CN112285099A - 可视化水凝胶传感器及其制备方法与应用 - Google Patents

可视化水凝胶传感器及其制备方法与应用 Download PDF

Info

Publication number
CN112285099A
CN112285099A CN202011009483.3A CN202011009483A CN112285099A CN 112285099 A CN112285099 A CN 112285099A CN 202011009483 A CN202011009483 A CN 202011009483A CN 112285099 A CN112285099 A CN 112285099A
Authority
CN
China
Prior art keywords
hydrogel
visual
hydrogen peroxide
sensor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011009483.3A
Other languages
English (en)
Inventor
郭隆华
寿雯
王悦靓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN202011009483.3A priority Critical patent/CN112285099A/zh
Publication of CN112285099A publication Critical patent/CN112285099A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本申请公开了可视化水凝胶传感器,包括:具有横截面均匀延伸的容置空间的透明容器;填充于所述容置空间内的水凝胶;均匀分散于所述水凝胶中的亚铁离子和金属纳米粒子。其制备方法包括以下步骤:提供水凝胶溶液,加入金属纳米粒子和亚铁离子,混合均匀,注入所述透明容器中,静置、冷却直至水凝胶溶液凝固形成水凝胶。本申请提供的可视化水凝胶传感器的制备方法简单,反应灵敏,能够精确定量地分析样品中的双氧水含量。

Description

可视化水凝胶传感器及其制备方法与应用
技术领域
本申请涉及传感器技术领域,特别是涉及可视化水凝胶传感器及其制备方法与应用。
背景技术
可视化传感器是一种以光学响应信号为基础的传感器。传统的可视化传感器为比色传感器,主要通过肉眼比较反应液颜色深浅和种类的变化。金纳米材料由于具有独特的光学性质,被广泛用于可视化传感器的构建。当纳米粒子之间的距离或外貌改变时,其局域表面等离子共振吸收峰会产生相应的变化,引起溶液颜色的改变,但是,相同目标在不同的彩色背景上引起的色彩感觉明显不同,其检测结果的准确性容易受到用户自身的影响(特别是对于色盲或色弱的个体)。
过氧化氢,俗称双氧水,是一种强氧化物,被广泛应用于纺织、造纸、化工、电子、环境、食品等领域,但是,高浓度的过氧化氢环境、残留有过氧化强的食品和产品都会严重损害人体健康。检测过氧化氢的传统方法主要有光谱法、色谱法、化学发光法等,存在检测时间长,检测过程繁琐,需要仪器设备,方便性差等问题;而利用可视化传感器,基于反应颜色的变化,只能对样品中的过氧化氢进行半定量分析,误差较大。
发明内容
本申请的目的在于提供一种简易的、精确的可视化水凝胶传感器,基于水凝胶的颜色变化长度,能够精确定量地分析样品中的双氧水。
本申请提供的可视化水凝胶传感器,包括:
具有横截面均匀延伸的容置空间的透明容器;
填充于所述容置空间内的水凝胶;
均匀分散于所述水凝胶中的亚铁离子和金属纳米粒子。
所述水凝胶作为反应体系的载体或基底,被填充于竖直的透明容器中,以水凝胶中的亚铁离子为催化剂,利用双氧水的氧化性对金属纳米粒子进行刻蚀而显色,由于双氧水在水凝胶中的纵向扩散,不断地与水凝胶中的金属纳米粒子发生反应,水凝胶的颜色自上而下发生变化;待测分子的浓度越大,扩散距离越长,水凝胶中的颜色变化长度越大。
可选的,所述亚铁离子在水凝胶中的浓度0.008~8mol/L,更进一步为0.045-1.5mol/L,所述金属纳米离子在水凝胶中的浓度1×10-10~2×10-9mol/L,更进一步为5×10-10mol/L。
可选的,所述透明容器为玻璃试管。
透明容器为水凝胶提供了纵向分布的支撑空间,选用的玻璃试管有很好的透光性,能够充分显示颜色的变化。可选的,玻璃试管为聚甲基丙烯酸甲酯(PMMA)材料的有机玻璃试管。
所述水凝胶的强度越大,水凝胶的支撑性能越好,但强度过大,不利于亚铁离子和水凝胶在水凝胶中的分散,而且水凝胶容易开裂,影响待测分子的扩散路径,降低检测的准确性。可选的,所述水凝胶的强度为1200g/cm2
可选的,所述金属纳米离子包括金纳米粒子、银纳米粒子或金银复合纳米粒子。
优选地,金纳米粒子选自特征峰大于750nm的纳米金锥或纳米金棒。
优选地,银纳米粒子选自纳米银立方。
优选地,金银复合纳米粒子选自银包金纳米双锥或银包金纳米棒。
由于纳米金双锥或纳米金棒的表面等离子体共振波长可随长宽比变化,从可见(550nm)到近红外(1550nm)连续可调,因此肉眼能够直接分辨鲜艳的色彩,大幅提高检测分析的灵敏度。
本申请还提供了所述可视化水凝胶传感器的制备方法,包括以下步骤:
提供水凝胶溶液,加入金属纳米粒子和亚铁离子,混合均匀,注入所述透明容器中,静置、冷却直至水凝胶溶液凝固形成水凝胶。
可选的,所述水凝胶的分散质为琼脂糖、海藻酸钠、明胶、或透明质酸。所述分散质具有很好的机械稳定性和灵活性,能够作为反应载体,被填充于玻璃试管内,形成纵向扩散路径,当反应颜色发生变化时,能够通过直接观察颜色纵向迁移长度定量分析待测物的浓度。
本申请还公开了可视化水凝胶传感器定量检测样品中双氧水含量的用途。
可选的,所述的用途,包括以下步骤:
(1)构建描述双氧水的浓度与水凝胶颜色变化长度之间关系的标准曲线;
(2)在所述水凝胶传感器中加入样品;
(3)读取水凝胶的颜色变化长度;
(4)根据所述标准曲线的线性方程计算样品中双氧水的含量。
双氧水是一种强氧化剂,在亚铁离子的催化下,能够刻蚀所述水凝胶传感器中的金属纳米离子;双氧水的浓度越大,其在水凝胶中的扩散越强,不断地与自上而下分布的金属纳米粒子反应,水凝胶的颜色变化沿纵向发生迁移。构建双氧水的浓度与颜色变化长度的标准曲线构建,包括以下步骤:
配制不同浓度的双氧水标准溶液,加入到所述水凝胶传感器,肉眼读取或者用手机软件测量试管刻度上水凝胶的颜色变化;以双氧水浓度为横坐标,水凝胶的颜色变化长度为纵坐标,线性拟合得到线性方程。
可选的,所述样品为隐形眼镜消毒水和染发剂。
样品本身含有或生产过程中残留有双氧水,加入样品后,自上而下地观察水凝胶的颜色分布:由红褐色变为蓝色,最后变为粉红色或者黄色,呈现一条多彩的凝胶带。
本申请至少具有以下技术效果之一:
可视化水凝胶传感器的制备方法简单,易于携带,能够快速检测待测样品,无需昂贵精密的实验仪器辅助;
以颜色变化长度为定量依据,能够有效地减弱彩色背景的干扰,精确定量地分析样品中的双氧水含量。
附图说明
图1为本发明检测样品中双氧水的流程示意图;
图2为本发明一实施例金纳米双锥粒子的表征图;
图3为本发明一实施例分散于水凝胶中的金纳米双锥粒子的表征图,其中(a)为扫描电子显微镜图,(b)为暗场显微镜图;
图4为双氧水标准溶液的浓度与水凝胶的颜色变化长度的关系图,其中(a)为微摩尔级双氧水与水凝胶的颜色变化长度的关系图,(b)毫摩尔级双氧水与水凝胶的颜色变化长度的关系图。
具体实施方式
下面结合具体实施方式对本申请所述的技术方案做进一步的说明,但本申请不仅限于此。
本申请主要是通过传质过程,使双氧水分子进入凝胶内部,被亚铁离子催化分解产生具有强氧化性的氧自由基氧化刻蚀金纳米粒子,表现出凝胶颜色分布的变化长度与待测物浓度的线性关系。
实施例1可视化水凝胶传感器的制备:
(1)参考Luis M.Liz-Marzán教授课题组在2017发表在JACS上的文章进行合成金纳米双锥粒子。合成过程分为两部分:
金种的合成:0.25mL 25mmol/L新制的冰冻的硼氢化钠溶液加入到10mL混合溶液中(0.25mmol/L氯金酸,50mmol/L十六烷基三甲基氯化铵,5.0mmol/L柠檬酸)在80℃下反应90分钟。
金纳米双锥纳米粒子的合成:将上述8.0mL金种溶液加入到含有200mL100mmol/L十六烷基三甲基溴化铵,10mL,10mmol/L氯金酸,2.0mL,10mmol/L硝酸银,4.0mL,1.0mol/L盐酸,1.6m,100mmol/L抗坏血酸的混合溶液中,反应2小时。
(2)可视化水凝胶传感器的制备包括:
将浓度为5×10-10mol/L金纳米双锥粒子溶液加入高温溶解的琼脂糖溶液中,用IKA漩涡振荡器将其混匀,然后加入浓度为0.045mol/L亚铁离子,于80℃下加热搅拌20min使其混合均匀,趁热注入直径为4mm的有机玻璃管中,静置冷却成胶,制备得测量微摩尔级双氧水的水凝胶传感器。
将浓度为5×10-10mol/L金纳米双锥粒子溶液加入高温溶解的琼脂糖溶液中,用IKA漩涡振荡器将其混匀,然后加入浓度为1.5mol/L亚铁离子,于80℃下加热搅拌20min使其混合均匀,趁热注入直径为4mm的有机玻璃管中,静置冷却成胶,制备得测量毫摩尔级双氧水的水凝胶传感器。
(3)采用透射电子显微镜(TEM),扫描电子显微镜(SEM)以及暗场显微镜(DFM)对上述制备得的金纳米双锥粒子、水凝胶结构以及金纳米双锥粒子在水凝胶中的分布情况进行表征。
如图2所示,根据金纳米双锥粒子的透射电子显微镜图可知,所制备的金纳米双锥粒子形貌大小均一,长径约为60nm,短径约为20nm。
利用扫描电子显微镜(SEM)和暗场显微镜(DFM)对水凝胶传感器进行的表征,结果如图3所示,金纳米双锥粒子均匀分布于水凝胶中。
实施例2构建双氧水浓度与水凝胶颜色变化长度的标准曲线:
配制双氧水标准样(0,10,20,40,60,80,100,200,400,600,800,1000,2000,4000×10-6mol/L),用盐酸调节pH小于3,将标准样注入测量微摩尔级双氧水的水凝胶传感器中,反应90分钟后,用手机测距软件或者肉眼根据玻璃管体的刻度直接测量其颜色变化长度,以双氧水浓度为横坐标,水凝胶的颜色变化长度为纵坐标,绘制标准曲线,线性拟合得到线性方程。
将双氧水标准样(0,1,2,4,6,8,10,20,40,60,80,100,200,400×10-3mol/L)用盐酸调节pH小于3,将标准样注入测量毫摩尔级双氧水的水凝胶传感器中,在37℃中孵育90min后,用手机测距软件或者肉眼根据玻璃管体的刻度直接测量其颜色变化长度,以双氧水浓度为横坐标,水凝胶的颜色变化长度为纵坐标,绘制标准曲线,线性拟合得到线性方程。
实施例3可视化水凝胶传感器检测隐形眼镜消毒水中的双氧水:
使用超纯水稀释隐形眼镜消毒水,用盐酸调节pH小于3后,注入水凝胶传感器中,在37℃中孵育90min后,用手机测距软件或者肉眼根据玻璃管体的刻度直接测量其颜色变化长度,利用双氧水浓度与水凝胶颜色变化长度的标准曲线计算出隐形眼镜消毒水中双氧水的含量。
实施例4可视化水凝胶传感器检测染发剂中的双氧水:
使用超纯水稀释染发剂,用盐酸调节pH小于3后,注入水凝胶传感器中,在37℃中孵育90min后用手机测距软件或者肉眼根据玻璃管体的刻度直接测量其颜色变化长度,利用双氧水浓度与水凝胶颜色变化长度的标准曲线计算出染发剂中双氧水的含量。
对比例1
参考GB/T 1616-2014高锰酸钾滴定法对检测隐形眼镜消毒水和染发剂中的双氧水,测得隐形眼镜消毒水中双氧水浓度为0.9mol/L与本实验所测得0.952mol/L相符,测得染发剂中双氧水浓度为1.2mol/L与本实验所测得1.225mol/L相符。
上述的对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用发明,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实施方式,对本申请的一些修改和变更也应当落入本申请的权利要求的保护范围内。

Claims (10)

1.可视化水凝胶传感器,其特征在于,包括:
具有横截面均匀延伸的容置空间的透明容器;
填充于所述容置空间内的水凝胶;
均匀分散于所述水凝胶中的亚铁离子和金属纳米粒子。
2.根据权利要求1所述的可视化水凝胶传感器,其特征在于,所述亚铁离子在水凝胶中的浓度0.008~8mol/L,所述金属纳米离子在水凝胶中的浓度1×10-10~2×10-9mol/L。
3.根据权利要求1所述的可视化水凝胶传感器,其特征在于,所述透明容器为玻璃试管。
4.根据权利要求1所述的可视化水凝胶传感器,其特征在于,所述金属纳米离子为金纳米粒子、银纳米粒子或金银复合纳米粒子。
5.根据权利要求4所述的可视化水凝胶传感器,其特征在于,所述金纳米粒子为特征峰大于750nm的纳米金锥或纳米金棒。
6.根据权利要求1-5任一所述可视化水凝胶传感器的制备方法,其特征在于,包括以下步骤:提供水凝胶溶液,加入金属纳米粒子和亚铁离子,混合均匀,注入所述透明容器中,静置、冷却直至水凝胶溶液凝固形成水凝胶。
7.根据权利要求6所述的制备方法,其特征在于,所述水凝胶的分散质为琼脂糖、海藻酸钠、明胶或透明质酸。
8.根据权利要求1所述的可视化水凝胶传感器定量检测样品中双氧水含量的用途。
9.根据权利要求8所述的用途,其特征在于,包括以下步骤:
(1)构建描述双氧水的浓度与水凝胶颜色变化长度之间关系的标准曲线;
(2)在所述水凝胶传感器中加入样品;
(3)读取水凝胶的颜色变化长度;
(4)根据所述标准曲线的线性方程计算样品中双氧水的含量。
10.根据权利要求8所述的用途,其特征在于,所述样品为隐形眼镜消毒水和染发剂。
CN202011009483.3A 2020-09-23 2020-09-23 可视化水凝胶传感器及其制备方法与应用 Pending CN112285099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011009483.3A CN112285099A (zh) 2020-09-23 2020-09-23 可视化水凝胶传感器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011009483.3A CN112285099A (zh) 2020-09-23 2020-09-23 可视化水凝胶传感器及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN112285099A true CN112285099A (zh) 2021-01-29

Family

ID=74422853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011009483.3A Pending CN112285099A (zh) 2020-09-23 2020-09-23 可视化水凝胶传感器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112285099A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055537A (ko) * 1999-12-10 2001-07-04 홍성균 금속 이온의 검출 방법 및 이를 수행하기 위한 장치
CN105203538A (zh) * 2015-10-10 2015-12-30 福州大学 基于金纳米材料可视化检测肉类新鲜度的方法及检测管
CN106442515A (zh) * 2016-11-24 2017-02-22 桂林理工大学 一种简单低成本的银离子目视定量检测方法
CN107764757A (zh) * 2017-09-15 2018-03-06 南方科技大学 用于检测目标离子含量的装置、系统、制备方法和目标物含量测定方法以及试剂盒
US20180066074A1 (en) * 2016-07-08 2018-03-08 Arizona Board Of Regents On Behalf Of Arizona State University Colorimetric Hydrogel Based Nanosensor for Detection of Therapeutic Levels of Ionizing Radiation
CN108132249A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种利用指示剂置换法测定水中氯离子的方法
CN109232813A (zh) * 2018-09-21 2019-01-18 闽江学院 一种hrp印迹水凝胶的制备方法
KR20190078286A (ko) * 2017-12-26 2019-07-04 국민대학교산학협력단 가스센서용 하이드로겔 구조체, 이를 포함하는 가스센서, 및 상기 가스센서용 하이드로겔 구조체의 제조방법
CN110044894A (zh) * 2019-03-14 2019-07-23 昆明理工大学 一种三唑醇的比色检测方法
US20200191757A1 (en) * 2017-09-07 2020-06-18 Portland State University Hydrogel sensors for detection of metal ions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055537A (ko) * 1999-12-10 2001-07-04 홍성균 금속 이온의 검출 방법 및 이를 수행하기 위한 장치
CN105203538A (zh) * 2015-10-10 2015-12-30 福州大学 基于金纳米材料可视化检测肉类新鲜度的方法及检测管
US20180066074A1 (en) * 2016-07-08 2018-03-08 Arizona Board Of Regents On Behalf Of Arizona State University Colorimetric Hydrogel Based Nanosensor for Detection of Therapeutic Levels of Ionizing Radiation
CN106442515A (zh) * 2016-11-24 2017-02-22 桂林理工大学 一种简单低成本的银离子目视定量检测方法
CN108132249A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种利用指示剂置换法测定水中氯离子的方法
US20200191757A1 (en) * 2017-09-07 2020-06-18 Portland State University Hydrogel sensors for detection of metal ions
CN107764757A (zh) * 2017-09-15 2018-03-06 南方科技大学 用于检测目标离子含量的装置、系统、制备方法和目标物含量测定方法以及试剂盒
KR20190078286A (ko) * 2017-12-26 2019-07-04 국민대학교산학협력단 가스센서용 하이드로겔 구조체, 이를 포함하는 가스센서, 및 상기 가스센서용 하이드로겔 구조체의 제조방법
CN109232813A (zh) * 2018-09-21 2019-01-18 闽江学院 一种hrp印迹水凝胶的制备方法
CN110044894A (zh) * 2019-03-14 2019-07-23 昆明理工大学 一种三唑醇的比色检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何宇婧等: "介质膜结构空芯光纤酶基传感器的制作与优化", 《光电工程》 *
刘岩峰, 哈尔滨工程大学出版社 *
蒋治良等: "(Au)_核(Ag)_壳纳米微粒光度法快速检测过氧化氢", 《高等学校化学学报》 *
黄帅等: "金纳米棒比色检测亚铁离子", 《船电技术》 *

Similar Documents

Publication Publication Date Title
Rivero et al. A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide
Safavi et al. Optical sensor for high pH values
Wang et al. Colorimetric and SERS dual-mode sensing of mercury (II) based on controllable etching of Au@ Ag core/shell nanoparticles
Lin et al. Colorimetric detection of benzoyl peroxide based on the etching of silver nanoshells of Au@ Ag nanorods
Li et al. Colorimetric measurement of Fe3+ using a functional paper-based sensor based on catalytic oxidation of gold nanoparticles
Hao et al. A portable solar-driven ratiometric photo-electrochromic visualization biosensor for detection of ochratoxin A
Huang et al. Multiplex plasmonic sensor for detection of different metal ions based on a single type of gold nanorod
Durán et al. Quantum dot-modified paper-based assay for glucose screening
Jiang et al. A colorimetric sensor based on Glutathione-AgNPs as peroxidase mimetics for the sensitive detection of Thiamine (Vitamin B1)
Cui et al. Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nanostars etching
Rajamanikandan et al. β-Cyclodextrin protected gold nanoparticle based cotton swabs as an effective candidate for specific sensing of trace levels of cyanide
Huang et al. Optical fiber plasmonic sensor for the ultrasensitive detection of copper (II) ion based on trimetallic Au@ AgPt core-shell nanospheres
Weng et al. Plasmonic sensing of CTAB in gold nanorods solution based on Cu (II) ions-mediated H 2 O 2 etching effect
Fauzia et al. A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection
Wang et al. In situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples
Du et al. Highly sensitive fiber optic enhanced Raman scattering sensor
CN112175605A (zh) 一种近红外荧光磁性Fe NCs双模探针及其合成方法与应用
Li et al. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of L-ascorbic acid
Wang et al. Silver nanosol RRS aptamer assay of trace glyphosate based on gold-doped polystyrene nanocatalytic amplification
Xian et al. Preparation of urea-modified graphene oxide-gold composite detection of nitrite
CN113059175B (zh) 一种Au@Ag@AgCl纳米粒子的制备方法及其在氨气比色检测中的应用
Song et al. A colorimetric sensing probe for chromium (III) ion based on domino like reaction
CN109060768A (zh) 一种基于表面增强拉曼光谱痕量检测赤藓红浓度的方法
CN112285099A (zh) 可视化水凝胶传感器及其制备方法与应用
Hu et al. Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210129

RJ01 Rejection of invention patent application after publication