CN112310286A - 一种双面受光碳基叠合太阳能电池及测试装置 - Google Patents

一种双面受光碳基叠合太阳能电池及测试装置 Download PDF

Info

Publication number
CN112310286A
CN112310286A CN202011083986.5A CN202011083986A CN112310286A CN 112310286 A CN112310286 A CN 112310286A CN 202011083986 A CN202011083986 A CN 202011083986A CN 112310286 A CN112310286 A CN 112310286A
Authority
CN
China
Prior art keywords
solar cell
double
electrode
light
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011083986.5A
Other languages
English (en)
Inventor
史彦涛
张春阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202011083986.5A priority Critical patent/CN112310286A/zh
Publication of CN112310286A publication Critical patent/CN112310286A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明公开了一种双面受光碳基叠合太阳能电池及测试装置,属于新能源材料与器件技术领域。所述的双面受光太阳能电池,其阴极由两层超薄碳纳米管材料组成,增加背电极透光性,解决了常规贵金属电极不透光的问题,所得双面碳基叠合太阳能电池可同时利用正面和背面入射光,有效增加单位面积输出功率。相较于传统太阳能电池,本发明中的双面受光太阳能电池能够大幅提升太阳光利用率,提升单位面积光‑电转换功率;该器件结构易于实现跟建筑物的结合;用碳纳米管材料代替钙钛矿太阳能电池中的贵金属金或银,能够降低成本。

Description

一种双面受光碳基叠合太阳能电池及测试装置
技术领域
本发明属于新能源材料与器件技术领域,具体涉及一种双面受光碳基叠合太阳能电池及测试装置。
背景技术
当前,不可再生的化石能源得到不断消耗的同时,造成了严重的环境污染。人类急需开发利用可再生的能源来替代化石能源。在各种可再生能源中,太阳能被认为取之不尽用之不竭且不受地域限制的清洁能源。
太阳能电池是一种能将太阳能转化为电能的装置,已经历经三代,其中钙钛矿太阳能电池引领第三代太阳能电池的发展,目前认证效率已高达25.5%。但是单面电池单位面积输出功率因为受到光吸收层以及入射光强的的限制,未来效率增长空间有限。而双面电池可以有效利用双面入射光并有效增加单位面积输出功率。双面电池制备的关键是背电极的透明化,常用透明背电极有超薄金属电极和碳电极,但是效率普遍不高。这种通过牺牲效率使背电极透明化的策略显然需要进一步改进。
发明内容
本发明结合先进的叠合碳基结构电池,系统对不同类型碳纳米管背电极筛选,最终制备了一种双面受光工作的碳基叠合太阳能电池,不但解决传统钙钛矿太阳能电池背电极需要用到真空蒸镀及贵金属所造成的成本问题,保证正面受光效率高达19.3%的同时,双面电池双面受光时可进一步增加了单位面积输出功率(255W m-2)。
本发明提出的原理包括:
传统单面电池,只能利用正面入射光,背面反射光不能有效利用。双面电池可同时利用正背面入射光,从而增加器件单位输出功率。
本发明的技术方案:
一种双面受光碳基叠合太阳能电池,由电极A和电极B叠合而成;电极A 从上到下依次是导电玻璃、电子传输层、吸光层、空穴传输层和碳纳米管层;电极B为碳纳米管层和导电玻璃,电极A和电极B的碳纳米管层相接触。
电极A和电极B中的碳纳米管直径在2nm~10nm之间,由电极A和电极 B中的总碳纳米管层厚度在2μm~15μm之间。
该测量装置包括太阳能电池、反光镜、卡槽和底座;两太阳能电池呈90°夹角固定在底座上,并分别与底座呈45°夹角;反光镜垂直固定在底座上,位于两太阳能电池之间。
本发明的有益效果:
碳纳米管材料储备丰富,廉价易得,用碳纳米管材料代替贵金属金或银,为大规模工业化生产提供有利的支撑;喷涂碳纳米管材料替代真空蒸镀贵金属,降低能耗;同时具有良好透光性的碳纳米管可以用于制备双面太阳能电池,在自然或人工反射条件下,有效利用背面反射光从而增加单位面积能量输出功率。
附图说明
图1为实施例1中不同厚度MWCNT/1电极对应电池JV曲线。
图2为实施例2中所用多壁碳纳米管MWCNT/1的透射电镜图和表面扫描电镜。
图3为实施例2中所用多壁碳纳米管MWCNT/2的透射电镜图和表面扫描电镜。
图4为实施例2中所用单壁碳纳米管SWCNT的透射电镜图和表面扫描电镜。
图5为实施例2中MWCNT/1对应电池正背面分别受光对应的JV曲线。
图6为实施例2中MWCNT/2对应电池正背面分别受光对应的JV曲线。
图7实施例2中SWCNT对应电池正背面分别受光对应的JV曲线。
图8为实施例3中模拟双面器件正背面同时受光光电性能的测试装置(单光源法)。
图9为实施例3中模拟双面器件正背面同时受光光电性能的测试装置(双光源法)。
图10为实施例3中MWCNT/2基电池在不同反射光下所测双面同时受光JV 曲线。
图11是本发明的双面受光碳基叠合太阳能电池测量装置示意图。
图中:1太阳能电池;2反光镜;3卡槽;4底座。
具体实施方式
以下是本发明的具体实施例,并结合附图说明对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
下述实施例中所使,用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料等,如无特殊说明,均可从商业途径得到。
本发明制备的电池包括A和B两块电极,A电极包括导电基底、电子提取层材料、光吸收层、空穴提取层及碳纳米管材料;B电极包括导电基底和碳纳米管材料;所述第一或第二不用于排序;所述电池的制备步骤包括:
(1)导电基底的刻蚀:用胶带将FTO导电玻璃或ITO玻璃上需要保护的部分粘住,之后将Zn粉均匀涂于需要刻蚀的FTO导电玻璃表面,将2-6M的HCl水溶液滴在FTO导电玻璃上的Zn粉上,待反应完全,擦拭刻蚀区,并依次用水,乙醇,丙酮,异丙醇分别超声30min,玻璃吹干后,放入紫外臭氧清洗机处理10min后备用;
(2)制备电子提取层:
①配置TiO2溶胶:A液:将二乙醇胺与钛酸四丁酯溶解于无水乙醇中,搅拌后得到均匀溶液:其中,钛酸四丁酯:二乙醇胺:无水乙醇的体积比为4:1:13; B液:将去离子水与无水乙醇按体积1:28混合;边搅拌边将B液缓慢滴入A液,其中A液与B液的体积比为2.8:1。陈化后,得到微黄色澄清溶液,浓度为0.5M,置于-5℃储存;使用前用等体积的乙醇溶液稀释即得TiO2溶胶;
配置SnO2溶胶:将0.05-0.5M氯化亚锡乙醇或异丙醇溶液在80℃冷凝回流3h,自然降温后,得到均匀无色透亮的溶液,经陈化后,得到微黄色澄清溶液,即得SnO2溶胶;将步骤①制备的TiO2溶胶旋涂于步骤(1)得到的导电基底上,然后将其置于500℃条件下烧结1h。或者将步骤②制备的SnO2溶胶旋涂于步骤(1)得到的FTO或ITO玻璃导电基底上,然后将其置于40℃-100℃条件下烧结1h;
(3)制备光吸收层:
光吸收层Cs0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95
在氮气气氛的手套箱中,首先在70℃下搅拌2h制备含有FAI(1M),PbI2 (1.1M),MABr(0.2M)和PbBr2(0.2M)的DMF和DMSO(体积比为4: 1)的无水混合物。将溶液经有机滤膜过滤后,按95:5的比例加入1.5M的CsI 的DMSO溶液,混合均匀后用移液枪移取80μL上述光吸收层前驱体溶液,均匀涂覆在覆有ETLs的导电基底上,随后进行两步法旋涂(1000rpm,5s和6000 rpm,50s)。在第二个旋涂过程中,在程序结束之前35s时,将100μL三氟甲苯加入到旋转的基底上。最后,将基底100℃加热40min,即得 Cs0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95光吸收层;
光吸收层MAPbI3
首先将碘化铅溶于DMF中,碘化铅浓度为4.62mg/mL,70℃加热搅拌直至 PbI2完全溶解,将该溶液滴在电子提取层上,然后进行旋涂,旋涂完毕转移到70℃热板上,加热30min;加热完毕冷却至室温后,将制备好的PbI2薄膜在异丙醇溶液中润湿,取出后立刻置于10mg/ml碘甲胺的异丙醇溶液中,碘化铅薄膜颜色逐渐由黄色变为黑色;然后将薄膜转移到异丙醇溶液中轻微漂洗,旋涂至溶剂挥发,最后将其转移到70℃加热板上加热30min,即得MAPbI3光吸收层。
(4)制备空穴提取层:
将72.3mg/mL的Spiro-OMeTAD溶解于1mL氯苯溶液并加入添加剂:520 mg/mL锂盐的乙腈溶液、300mg/mL钴盐的乙腈溶液和四叔丁基吡啶,三者体积比10:11:17,常温下搅拌1h,即得Spiro-OMeTAD溶液:将该溶液旋涂于制备好的光吸收层上,即得Spiro-OMeTAD层。其中,旋涂转数为1500-6500rpm,时间为3-90s;
(5)制备碳层:
将适量碳纳米管材料与异丙醇混合,也可以与对相邻功能层无破坏的其它溶剂混合,球磨分散,直至适合喷涂出均匀的碳膜为止,即得碳纳米管材料喷涂液;碳层制备分两层,Layer I:取已旋涂好空穴提取层的半电池,也可以是未旋涂空穴提取层的半电池,热喷涂碳纳米管材料喷涂液,热喷涂所用温度需根据所用分散溶剂的沸点选取(±50℃)但不能超过其他功能层的分解破坏温度; Layer II:取洗净的背电极基板,热喷涂碳纳米管材料喷涂液。其中,背电极基板为FTO导电玻璃、铝箔纸或钢板中的任意一种。Layer I层和LayerII层厚度之和为2~15μm之间。所述碳纳米管直径在2nm~10nm之间。
(6)电池组装:
将喷涂好碳纳米管材料的两个电极用夹子固定在一起,留出引电子和空穴的部分,即组装成碳基叠合太阳能电池。
通过上述方法制备出的碳基叠合太阳能电池均可解决本发明所述技术问题,达到本发明所述的有益技术效果,下述实施例具体选择了下述制备方法:
实施例1、双面受光太阳能电池及其制备方法
除步骤(1)选取的是FTO导电玻璃做导电基底,HCl水溶液的浓度具体为 4M;步骤(2)的电子提取层成分为SnO2,具体选择的是0.1M氯化亚锡异丙醇溶液;步骤(3)所用光吸收层为Cs0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95;步骤(4) 的旋涂转数为3000rpm,时间为30s;步骤(5)中取10mg炭黑与2.5ml异丙醇溶液混合后球磨2h,背电极基板为FTO导电玻璃,Layer I层和Layer II层 MWCNT/1厚度改变外,其他步骤与上述方法相同。图1表1分别为不同电池厚度JV曲线和对应的光电性能参数。
实施例2、双面受光太阳能电池及其制备方法
除步骤(1)选取的是FTO导电玻璃做导电基底,HCl水溶液的浓度具体为 4M;步骤(2)的电子提取层成分为SnO2,具体选择的是0.1M氯化亚锡异丙醇溶液;步骤(3)所用光吸收层为Cs0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95;步骤(4) 的旋涂转数为3000rpm,时间为30s;步骤(5)中取10mg炭黑与2.5ml异丙醇溶液混合后球磨2h,背电极基板为FTO导电玻璃,Layer I层和Layer II层选取不同类型碳纳米管外,其他步骤与上述方法相同。图2-4为三种不同类型碳纳米管,分别编号MWCNT/1,MWCNT/2,SWCNT。图5-7和表2-4为三种不同类型碳纳米管用作背电极对应电池分别从正背面受光所测JV曲线以及光电性能参数。
实施例3、双面受光太阳能电池及其制备方法
除步骤(1)选取的是FTO导电玻璃做导电基底,HCl水溶液的浓度具体为4M;步骤(2)的电子提取层成分为SnO2,具体选择的是0.1M氯化亚锡异丙醇溶液;步骤(3)所用光吸收层为Cs0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95;步骤(4) 的旋涂转数为3000rpm,时间为30s;步骤(5)中取10mg炭黑与2.5ml异丙醇溶液混合后球磨2h,背电极基板为FTO导电玻璃,Layer I层和Layer II层选取碳纳米管MWCNT/2外,其他步骤与上述方法相同。图8-9分别为双面器件模拟双面受光工作的测试装置(图8为单光源法,图9为双光源法)。本实施例中采用的是单光源法。图10为在模拟不同自然反射率或人工反射率下(约 AM1.5G的20%~100%)双面电池双面受光工作的JV曲线以及对应的光电性能参数。
表1为实施例1中不同厚度MWCNT/1电极对应电池的光电性能参数
Figure RE-GDA0002808614550000071
Figure RE-GDA0002808614550000081
表2为实施例2中MWCNT/1对应电池正背面分别受光对应的光电性能参数
Figure RE-GDA0002808614550000082
表3为实施例2中MWCNT/2和SWCNT对应电池正背面分别受光对应的光电性能参数
Figure RE-GDA0002808614550000083
表4为实施例3中MWCNT/2基电池在不同反射光下所测双面同时受光的光电性能参数。
Figure RE-GDA0002808614550000091

Claims (3)

1.一种双面受光碳基叠合太阳能电池,其特征在于,该双面受光碳基叠合太阳能电池由电极A和电极B叠合而成;电极A从上到下依次是导电玻璃、电子传输层、吸光层、空穴传输层和碳纳米管层;电极B为碳纳米管层和导电玻璃,电极A和电极B的碳纳米管层相接触。
2.根据权利要求1所述的双面受光碳基叠合太阳能电池,其特征在于,电极A和电极B中的碳纳米管直径在2nm~10nm之间,由电极A和电极B中的总碳纳米管层厚度在2μm~15μm之间。
3.一种用双面受光碳基叠合太阳能电池的测量装置,其特征在于,该测量装置包括太阳能电池、反光镜、卡槽和底座;两太阳能电池呈90°夹角固定在底座上,并分别与底座呈45°夹角;反光镜垂直固定在底座上,位于两太阳能电池之间。
CN202011083986.5A 2020-10-12 2020-10-12 一种双面受光碳基叠合太阳能电池及测试装置 Withdrawn CN112310286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011083986.5A CN112310286A (zh) 2020-10-12 2020-10-12 一种双面受光碳基叠合太阳能电池及测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011083986.5A CN112310286A (zh) 2020-10-12 2020-10-12 一种双面受光碳基叠合太阳能电池及测试装置

Publications (1)

Publication Number Publication Date
CN112310286A true CN112310286A (zh) 2021-02-02

Family

ID=74489828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011083986.5A Withdrawn CN112310286A (zh) 2020-10-12 2020-10-12 一种双面受光碳基叠合太阳能电池及测试装置

Country Status (1)

Country Link
CN (1) CN112310286A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139563A1 (en) * 2007-11-29 2009-06-04 Wei-Hung Wung Solar energy exploiting device
US20100282295A1 (en) * 2009-05-07 2010-11-11 Michael Lee Gomery Solar power unit
CN104701023A (zh) * 2015-01-21 2015-06-10 石家庄铁道大学 一种钙钛矿薄膜太阳能电池的碳电极材料及其制备方法
CN205754191U (zh) * 2016-05-23 2016-11-30 永旺能源股份有限公司 双面太阳能电池装置
CN109888101A (zh) * 2019-02-19 2019-06-14 江苏赛清科技有限公司 一种碳基叠合太阳能电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139563A1 (en) * 2007-11-29 2009-06-04 Wei-Hung Wung Solar energy exploiting device
US20100282295A1 (en) * 2009-05-07 2010-11-11 Michael Lee Gomery Solar power unit
CN104701023A (zh) * 2015-01-21 2015-06-10 石家庄铁道大学 一种钙钛矿薄膜太阳能电池的碳电极材料及其制备方法
CN205754191U (zh) * 2016-05-23 2016-11-30 永旺能源股份有限公司 双面太阳能电池装置
CN109888101A (zh) * 2019-02-19 2019-06-14 江苏赛清科技有限公司 一种碳基叠合太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN102347143B (zh) 一种石墨烯复合多孔对电极、制备方法及其应用
CN108832002B (zh) 一种基于pva修饰空穴传输层的钙钛矿太阳能电池
CN101901693A (zh) 石墨烯复合染料敏化太阳能电池的光阳极及其制备方法
CN103400697A (zh) 一种全固态柔性敏化太阳能电池及其制备方法
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
JP2008115055A (ja) 酸化チタン膜、酸化チタン膜電極膜構造および色素増感太陽電池
CN101894674B (zh) 一种染料敏化太阳能电池复合光阳极及其制备方法
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN106277023A (zh) 双层结构CeO2纳米空心球的制备方法及其应用
CN104393175A (zh) 一种有机太阳能电池及制备方法
CN114784198A (zh) 一种高效钙钛矿太阳能电池、电池组件、电池器件及其制备方法
US8877543B2 (en) Method for fabricating dye-sensitized solar cell
CN105280818A (zh) 一种稳定的平面异质结钙钛矿太阳能电池及其制备方法
Ito et al. Porous carbon layers for counter electrodes in dye-sensitized solar cells: Recent advances and a new screen-printing method
CN103887071A (zh) 一种柔性染料敏化太阳能电池纳米纸基复合光阳极及其制备方法
CN105206749A (zh) 钙钛矿太阳能电池及其制备工艺
CN103035843A (zh) 一种有机光伏电池及其制备方法
KR20110047533A (ko) 염료감응 태양전지 및 그 제조방법
CN105489381A (zh) 染料敏化太阳能电池光散射层及其制备方法
CN112310286A (zh) 一种双面受光碳基叠合太阳能电池及测试装置
Wang et al. Recent advances in the functionalization of perovskite solar cells/photodetectors
CN102723204B (zh) 染料敏化太阳电池光阳极的钛箔片制备方法
CN115000237A (zh) 一种全透明钙钛矿太阳能电池及其制作方法
CN112614942B (zh) 一种peg修饰的碳电极、其制备方法及利用其制得的钙钛矿电池
KR101044338B1 (ko) 염료 및 다원자음이온이 흡착된 나노 산화물층을 포함한 음극계 전극을 포함하는 염료감응 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210202

WW01 Invention patent application withdrawn after publication