CN109785252B - 基于多尺度残差密集网络夜间图像增强方法 - Google Patents

基于多尺度残差密集网络夜间图像增强方法 Download PDF

Info

Publication number
CN109785252B
CN109785252B CN201811589213.7A CN201811589213A CN109785252B CN 109785252 B CN109785252 B CN 109785252B CN 201811589213 A CN201811589213 A CN 201811589213A CN 109785252 B CN109785252 B CN 109785252B
Authority
CN
China
Prior art keywords
data
mrdn
convolution
raw
format
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811589213.7A
Other languages
English (en)
Other versions
CN109785252A (zh
Inventor
钱宇华
王克琪
吴鹏
刘鹏
温超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201811589213.7A priority Critical patent/CN109785252B/zh
Publication of CN109785252A publication Critical patent/CN109785252A/zh
Application granted granted Critical
Publication of CN109785252B publication Critical patent/CN109785252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明涉及计算机视觉和深度学习领域。基于多尺度残差密集网络夜间图像增强方法,从Sony相机的CMOS或者CCD图像感应器捕捉到的光源信号转化为数字信号获得raw格式的原始数据,对采集到的原始数据进行黑电平校正,消除暗电流造成的成像干扰,并将像素值归一化;将经过黑电平校正后的raw格式的数据进行预处理,raw格式数据中,奇数行为RGRG,偶数行为GBGB,将raw格式数据中的R,G,B像素分别取出,将数据格式转化为四通道的格式;将经过预处理后数据输入MRDN模型;将MRDN模型的输出结果经过处理后保存为图像进行输出。本发明可以将在夜间或者极端光照的条件下拍摄的照片,通过本专利算法重建为清晰明亮的照片。

Description

基于多尺度残差密集网络夜间图像增强方法
技术领域
本发明涉及计算机视觉和深度学习领域。
背景技术
伴随着摄影设备拍摄能力的不断提高,人们拍摄的相片、视频的质量都得到了明显的提高。但是,人们在夜间拍照时由于低信噪比与光照强度太低的影响,仍旧会存在很多让人不满意的情况,尤其是使用手机或者较差的设备,在光线极差的环境中拍摄照片时,设备的成像质量时常让我们感到失望。同时,监控设备在夜间经常难以表现出优良的性能,尤其是处于室外、光照环境极差的环境中时。目前大部分的解决方法都是在硬件上的改进,但是这类设备一般都价格比较昂贵并且携带极其不方便。因此,研究夜晚图像增强是十分有意义的,这可以大大降低许多监控设备的成本,提高设备的性能,尤其是提高手机的夜间成像能力。
目前,大部分的夜间图像增强都采用传统的方法,例如使用直方图均衡、帧间融合、retinex等方法。这些方法在许多方面都取得了不错的效果。但是仍然存在不足,例如:对于增强的图像会引入很多的噪点、对图像的还原不够真实、图像细节丢失严重等问题。
随着深度学习快速发展,越来越多的计算机视觉任务都得到很好的解决。但是在低光照下的夜间成像依旧是一个十分难以解决的难题。
发明内容
本发明所要解决的技术问题是:如何解决在光照环境差或极差环境中,增强相机的成像能力,使其可以成像出逼真的图片。
本发明所采用的技术方案是:基于多尺度残差密集网络夜间图像增强方法(Multi-scale Residual Dense Network(MRDN)),按照如下的步骤进行步骤S1,从Sony相机(或其它任意相机,本专利采用的为Sony相机进行数据捕捉)的CMOS或者CCD图像感应器捕捉到的光源信号转化为数字信号获得raw格式的原始数据,对采集到的原始数据进行黑电平校正,消除暗电流造成的成像干扰,并将像素值归一化到[0,1]之间;
步骤S2,将经过黑电平校正后的raw格式的数据进行预处理,raw格式数据中,奇数行为RGRG,偶数行为GBGB,将raw格式数据中的R,G,B像素分别取出,将数据格式转化为四通道的格式;
步骤S3,将经过预处理后数据输入MRDN模型;
步骤S4,将MRDN模型的输出结果经过处理后保存为图像进行输出。
作为一种优选方式:所述MRDN模型包括卷积下采样层、反卷积上采样层、多尺度残差密集卷积块;卷积下采样层使用五层卷积块(包含两层卷积层,具有相同大小的卷积核)和四层池化层,实现对信号特征的提取,降低信号纬度,减小网络计算量;反卷积上采样层使用四层反卷积,实现对降纬度后的数据恢复成原始纬度的信号;多尺度残差密集卷积块通过残差密集卷积网络使数据加上多尺度的信息,使得MRDN模型可以对输入的数据进行更加高效的利用;MRDN模型损失函数
Figure BDA0001919116250000021
本发明的有益效果是:本发明采用基于深度学习方法的MRDN模型(多尺度残差密集网络模型(Multi-scale residual-dense network))深度学习方法,通过对拍摄图像的重建,使得相机的成像更加清晰明亮。可以将在夜间或者极端光照的条件下拍摄的照片,通过本专利算法重建为清晰明亮的照片。夜间成像一直以来都是一项难以解决的问题,由于低信噪比、复杂的图像内容、拍摄场景多样性等问题的影响,使得在夜间拍摄的图像会出现照片不清晰、图像过暗甚至完全看不清的问题。推动夜间成像技术的发展,具有极其重要的意义,不但可以提高监控设备在夜间拍摄质量、提升手机夜间成像能力,同时还能降低拍摄设备的成本。但是目前存在的技术都存在一定的缺陷,本文提出了一种全新的多尺度级联式残差密集神经网络,以便生成更加鲁棒的图像。
附图说明
图1为本发明实施例提供的流程图;
图2为数据预处理示意图;
图3为本发明实施例提供的整体结构图;
图4为本发明实施例提供的卷积下采样层的细节结构图;
图5为本发明实施例提供的多尺度残差密集网络的细节结构图;
图6为本发明实施例提供的残差密集网络的细节结构图。
具体实施方式
如附图1所示,基于多尺度残差密集网络夜间图像增强方法包括以下步骤:
步骤S1,从Sony相机(或其它任意相机,本专利采用的为Sony相机进行数据捕捉)的CMOS或者CCD图像感应器捕捉到的光源信号转化为数字信号获得raw格式的原始数据,对采集到的原始数据进行黑电平校正,消除暗电流造成的成像干扰,并将像素值归一化到[0,1]之间;
步骤S2,将经过黑电平校正后的raw格式的数据进行预处理,raw格式数据中,奇数行为RGRG,偶数行为GBGB,将raw格式数据中的R,G,B像素分别取出,将数据格式转化为四通道的格式;
步骤S3,将经过预处理后数据输入MRDN模型;
黑电平校正包括以下步骤:
暗电流指传感器在没有入射光的情况下,存在一定的信号输出,这是由于半导体的热运动造成的,它的大小和传感器结构及温度有关,因此我们首先需要进行黑电平校正,同时将像素值归一化到[0,1]之间。进一步地,定义输入的低光照图片为Iraw,也就是通过相机采集到的数据,这里对黑电平进行校正的公式如下:
raw=max(Iraw-512)/(16383-512)
进一步地,本专利采用的是Sony相机,不同的相机对数据的编码方式不同,因此对数据预处理和黑电平校正的方式会不同,需根据使用的相机具体操作。同时,黑电平校正已经是比较成熟的技术了,所以本专利不做重复说明。
如附图2所示,步骤S2对raw数据的预处理为:
raw数据的格式为:奇数行为RGRG,偶数行为GBGB,在训练模型时首先将数据进行变换,将raw数据的R,G,B像素分别取出,将数据格式转化为四通道的格式,此时数据的长为原来的1/2,宽为原来的1/2。如图2示例,输入的4×4的raw数据,数据的分布为图2所示,第一行为R(红色)、G(绿色)、R(红色)、G(绿色),第二、三、四行同理(其中RGB分别代表红色,绿色,蓝色),仅仅是数据不同,通道数为1,在进行转换时,首先将第一行与第三行的R全部取出,构成2×2的一个矩阵,矩阵的内容全部为R,这样构成新数据的第一个通道;将第二行与第四行的G数据全部取出,构成2×2的矩阵,构成新数据的第二个通道;将第一行与第三行的B数据全部取出,构成2×2的矩阵,构成新数据的第三个通道;将第一行与第三行的G数据全部取出,构成2×2的矩阵,构成新数据的第四个通道,将这四个通道构成一个2×2×4的新矩阵输入进模型中,也就是Iraw数据。
如附图3所示,本专利的MRDN模型为:
MRDN模型,主要包括三部分,卷积下采样层(Convolution sampling net(CSNet)),反卷积上采样层(Deconvolution up-sampling net(DUPNet)),多尺度残差密集卷积块(Multiscale residual dense convolution block(MRDB))。
进一步地,如图4所示,本专利的CSNet网络,网络的第一层接受输入的原始数据Iraw,随后是一个池化层进行降维操作,作用是减少网络的计算量,紧随其后的卷积块和池化层的操作与作用和之前的相同。在这里,CSNet网络使用的卷积层的大小均为3×3的,步长为1。
进一步地,本专利采用的DUPNet网络的作用是将经过池化层降维后的数据还原为原来的大小,采用的方法是反卷积,一共有四层DUPNet层,每一层于之前的池化层相对应,例如,原图的大小为1024×1024大小,经过一层池化层后,降为512×512,在经过一层后大小为256×256,以此类推,经过四层后的图像大小为64×64,所以在输出阶段,需要将图像大小恢复为1024×1024,如图示3所示,经过一次DUPNet网络后,图像的大小扩大一倍,例如,输入为64×64,输出为128×128。
进一步地,如图5所示,本专利定义的多尺度残差密集卷积块((Multiscaleresidual dense convolution blocks(MRDB))的结构为,MRDB包含三个残差密集卷积网络(residual dense convolution network(RDN)),RDN1的结构为,输入为前一层DUPNet的输出,在之后为一个卷积层,然后为多个残差密集卷积块(residual dense convolutionblocks(RDB))的结构如图6所示,在RDB的最后,对所有的RDB层进行concat操作。本专利中,RDN1使用的均为1×1的卷积,RDN2和RDN3采用的为3×3和5×5的结构,除了卷积的大小不同外,其余结构完全一致。
进一步地,如图6所示,残差密集卷积块(residual dense convolution blocks(RDB))和传统卷积网络的不同在于,传统的卷积网络在每一个卷积层之后直接连接下一个卷积层,这一层获得的特征不能够实现跨层传递,这样难以对卷积特征充分的利用,而残差密集卷积块这样的结构,将任意的卷积网络都与后面的卷积网络相连接,这样可以使卷积网络获得的特征进行充分利用,大大提升网络性能。
进一步地,定义输入的低光照图片为Iraw,增强后的图片为IG,增强后的图片即为模型最后的输出图片。第一个卷积层直接从raw数据中提取特征,这里定义HCSNet(·)定义为卷积下采样操作,CK为HCSNet(·)操作第k层操作的结果,如式2所示,C1为HCSNet(·)操作第一层(模型的第一个卷积层)得到的结果。
C1=HCSNet(Iraw) (1)
Ck=HCSNet(Ck-1) (2)
进一步地,反卷积上采样的过程定义为HDUPNet(·),HDUPNet(·)第一层的操作如公式3,Cend为HCSNet(·)最后一层的输出。第d层HDUPNet(·)的输出结果为Dd,D1为HDUPNet(·)第一层操作得到的结果。Gd-1代表HMRDB(·)第d-1层的输出,HMRDB(·)为多尺度残差密集块操作,计算过程如公式5所示。
D2=HDUPNet(Cend) (3)
Dd=HDUPNet(Gd-1) (4)
Gd=HMRDB(Dd-1) (5)
进一步地,在整个模型的计算过程中,一共有d层HDUPNet(·)和HMRDB(·)操作,整个网络的输出可以定义为公式6。
IG=HMRDB,d(HDUPNet,d(HMRDB,d-1(...(HCSNet,1(Iraw))))) (6)
进一步地,在损失函数上,本专利使用L1损失,目标为求出使损失最小的参数,如下所示:
Figure BDA0001919116250000041
这里θ为模型需要通过学习更新的参数,本专利的目标为,通过更新参数,使得L1损失最小,θ*表示更新后得到的最有参数。
为了验证本发明的效果,进行了多方位实验:
实验平台:GPU:NVIDIA DGX-1,8个Tesla P100GPU加速器,每颗GPU 16GB内存;
编程软件:Pycharm;
编程语言:Python3.5。

Claims (1)

1.基于多尺度残差密集网络夜间图像增强方法,其特征在于:按照如下的步骤进行步骤S1,从Sony相机的CMOS或者CCD图像感应器捕捉到的光源信号转化为数字信号获得raw格式的原始数据,对采集到的原始数据进行黑电平校正,消除暗电流造成的成像干扰,并将像素值归一化到[0,1]之间;
步骤S2,将经过黑电平校正后的raw格式的数据进行预处理,raw格式数据中,奇数行为RGRG,偶数行为GBGB,将raw格式数据中的R,G,B像素分别取出,将数据格式转化为四通道的格式;
步骤S3,将经过预处理后数据输入MRDN模型;所述MRDN模型包括卷积下采样层、反卷积上采样层、多尺度残差密集卷积块;卷积下采样层使用五层卷积块(包含两层卷积层,具有相同大小的卷积核)和四层池化层,实现对信号特征的提取,降低信号纬度,减小网络计算量;反卷积上采样层使用四个反卷积层,实现对降纬度后的数据恢复;多尺度残差密集卷积块通过使用多尺度卷积使网络处理数据时加上多尺度的信息,使得MRDN模型可以对输入的数据进行更加高效的利用;MRDN模型损失函数
Figure FDA0003985343260000011
其中IG定义为MRDN的输出,y定义为样本标签,n定义为训练集总共的样本数量,优化的目标是使得L1的值越低越好;
步骤S4,将MRDN模型的输出结果经过处理后保存为图像进行输出。
CN201811589213.7A 2018-12-25 2018-12-25 基于多尺度残差密集网络夜间图像增强方法 Active CN109785252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811589213.7A CN109785252B (zh) 2018-12-25 2018-12-25 基于多尺度残差密集网络夜间图像增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811589213.7A CN109785252B (zh) 2018-12-25 2018-12-25 基于多尺度残差密集网络夜间图像增强方法

Publications (2)

Publication Number Publication Date
CN109785252A CN109785252A (zh) 2019-05-21
CN109785252B true CN109785252B (zh) 2023-03-24

Family

ID=66497652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811589213.7A Active CN109785252B (zh) 2018-12-25 2018-12-25 基于多尺度残差密集网络夜间图像增强方法

Country Status (1)

Country Link
CN (1) CN109785252B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111028163B (zh) * 2019-11-28 2024-02-27 湖北工业大学 一种基于卷积神经网络的联合图像去噪与弱光增强方法
CN111144243B (zh) * 2019-12-13 2022-07-08 江苏艾佳家居用品有限公司 基于对抗学习的户型图识别方法和装置
CN111311507B (zh) * 2020-01-21 2022-09-23 山西大学 基于多粒度合作网络的极低光成像方法
CN111368909B (zh) * 2020-03-03 2021-05-11 温州大学 一种基于卷积神经网络深度特征的车标识别方法
CN112581401B (zh) * 2020-12-25 2023-04-28 英特灵达信息技术(深圳)有限公司 一种raw图片的获取方法、装置及电子设备
CN113538287B (zh) * 2021-07-29 2024-03-29 广州安思创信息技术有限公司 视频增强网络训练方法、视频增强方法及相关装置
CN113724162B (zh) * 2021-08-31 2023-09-29 南京邮电大学 一种零补光实时全彩夜视成像方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162799A (zh) * 1996-04-10 1997-10-22 三星电子株式会社 利用平均值匹配直方图均衡的图像增强方法及其电路
CN103839245A (zh) * 2014-02-28 2014-06-04 北京工业大学 基于统计规律的Retinex夜间彩色图像增强方法
CN106709875A (zh) * 2016-12-30 2017-05-24 北京工业大学 一种基于联合深度网络的压缩低分辨率图像复原方法
CN107798667A (zh) * 2017-11-23 2018-03-13 中电科新型智慧城市研究院有限公司 基于残差学习的人脸增强方法
CN108038832A (zh) * 2017-12-25 2018-05-15 中国科学院深圳先进技术研究院 一种水下图像增强方法及系统
CN108447036A (zh) * 2018-03-23 2018-08-24 北京大学 一种基于卷积神经网络的低光照图像增强方法
CN108986050A (zh) * 2018-07-20 2018-12-11 北京航空航天大学 一种基于多分支卷积神经网络的图像和视频增强方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8280185B2 (en) * 2008-06-27 2012-10-02 Microsoft Corporation Image denoising techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162799A (zh) * 1996-04-10 1997-10-22 三星电子株式会社 利用平均值匹配直方图均衡的图像增强方法及其电路
CN103839245A (zh) * 2014-02-28 2014-06-04 北京工业大学 基于统计规律的Retinex夜间彩色图像增强方法
CN106709875A (zh) * 2016-12-30 2017-05-24 北京工业大学 一种基于联合深度网络的压缩低分辨率图像复原方法
CN107798667A (zh) * 2017-11-23 2018-03-13 中电科新型智慧城市研究院有限公司 基于残差学习的人脸增强方法
CN108038832A (zh) * 2017-12-25 2018-05-15 中国科学院深圳先进技术研究院 一种水下图像增强方法及系统
CN108447036A (zh) * 2018-03-23 2018-08-24 北京大学 一种基于卷积神经网络的低光照图像增强方法
CN108986050A (zh) * 2018-07-20 2018-12-11 北京航空航天大学 一种基于多分支卷积神经网络的图像和视频增强方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于残差神经网络的图像超分辨率改进算法;王一宁等;《计算机应用》;20180110(第01期);全文 *
基于深度学习的图像超分辨率复原研究进展;孙旭等;《自动化学报》;20170515(第05期);全文 *
超低照度下微光图像的深度卷积自编码网络复原;刘超等;《光学精密工程》;20180415(第04期);全文 *

Also Published As

Publication number Publication date
CN109785252A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109785252B (zh) 基于多尺度残差密集网络夜间图像增强方法
CN110210608B (zh) 基于注意力机制和多层次特征融合的低照度图像增强方法
RU2706891C1 (ru) Способ формирования общей функции потерь для обучения сверточной нейронной сети для преобразования изображения в изображение с прорисованными деталями и система для преобразования изображения в изображение с прорисованными деталями
CN112419151A (zh) 图像退化处理方法、装置、存储介质及电子设备
CN112308803B (zh) 一种基于深度学习的自监督低照度图像增强及去噪方法
CN102982520B (zh) 一种基于轮廓先验的鲁棒性人脸超分辨率处理方法
CN111064904A (zh) 一种暗光图像增强方法
CN112348747A (zh) 图像增强方法、装置及存储介质
CN112465727A (zh) 基于HSV色彩空间和Retinex理论的无正常光照参考的低照度图像增强方法
CN111986084A (zh) 一种基于多任务融合的多相机低光照图像质量增强方法
CN111598789B (zh) 一种基于深度学习的稀疏颜色传感器图像重建方法
CN113962884A (zh) Hdr视频获取方法、装置、电子设备以及存储介质
CN113962859A (zh) 一种全景图生成方法、装置、设备及介质
CN112308785B (zh) 图像去噪方法、存储介质及终端设备
CN114596233A (zh) 基于注意引导和多尺度特征融合的低照度图像增强方法
CN114494050A (zh) 一种基于事件相机的自监督视频去模糊和图像插帧方法
CN116823662A (zh) 一种融合原生特征的图像去噪去模糊方法
CN115619666A (zh) 图像处理方法、图像处理装置、存储介质与电子设备
CN116208812A (zh) 一种基于立体事件和强度相机的视频插帧方法及系统
CN115841523A (zh) 一种基于Raw域的双支路HDR视频重建算法
Silva et al. A deep learning approach to mobile camera image signal processing
CN114862698A (zh) 一种基于通道引导的真实过曝光图像校正方法与装置
CN113724162A (zh) 一种零补光实时全彩夜视成像方法及系统
CN115311149A (zh) 图像去噪方法、模型、计算机可读存储介质及终端设备
Kim et al. Efficient-HDRTV: Efficient SDR to HDR Conversion for HDR TV

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant