CN112308803A - 一种基于深度学习的自监督低照度图像增强及去噪方法 - Google Patents
一种基于深度学习的自监督低照度图像增强及去噪方法 Download PDFInfo
- Publication number
- CN112308803A CN112308803A CN202011345050.5A CN202011345050A CN112308803A CN 112308803 A CN112308803 A CN 112308803A CN 202011345050 A CN202011345050 A CN 202011345050A CN 112308803 A CN112308803 A CN 112308803A
- Authority
- CN
- China
- Prior art keywords
- image
- low
- convolution
- max
- enhancement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 106
- 238000013135 deep learning Methods 0.000 title claims abstract description 26
- 238000012549 training Methods 0.000 claims abstract description 35
- 230000001629 suppression Effects 0.000 claims abstract description 25
- 230000006870 function Effects 0.000 claims abstract description 21
- 230000002708 enhancing effect Effects 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 238000009499 grossing Methods 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 17
- 238000010606 normalization Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 6
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011345050.5A CN112308803B (zh) | 2020-11-25 | 2020-11-25 | 一种基于深度学习的自监督低照度图像增强及去噪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011345050.5A CN112308803B (zh) | 2020-11-25 | 2020-11-25 | 一种基于深度学习的自监督低照度图像增强及去噪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112308803A true CN112308803A (zh) | 2021-02-02 |
CN112308803B CN112308803B (zh) | 2021-10-01 |
Family
ID=74487774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011345050.5A Active CN112308803B (zh) | 2020-11-25 | 2020-11-25 | 一种基于深度学习的自监督低照度图像增强及去噪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112308803B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112907570A (zh) * | 2021-03-24 | 2021-06-04 | 合肥工业大学 | 一种轻量级无监督暗光图像增强方法及装置 |
CN113112484A (zh) * | 2021-04-19 | 2021-07-13 | 山东省人工智能研究院 | 一种基于特征压缩和噪声抑制的心室图像分割方法 |
CN113592733A (zh) * | 2021-07-22 | 2021-11-02 | 北京小米移动软件有限公司 | 图像处理方法、装置、存储介质及电子设备 |
CN114004761A (zh) * | 2021-10-29 | 2022-02-01 | 福州大学 | 一种融合深度学习夜视增强与滤波降噪的图像优化方法 |
CN114782418A (zh) * | 2022-06-16 | 2022-07-22 | 深圳市信润富联数字科技有限公司 | 瓷砖表面缺陷的检测方法及装置、存储介质 |
CN116363009A (zh) * | 2023-03-31 | 2023-06-30 | 哈尔滨工业大学 | 基于有监督学习的快速轻量化低照度图像增强方法及系统 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140086507A1 (en) * | 2012-09-21 | 2014-03-27 | Htc Corporation | Image enhancement methods and systems using the same |
CN103903229A (zh) * | 2014-03-13 | 2014-07-02 | 中安消技术有限公司 | 一种夜晚图像增强方法和装置 |
CN106846282A (zh) * | 2017-03-28 | 2017-06-13 | 华侨大学 | 一种采用自适应校正的低照度图像增强方法 |
US9727951B2 (en) * | 2009-04-14 | 2017-08-08 | Canon Kabushiki Kaisha | Image processing apparatus and method for controlling the apparatus |
CN107527332A (zh) * | 2017-10-12 | 2017-12-29 | 长春理工大学 | 基于改进Retinex的低照度图像色彩保持增强方法 |
US20180211121A1 (en) * | 2017-01-25 | 2018-07-26 | Ford Global Technologies, Llc | Detecting Vehicles In Low Light Conditions |
CN109712097A (zh) * | 2019-01-04 | 2019-05-03 | Oppo广东移动通信有限公司 | 图像处理方法、装置、存储介质及电子设备 |
CA2995708A1 (en) * | 2018-02-20 | 2019-08-20 | Synaptive Medical (Barbados) Inc. | System and method for performing local-area contrast enhancement of digital images |
CN110163818A (zh) * | 2019-04-28 | 2019-08-23 | 武汉理工大学 | 一种用于海事无人机的低照度视频图像增强方法 |
CN110675336A (zh) * | 2019-08-29 | 2020-01-10 | 苏州千视通视觉科技股份有限公司 | 一种低照度图像增强方法及装置 |
CN111402145A (zh) * | 2020-02-17 | 2020-07-10 | 哈尔滨工业大学 | 一种基于深度学习的自监督低照度图像增强方法 |
CN111489303A (zh) * | 2020-03-27 | 2020-08-04 | 武汉理工大学 | 一种低照度环境下海事图像增强方法 |
-
2020
- 2020-11-25 CN CN202011345050.5A patent/CN112308803B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9727951B2 (en) * | 2009-04-14 | 2017-08-08 | Canon Kabushiki Kaisha | Image processing apparatus and method for controlling the apparatus |
US20140086507A1 (en) * | 2012-09-21 | 2014-03-27 | Htc Corporation | Image enhancement methods and systems using the same |
CN103903229A (zh) * | 2014-03-13 | 2014-07-02 | 中安消技术有限公司 | 一种夜晚图像增强方法和装置 |
US20180211121A1 (en) * | 2017-01-25 | 2018-07-26 | Ford Global Technologies, Llc | Detecting Vehicles In Low Light Conditions |
CN106846282A (zh) * | 2017-03-28 | 2017-06-13 | 华侨大学 | 一种采用自适应校正的低照度图像增强方法 |
CN107527332A (zh) * | 2017-10-12 | 2017-12-29 | 长春理工大学 | 基于改进Retinex的低照度图像色彩保持增强方法 |
CA2995708A1 (en) * | 2018-02-20 | 2019-08-20 | Synaptive Medical (Barbados) Inc. | System and method for performing local-area contrast enhancement of digital images |
CN109712097A (zh) * | 2019-01-04 | 2019-05-03 | Oppo广东移动通信有限公司 | 图像处理方法、装置、存储介质及电子设备 |
CN110163818A (zh) * | 2019-04-28 | 2019-08-23 | 武汉理工大学 | 一种用于海事无人机的低照度视频图像增强方法 |
CN110675336A (zh) * | 2019-08-29 | 2020-01-10 | 苏州千视通视觉科技股份有限公司 | 一种低照度图像增强方法及装置 |
CN111402145A (zh) * | 2020-02-17 | 2020-07-10 | 哈尔滨工业大学 | 一种基于深度学习的自监督低照度图像增强方法 |
CN111489303A (zh) * | 2020-03-27 | 2020-08-04 | 武汉理工大学 | 一种低照度环境下海事图像增强方法 |
Non-Patent Citations (4)
Title |
---|
CHEN WEI等: "Deep Retinex Decomposition for Low-Light Enhancement", 《ARXIV》 * |
LIANG SHEN等: "MSR-net:Low-light Image Enhancement Using Deep Convolutional Network", 《ARXIV》 * |
YU ZHANG等: "Self-supervised Image Enhancement Network:Training with Low Light Images Only", 《ARXIV》 * |
ZHANG YU等: "Better Than Reference In Low Light Image Enhancement: Conditional Re-Enhancement Networks", 《ARXIV》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112907570A (zh) * | 2021-03-24 | 2021-06-04 | 合肥工业大学 | 一种轻量级无监督暗光图像增强方法及装置 |
CN112907570B (zh) * | 2021-03-24 | 2022-03-22 | 合肥工业大学 | 一种轻量级无监督暗光图像增强方法及装置 |
CN113112484A (zh) * | 2021-04-19 | 2021-07-13 | 山东省人工智能研究院 | 一种基于特征压缩和噪声抑制的心室图像分割方法 |
CN113592733A (zh) * | 2021-07-22 | 2021-11-02 | 北京小米移动软件有限公司 | 图像处理方法、装置、存储介质及电子设备 |
CN114004761A (zh) * | 2021-10-29 | 2022-02-01 | 福州大学 | 一种融合深度学习夜视增强与滤波降噪的图像优化方法 |
CN114782418A (zh) * | 2022-06-16 | 2022-07-22 | 深圳市信润富联数字科技有限公司 | 瓷砖表面缺陷的检测方法及装置、存储介质 |
CN114782418B (zh) * | 2022-06-16 | 2022-09-16 | 深圳市信润富联数字科技有限公司 | 瓷砖表面缺陷的检测方法及装置、存储介质 |
CN116363009A (zh) * | 2023-03-31 | 2023-06-30 | 哈尔滨工业大学 | 基于有监督学习的快速轻量化低照度图像增强方法及系统 |
CN116363009B (zh) * | 2023-03-31 | 2024-03-12 | 哈尔滨工业大学 | 基于有监督学习的快速轻量化低照度图像增强方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112308803B (zh) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112308803B (zh) | 一种基于深度学习的自监督低照度图像增强及去噪方法 | |
Liang et al. | Cameranet: A two-stage framework for effective camera isp learning | |
CN109671023B (zh) | 一种人脸图像超分辨率二次重建方法 | |
CN111402145B (zh) | 一种基于深度学习的自监督低照度图像增强方法 | |
CN109754377B (zh) | 一种多曝光图像融合方法 | |
CN112288658A (zh) | 一种基于多残差联合学习的水下图像增强方法 | |
CN112465727A (zh) | 基于HSV色彩空间和Retinex理论的无正常光照参考的低照度图像增强方法 | |
CN109785252B (zh) | 基于多尺度残差密集网络夜间图像增强方法 | |
CN111105371B (zh) | 一种低对比度红外图像的增强方法 | |
CN111612722B (zh) | 基于简化Unet全卷积神经网络的低照度图像处理方法 | |
CN109829868B (zh) | 一种轻量级深度学习模型图像去雾方法、电子设备及介质 | |
CN111986084A (zh) | 一种基于多任务融合的多相机低光照图像质量增强方法 | |
CN115393227B (zh) | 基于深度学习的微光全彩视频图像自适应增强方法及系统 | |
CN111105359A (zh) | 一种高动态范围图像的色调映射方法 | |
CN110335221A (zh) | 一种基于无监督学习的多曝光图像融合方法 | |
CN114627034A (zh) | 一种图像增强方法、图像增强模型的训练方法及相关设备 | |
Lv et al. | Low-light image enhancement via deep Retinex decomposition and bilateral learning | |
CN116934583A (zh) | 基于深浅特征融合网络的遥感图像超分辨率算法 | |
CN116630198A (zh) | 一种结合自适应伽马校正的多尺度融合水下图像增强方法 | |
CN112070686A (zh) | 一种基于深度学习的逆光图像协同增强方法 | |
CN111798381A (zh) | 图像转换方法、装置、计算机设备和存储介质 | |
CN111161189A (zh) | 一种基于细节弥补网络的单幅图像再增强方法 | |
CN116579940A (zh) | 一种基于卷积神经网络的实时低照度图像增强方法 | |
CN113012079B (zh) | 低亮度车底图像增强方法、装置及存储介质 | |
CN115456912A (zh) | 一种基于多尺度wls滤波融合的色调映射方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Yu Inventor after: Wang Chunhui Inventor after: Xiao-Guang Di Inventor after: Li Qingyan Inventor after: Yan Shiyu Inventor after: Zhang Bin Inventor after: Yang Guohui Inventor after: Cui Tianxiang Inventor before: Zhang Yu Inventor before: Xiao-Guang Di Inventor before: Li Qingyan Inventor before: Yan Shiyu Inventor before: Zhang Bin Inventor before: Yang Guohui Inventor before: Cui Tianxiang Inventor before: Wang Chunhui |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |