CN112295616A - 一种微液滴混合强化微流控装置 - Google Patents

一种微液滴混合强化微流控装置 Download PDF

Info

Publication number
CN112295616A
CN112295616A CN202010952271.2A CN202010952271A CN112295616A CN 112295616 A CN112295616 A CN 112295616A CN 202010952271 A CN202010952271 A CN 202010952271A CN 112295616 A CN112295616 A CN 112295616A
Authority
CN
China
Prior art keywords
micro
channel
microchannel
fractal
electroosmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010952271.2A
Other languages
English (en)
Other versions
CN112295616B (zh
Inventor
陈永平
李鹏宇
邓梓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010952271.2A priority Critical patent/CN112295616B/zh
Publication of CN112295616A publication Critical patent/CN112295616A/zh
Application granted granted Critical
Publication of CN112295616B publication Critical patent/CN112295616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开一种微液滴混合强化微流控装置,包括微通道单元和电渗单元,微通道单元由液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道及出液口组成,所述液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道和出液口依次连接;所述电渗单元设置在所述电渗微通道上。本发明综合分形结构、电渗技术及液滴形变,设计了一种具有分形结构特征的加强液滴内部液体扰动的混合装置,能显著加强液滴内部液体的混合,提高混合效率,减少混合时间,为相关生物化学技术的快速进行提供了支持。

Description

一种微液滴混合强化微流控装置
技术领域
本发明涉及一种混合强化微流控装置,具体涉及的是一种为强化微液滴内多组分混合而设计的具有分形电渗结构特征的微流控装置。
背景技术
近年来,液滴微流控技术在化学、生物和医学等领域促进了微系统的开发,已成为了微尺度液滴操控的首选方法。基于微流控技术制备的微液滴体积小,操纵性强,被广泛用作微反应器,不仅可有效减少药品消耗,还能加速反应,提高实验精度。
微液滴内多组分充分混合是微反应器功能高效实现的必要要求。现有微液滴混合强化技术分为主动式和被动式,主动式指利用电动力、磁动力、声波及压力等外部作用对流体进行主动混合,虽然消耗一定能量,但混合效果可调控,比如电渗微混合装置和压电驱动集成式微混合装置,分别产生电渗作用和往复式持续振动强化混合,被动式是指主要通过各种复杂形状的微通道对流体流动产生干扰,破坏流动边界层,增加流体间接触面积,例如含有多种肋块的微通道混合装置和仿叶脉结构微混合装置,均加剧扰动提高混合效果。
以上方案能强化大部分场景下的多相流体混合,但是,均未涉及液滴内部液体混合,无法满足微反应器场景下的液滴充分混合要求,因此,迫切需要寻求一种新型高效的强化液滴内部混合的方案和技术。
电渗技术可以通过产生周期性变化电场,促进液体中的正负带电粒子发生周期性的运动,粒子运动产生的涡流恰好可以强化液体混合;液滴分裂时,颈部断裂形成的两个尾部在界面张力的作用下会剧烈收缩,促使液滴内部形成涡流;液滴合并时,两个液滴相互挤压,接触界面附近液体压力增大,界面张力作用相对急剧减弱,接触面迅速破裂,两液滴开始合并,造成液滴内部液体混乱流动,增强了混合效果。此外,树状分叉网络广泛存在于自然界,如植物叶片脉络、人体肺部结构等,因包含大量分叉,液滴可进行多次分裂与合并,而且,树状分叉网络符合Murry定律,所需的驱动能耗小,因此具有良好的输运特性。
结合液滴分裂、合并特性以及受树状分叉网络的启发,本发明设计了一种具有分形电渗结构特征的微流控装置。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,而提供了一种具有分形电渗特征的微流控装置,该装置可在低能耗的条件下增强液滴内部液体扰动,强化液滴内部混合。
技术方案
针对上述的技术问题,本发明提供的技术方案是:
一种微液滴混合强化微流控装置,包括微通道单元和电渗单元,其特征在于:微通道单元由液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道及出液口组成,所述液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道和出液口依次连接;所述电渗单元设置在所述电渗微通道上。
所述电渗单元由电极对、导线和交变电源组成;所述电极对均匀布置于所述电渗微通道两侧,与所述电渗微通道壁面保持一定间距。
所述的导线连接所述的电极对和所述的交变电源,所述的交变电源位于所述的微通道单元底部。
所述的电极对不少于4对。
所述液滴生成微通道位于微液滴混合强化微流控装置流体流动的前端;所述出液口位于微液滴混合强化微流控装置流体流动的末端。
所述液滴生成微通道包括内相入液通道和外相入液通道;所述的内相入液通道个数大于等于2,并列排布;所述的外相入液通道个数为2,相对排布在所述的内相入液通道的两侧。
所述分形分裂微通道为Y型分叉结构通道,Y型分叉结构通道的分叉级数不少于3级,分叉角度为45°-90°,上一级与下一级微通道的宽度比为21/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为1-2;所述的分形合并微通道也为Y型分叉结构通道,所述的分形合并微通道的合并级数与所述的分形分裂微通道分叉级数相等,合并角度为45°-90°,上一级与下一级微通道的宽度比为2-1/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为0.5-1。
入液通道、所述分形分裂微通道、所述电渗微通道、所述分形合并微通道及所述出液口材质选用PDMS+玻璃、PDMS或PMMA。
电极对由镍,铅,铂等金属材料制成,具有足够的电导率、强度和硬度。
本发明综合分形结构、电渗技术及液滴形变的特点,设计了一种具有分形结构特征的混合强化装置,可在低能耗的情况下高效稳定的加强液滴内部液体扰动,提高混合度。
有益效果
本发明为微液滴混合强化微流控装置,其有益效果在于:
1.分形结构微通道的树状分叉网络符合Murry定律,所需的驱动能耗小,具有良好的输运特性;
2.分形分裂结构和分形合并结构使液滴多次发生分裂和合并,液滴内部不断产生涡流和混沌流,强化混合;
3.电渗单元产生交错变化的电场,可在不影响液体物理化学性质的情况下使液滴内部液体发生强烈扰动,产生旋向相反的涡流,促进混合;
本装置能显著加强液滴内部液体的混合,提高混合效率,减少混合时间,为相关生物化学技术的快速进行提供了支持。
附图说明:
图1为本发明的液滴内部液体混合强化装置的立体结构示意图。
图2为本发明的混合强化装置的微通道芯片俯视图。
图3为本发明的混合强化装置的液滴分裂促进液滴内部液体混合示意图。
图4为本发明的混合强化装置的液滴合并促进液滴内部液体混合示意图。
图5为本发明的混合强化装置的电渗促进液滴内部液体混合示意图。
图6为本发明的混合强化装置的电极排布图。
图中,1.内相入液通道;2.外相入液通道;3.分形分裂微通道;4.电渗微通道;5.分形合并微通道;6.出液口;7.电极对;8.交变电源;9.液滴;10.涡流;11.混沌流。
具体实施方式
下面结合附图进行更进一步的详细说明:
图1所示为液滴内部混合强化装置的立体结构示意图,图2所示为本装置的微通道芯片俯视图。此装置由内相入液通道1、外相入液通道2、分形分裂微通道3、电渗微通道4、分形合并微通道5和出液口6、电极对7和交变电源8构成。内相入液通道1的个数大于等于2,并列排布,外相入液通道2个数为2,相对排布在内相液体通道1的两侧;分形分裂微通道3的Y型分叉结构的较宽微通道为上一级,较窄微通道为下一级,分叉级数不少于3级,分叉角度为45°-90°,上一级与下一级微通道的宽度比为21/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为1-2;电渗微通道4连接分形分裂微通道3和所述的分形合并微通道5;分形合并微通道5的Y型分叉结构的较窄微通道为上一级,较宽微通道为下一级,合并级数与所述的分形分裂微通道3分叉级数相等,合并角度为45°-90°,上一级与下一级微通道的宽度比为2-1/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为0.5-1;电极对7均匀布置于电渗微通道4的竖直壁面两侧,导线连接电极对7和交变电源8,交变电源8位于装置底部。
图3所示为液滴分裂促进液滴内部液体混合示意图。分形分裂微通道3的分叉处,液滴9在后部压力的作用下进入向前移动,头部分开成两部分,分别进入下一级通道,液滴9整体逐渐被分成两部分,直至尾部完全分裂。液滴9尾部分裂之后,在界面张力的张紧作用下,呈锥形的尾部会快速趋于圆形,在粘性力的拉伸作用下,液滴9内部靠近尾部相界面的液体被带动,而液滴9内部远离尾部相界面的液体没有受相界面变化的影响,因此,在液滴9内部靠近尾部的地方形成了涡流10,造成扰动,强化了液滴9内部多种液体的混合。
图4为液滴合并促进液滴内部液体混合示意图。分形合并微通道4的合并处,液滴9在后部压力的作用下进入向前移动直至两个液滴9头部相遇,由于相互挤压,接触界面附近液体压力增大,界面张力作用相对急剧减弱,接触面迅速破裂,两液滴开始合并,液滴9形态在合并的过程中不断变化,造成液滴9内部液体混乱流动,形成混沌流11,增强了混合效果。
图5为电渗促进液滴内部液体混合示意图。电极对均匀布置在电渗微通道4的两侧,交变电源8输出周期性变化的电压,相邻的两电极对7的极性相反,产生方向相反的电场。液滴9流经电渗微通道4的时候受电场力作用,内部液体发生垂直于液滴9整体移动方向的运动,产生涡流10,且液滴9内相邻涡流10的旋转方向相反,大大促进液滴9内部液体的混合。
图6为本装置的电极排布图。电极对7间隔均匀的排列在电渗微通道4的竖直壁面两侧,与电渗微通道4的两竖直壁面保持一定间距。装置工作时,相邻电极对7产生方向相反的电场。

Claims (8)

1.一种微液滴混合强化微流控装置,包括微通道单元和电渗单元,其特征在于:微通道单元由液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道及出液口组成,所述液滴生成微通道、分形分裂微通道、电渗微通道、分形合并微通道和出液口依次连接;所述电渗单元设置在所述电渗微通道上。
2.根据权利要求1所述的微液滴混合强化微流控装置,其特征在于:所述电渗单元由电极对、导线和交变电源组成;所述电极对均匀布置于所述电渗微通道两侧,与所述电渗微通道壁面保持一定间距。
3.根据权利要求2所述的微液滴混合强化微流控装置,其特征在于:所述的导线连接所述的电极对和所述的交变电源,所述的交变电源位于所述的微通道单元底部。
4.根据权利要求2所述的微液滴混合强化微流控装置,其特征在于:所述的电极对不少于4对。
5.根据权利要求1所述的微液滴混合强化微流控装置,其特征在于:所述液滴生成微通道位于微液滴混合强化微流控装置流体流动的前端;所述出液口位于微液滴混合强化微流控装置流体流动的末端。
6.根据权利要求5所述的微液滴混合强化微流控装置,其特征在于:所述液滴生成微通道包括内相入液通道和外相入液通道;所述的内相入液通道个数大于等于2,并列排布;所述的外相入液通道个数为2,相对排布在所述的内相入液通道的两侧。
7.根据权利要求1所述的一种微液滴混合强化微流控装置,其特征在于:所述分形分裂微通道为Y型分叉结构通道,Y型分叉结构通道的分叉级数不少于3级,分叉角度为45°-90°,上一级与下一级微通道的宽度比为21/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为1-2;所述的分形合并微通道也为Y型分叉结构通道,所述的分形合并微通道的合并级数与所述的分形分裂微通道分叉级数相等,合并角度为45°-90°,上一级与下一级微通道的宽度比为2-1/m ,其中,为宽度系数,取大于等于2且小于等于3,上一级与下一级微通道的长度比为0.5-1。
8.根据权利要求1所述的一种微液滴混合强化微流控装置,其特征在于:入液通道、所述分形分裂微通道、所述电渗微通道、所述分形合并微通道及所述出液口材质选用PDMS+玻璃、PDMS或PMMA。
CN202010952271.2A 2020-09-11 2020-09-11 一种微液滴混合强化微流控装置 Active CN112295616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010952271.2A CN112295616B (zh) 2020-09-11 2020-09-11 一种微液滴混合强化微流控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010952271.2A CN112295616B (zh) 2020-09-11 2020-09-11 一种微液滴混合强化微流控装置

Publications (2)

Publication Number Publication Date
CN112295616A true CN112295616A (zh) 2021-02-02
CN112295616B CN112295616B (zh) 2022-03-18

Family

ID=74483262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010952271.2A Active CN112295616B (zh) 2020-09-11 2020-09-11 一种微液滴混合强化微流控装置

Country Status (1)

Country Link
CN (1) CN112295616B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522381A (zh) * 2021-05-26 2021-10-22 西北工业大学太仓长三角研究院 基于感应电荷电渗的不同浓度液滴产生芯片

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917148A1 (de) * 1999-04-16 2000-10-26 Inst Mikrotechnik Mainz Gmbh Verfahren und Mikrovermischer zur Herstellung einer Dispersion
CN1697925A (zh) * 2002-08-15 2005-11-16 麦莫斯弗罗有限公司 微液体处理装置及其使用方法
CN1898016A (zh) * 2003-11-21 2007-01-17 株式会社荏原制作所 采用液体的微芯片装置
CN101960577A (zh) * 2008-01-02 2011-01-26 得克萨斯州大学系统董事会 微器件制造
EP2517025A2 (en) * 2009-12-23 2012-10-31 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
WO2012156744A2 (en) * 2011-05-17 2012-11-22 Cambridge Enterprise Limited Gel beads in microfluidic droplets
US20160184823A1 (en) * 2014-12-31 2016-06-30 Abbott Laboratories Digital microfluidic dilution apparatus, systems, and related methods
US20160341637A1 (en) * 2005-05-02 2016-11-24 Massachusetts Institute Of Technology Microfluidic Bubble Logic Devices
CN107051304A (zh) * 2017-03-29 2017-08-18 海南大学 一种非对称结构与电极的主动式电渗微混合器
CN109985543A (zh) * 2019-04-18 2019-07-09 中国石油大学(华东) 一种纺锤形被动式微混合器
CN209451370U (zh) * 2018-12-21 2019-10-01 昆明理工大学 一种偏场加热的交流电热微混合装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917148A1 (de) * 1999-04-16 2000-10-26 Inst Mikrotechnik Mainz Gmbh Verfahren und Mikrovermischer zur Herstellung einer Dispersion
CN1697925A (zh) * 2002-08-15 2005-11-16 麦莫斯弗罗有限公司 微液体处理装置及其使用方法
CN1898016A (zh) * 2003-11-21 2007-01-17 株式会社荏原制作所 采用液体的微芯片装置
US20160341637A1 (en) * 2005-05-02 2016-11-24 Massachusetts Institute Of Technology Microfluidic Bubble Logic Devices
CN101960577A (zh) * 2008-01-02 2011-01-26 得克萨斯州大学系统董事会 微器件制造
EP2517025A2 (en) * 2009-12-23 2012-10-31 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
WO2012156744A2 (en) * 2011-05-17 2012-11-22 Cambridge Enterprise Limited Gel beads in microfluidic droplets
US20160184823A1 (en) * 2014-12-31 2016-06-30 Abbott Laboratories Digital microfluidic dilution apparatus, systems, and related methods
CN107051304A (zh) * 2017-03-29 2017-08-18 海南大学 一种非对称结构与电极的主动式电渗微混合器
CN209451370U (zh) * 2018-12-21 2019-10-01 昆明理工大学 一种偏场加热的交流电热微混合装置
CN109985543A (zh) * 2019-04-18 2019-07-09 中国石油大学(华东) 一种纺锤形被动式微混合器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WENJIE LAN等: "《Hydrodynamics and Mass Transfer in a Countercurrent Multistage Microextraction System》", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 *
邓梓龙等: "《液滴合并动力学行为研究》", 《工程热物理学报》 *
陈娟: "《分形树状微通道内液滴破裂特性研究》", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113522381A (zh) * 2021-05-26 2021-10-22 西北工业大学太仓长三角研究院 基于感应电荷电渗的不同浓度液滴产生芯片

Also Published As

Publication number Publication date
CN112295616B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Sasaki et al. AC electroosmotic micromixer for chemical processing in a microchannel
Capretto et al. Micromixing within microfluidic devices
US8697008B2 (en) Droplet generator
Rashidi et al. A review on the application, simulation, and experiment of the electrokinetic mixers
Berthier et al. Microfluidics for biotechnology
Lee et al. Microfluidic mixing: a review
Jiu-Sheng et al. Droplet microfluidic technology: Mirodroplets formation and manipulation
Li et al. A review of microfluidic-based mixing methods
Gambhire et al. A review on different micromixers and its micromixing within microchannel
CN112295616B (zh) 一种微液滴混合强化微流控装置
CN108525715B (zh) 微流道结构、微流控芯片和用于液滴定量包裹微球的方法
CN101757864B (zh) 一种气泡摆动式微混合系统
Green et al. A review of passive and active mixing systems in microfluidic devices
CN201596477U (zh) 一种气泡摆动式微混合系统
Majhi et al. Electroosmotic mixing of non-Newtonian fluid in an optimized geometry connected with a modulated microchamber
Lee et al. Numerical study of droplet breakup and merging in a microfluidic channel
Gong et al. Numerical investigation of electroosmotic mixing in a contraction–expansion microchannel
US9221023B2 (en) Liquid mixing apparatus
CN103638837A (zh) 一种基于合成射流的压电微混合器
CN208553992U (zh) 一种二维被动式微混合器
TW200914831A (en) A multifunctional unsteady-flow microfluidic device for pumping, mixing, and particle separation
Xue et al. Multidirectional Vortex Micromixer Utilizing a Curved Channel with Variable Cross-Sectional Circular Arc Mixing Chambers
Ghahfarokhi et al. Mixing enhancement in electroosmotic micromixers
Adam et al. Design of 3D micromixer for bio-synthesis using COMSOL multiphysics software package
Chen Recent patents on micromixing technology and micromixers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant