA.ETAL,: "Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytichydrogen production under visible light irradiation", 《APPLIED SURFACE SCIENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740430A (zh) * 2022-11-10 2023-03-07 苏州大学 一种光驱动微纳米马达及其制备方法与应用

Also Published As

Publication number Publication date
CN112316966B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Han et al. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity
Sun et al. Facile constructing of isotype g-C3N4 (bulk)/g-C3N4 (nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: an efficient charge separation system for photocatalytic hydrogen production
CN110813280B (zh) 一种高分散铂负载表面修饰的黑色二氧化钛光催化剂、制备方法及其应用
Wu et al. Modulating g-C3N4-based van der Waals heterostructures with spatially separated reductive centers for tandem photocatalytic CO2 methanation
Chen et al. Photocatalytic CO 2 reduction on Cu single atoms incorporated in ordered macroporous TiO 2 toward tunable products
Xu et al. Coordination of π-delocalization in g-C3N4 for efficient photocatalytic hydrogen evolution under visible light
CN113318765B (zh) 一种超薄高结晶氮化碳光催化剂的制备方法及应用
CN105289689A (zh) 一种氮掺杂石墨烯量子点/类石墨烯相氮化碳复合材料的合成及应用
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
da Trindade et al. Effective strategy to coupling Zr-MOF/ZnO: Synthesis, morphology and photoelectrochemical properties evaluation
CN109317180B (zh) 一种可工业化生产高性能光催化固氮g-C3N4/氧化物复合材料的制备方法
CN111974436B (zh) 一种石墨相氮化碳及其制备方法、以及光催化水产氢的方法
CN116550357A (zh) 一种g-C3N4纳米片光催化剂的制备方法及应用
CN112316966B (zh) 一种Au-Pt/PtO三元助催化剂痕量负载g-C3N4光催化剂及其制备方法和应用
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
Pang et al. Surface microstructure modulation boosting electron transfer between Pt clusters and carbon nitrogen for effective photocatalysis
Song et al. N-Cdots-decorated TiO2 (B)/anatase microspheres with high photocatalytic performance in visible light
Gong et al. Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies
Zhou et al. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system
Hu et al. Enhanced photocatalytic CO 2 reduction to CH 4 via restorable surface plasmon and Pd n–W δ+ synergetic sites
Guo et al. Au nanoparticle-controlled formation of metallic and oxidized Pt nanoparticles on graphitic carbon nitride nanosheets for H 2 evolution
Song et al. Intrinsic photocatalytic water reduction over PbGaBO4 comprising edge-sharing GaO6 chains
Li et al. Ordered porous nitrogen-vacancy carbon nitride for efficient visible-light hydrogen evolution
CN107442098B (zh) 一种采用可见光光解水制氢的钛酸锶催化剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210205

Assignee: TIANJIN TIAN YUAN ELECTRICAL MATERIALS CO.,LTD.

Assignor: TIANJIN University OF TECHNOLOGY

Contract record no.: X2024980003375

Denomination of invention: An Au Pt/PtO ternary co catalyst with trace loading g-C3N4photocatalyst and its preparation method and application

Granted publication date: 20221018

License type: Common License

Record date: 20240322

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210205

Assignee: TIANJIN ZHUJIN TECHNOLOGY DEVELOPMENT Corp.

Assignor: TIANJIN University OF TECHNOLOGY

Contract record no.: X2024980003446

Denomination of invention: An Au Pt/PtO ternary co catalyst with trace loading g-C3N4photocatalyst and its preparation method and application

Granted publication date: 20221018

License type: Common License

Record date: 20240325

EE01 Entry into force of recordation of patent licensing contract