CN112280083B - 一种仿生猪笼草二维功能材料的制备方法及用途 - Google Patents

一种仿生猪笼草二维功能材料的制备方法及用途 Download PDF

Info

Publication number
CN112280083B
CN112280083B CN202011182192.4A CN202011182192A CN112280083B CN 112280083 B CN112280083 B CN 112280083B CN 202011182192 A CN202011182192 A CN 202011182192A CN 112280083 B CN112280083 B CN 112280083B
Authority
CN
China
Prior art keywords
bionic
super
functional material
pitcher plant
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011182192.4A
Other languages
English (en)
Other versions
CN112280083A (zh
Inventor
朱显东
李述坤
肖潇
姜凤敏
李作林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011182192.4A priority Critical patent/CN112280083B/zh
Publication of CN112280083A publication Critical patent/CN112280083A/zh
Application granted granted Critical
Publication of CN112280083B publication Critical patent/CN112280083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种仿生猪笼草二维功能材料的制备方法,包括以下几个步骤:步骤一,超疏水修饰,具体为用乙醇及去离子水对基底进行清洗,将含10%固化剂的PDMS预聚液1克溶解到10毫升的正己烷中,充分搅拌,然后,将基底浸入配好的溶液中30s、自然挥发10s,基底表面会包覆一层薄薄的PDMS液体,随后,将疏水纳米二氧化硅粒子均匀地沉积到含有PDMS液体的PMMA板表面,本发明方法制备的仿生猪笼草二维功能材料主要通过疏气条带产生的不对称阻力,从而实现气泡在仿生猪笼草二维功能材料表面定向及长距离的输运。

Description

一种仿生猪笼草二维功能材料的制备方法及用途
技术领域
本发明涉及功能材料领域,具体是一种仿生猪笼草二维功能材料的制备方法及用途。
背景技术
流体在开放体系表面的定向、连续、及低能耗输运,在自然界及人类社会中扮演着非常重要的角色,如雾滴的收集,猪笼草瓶口的自润滑,微流控器件,热量传导等。基于流体输运在诸多领域中的重要应用,自然生物及人类通过依靠特殊的形貌结构及表面浸润性,发展出了诸多的方法、策略(如形状梯度表面、浸润性梯度表面、光响应表面等),以期实现流体在开放体系中的定向、连续输运。值得指出的是,大部分流体输运的研究都局限在空气环境中,即水、油等流体的定向输运,而对液相中气体(流体存在的一种形式)的定向输运研究关注度比较低。这主要是由于气泡在液相中的行为受浮力的影响比较严重,其对界面功能材料表面浸润性的要求较高。然而,气泡作为气体的载体,在传质、传热等领域有着非常的重要;同时,气泡在液体传输系统中的富集容易引起管壁的腐蚀和爆管、造成设备使用寿命的缩短和资源的浪费。因此,探究气泡在水下的行为,实现其有效、可控操控具有重要的科学及应用价值。
目前对于气泡的操控方法多依赖于浮力驱动,而该策略却存在以下缺点:1)浮力只能驱动气泡竖直向上运动、2)由于微纳气泡所受的浮力较小,所以该策略对于微纳气泡效果较差。早期的研究表明,当两个不同体积的气泡置于超疏水多孔材料表面时,小气泡会自发地与大气泡进行融合。然而,气泡传导的方向及效率极大地依赖于两个气泡之间的体积差。如何实现气泡的自发及定向输运仍是令人困扰的问题。
发明内容
本发明的目的在于提供一种仿生猪笼草二维功能材料的制备方法及用途,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种仿生猪笼草二维功能材料的制备方法,主要包括以下几个步骤:
步骤一,超疏水修饰,具体为用乙醇及去离子水对基底进行清洗,将含10%固化剂的的PDMS预聚液1克溶解到10毫升的正己烷中,充分搅拌,然后,将基底浸入配好的溶液中30s、自然挥发10s,基底表面会包覆一层薄薄的PDMS液体,随后,将疏水纳米二氧化硅粒子均匀地沉积到含有PDMS液体的PMMA板表面;80℃下反应2h,PDMS即可固化、其可以牢牢地黏附超疏水纳米二氧化硅粒子并且构建出微/纳米结构,随后,用乙醇清洗超疏水表面、除去多余的纳米二氧化硅粒子,吹干、即可制备具有优异性能的超疏水表面;其中二氧化碳激光具有非常高的能量密度,可以直接将PMMA高分子气化,因此其被广泛用于制备LOGO、或微流控等领域。
步骤二,激光刻蚀,具体为将设计好的猪笼草仿生二维结构输入激光器的操作电脑,设定激光器的切割速度为100mm/s、切割功率为27W,即可快速地在超疏水表面加工出图案化的猪笼草仿生二维结构。
超疏水表面中超亲气条带区域对水滴的接触角介于150°到180°之间,表面液滴粘附力接近于0 µN,对气泡接触角介于0°到10°之间,表面对气泡的粘附力大于100 µN,超疏水表面中疏气部分的水滴接触角介于0°到65°之间,气泡接触角介于90°到180°之间,表面对气泡的粘附力接近80 µN。
本发明制备的仿生猪笼草二维功能材料主要通过疏气条带产生的不对称阻力,从而实现气泡在仿生猪笼草二维功能材料表面定向及长距离的输运。
附图说明
图1为本发明制备的仿生猪笼草二维功能材料结构表面的浸润性表征。
图2为本发明制备的仿生猪笼草二维功能材料结构表面的微观结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参阅图1-2,本发明实施例中,一种仿生猪笼草二维功能材料的制备方法,主要包括以下几个步骤:
步骤一,超疏水修饰,具体为用乙醇及去离子水对基底进行清洗,将含10%固化剂的的PDMS预聚液1克溶解到10毫升的正己烷中,充分搅拌,然后,将基底浸入配好的溶液中30s、自然挥发10s,基底表面会包覆一层薄薄的PDMS液体,随后,将疏水纳米二氧化硅粒子均匀地沉积到含有PDMS液体的PMMA板表面;80℃下反应2h,PDMS即可固化、其可以牢牢地黏附超疏水纳米二氧化硅粒子并且构建出微/纳米结构,随后,用乙醇清洗超疏水表面、除去多余的纳米二氧化硅粒子,吹干、即可制备具有优异性能的超疏水表面;其中二氧化碳激光具有非常高的能量密度,可以直接将PMMA高分子气化,因此其被广泛用于制备LOGO、或微流控等领域。
步骤二,激光刻蚀,具体为将设计好的猪笼草仿生二维结构输入激光器的操作电脑,设定激光器的切割速度为100mm/s、切割功率为27W,即可快速地在超疏水表面加工出图案化的猪笼草仿生二维结构。
图1中的a,b显示超疏水表面的水滴接触角和粘附力;c,d显示气泡在超疏水表面的接触角及粘附力;e,f显示亲水表面的水滴接触角和粘附力;g,h显示气泡在疏气表面的气泡接触角及粘附力;即超疏水表面中超亲气条带区域对水滴的接触角介于150°到180°之间,表面液滴粘附力接近于0 µN,对气泡接触角介于0°到10°之间,表面对气泡的粘附力大于100 µN,超疏水表面中疏气部分的水滴接触角介于0°到65°之间,气泡接触角介于90°到180°之间,表面对气泡的粘附力接近80 µN。
本发明制备的仿生猪笼草二维功能材料主要通过疏气条带产生的不对称阻力,从而实现气泡在仿生猪笼草二维功能材料表面定向及长距离的输运。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (3)

1.一种仿生猪笼草二维功能材料的制备方法,其特征在于,包括以下几个步骤:
步骤一,超疏水修饰,具体为用乙醇及去离子水对基底进行清洗,将含10%固化剂的PDMS预聚液1克溶解到10毫升的正己烷中,充分搅拌,然后,将基底浸入配好的溶液中30s、自然挥发10s,基底表面会包覆一层薄薄的PDMS液体,随后,将疏水纳米二氧化硅粒子均匀地沉积到含有PDMS液体的PMMA板表面;80℃下反应2h,PDMS即可固化、其可以牢牢地黏附超疏水纳米二氧化硅粒子并且构建出微/纳米结构,随后,用乙醇清洗超疏水表面、除去多余的纳米二氧化硅粒子,吹干、即可制备具有优异性能的超疏水表面;
步骤二,激光刻蚀,具体为将设计好的猪笼草仿生二维结构输入激光器的操作电脑,设定激光器的切割速度为100mm/s、切割功率为27W,即可快速地在超疏水表面加工出图案化的猪笼草仿生二维结构。
2.根据权利要求1所述的一种仿生猪笼草二维功能材料的制备方法,其特征在于,超疏水表面中疏气部分的水滴接触角介于0°到65°之间,气泡接触角介于90°到180°之间,表面对气泡的粘附力80 µN。
3.权利要求1-2中任意一条一种仿生猪笼草二维功能材料的制备方法制备的仿生猪笼草二维功能材料在自发及定向输运气泡中的用途。
CN202011182192.4A 2020-10-29 2020-10-29 一种仿生猪笼草二维功能材料的制备方法及用途 Active CN112280083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011182192.4A CN112280083B (zh) 2020-10-29 2020-10-29 一种仿生猪笼草二维功能材料的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011182192.4A CN112280083B (zh) 2020-10-29 2020-10-29 一种仿生猪笼草二维功能材料的制备方法及用途

Publications (2)

Publication Number Publication Date
CN112280083A CN112280083A (zh) 2021-01-29
CN112280083B true CN112280083B (zh) 2022-09-06

Family

ID=74353203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011182192.4A Active CN112280083B (zh) 2020-10-29 2020-10-29 一种仿生猪笼草二维功能材料的制备方法及用途

Country Status (1)

Country Link
CN (1) CN112280083B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558601B (zh) * 2022-11-30 2023-06-06 苏州大学 一种迷你哺乳动物模型及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467282A (zh) * 2018-03-21 2018-08-31 北京航空航天大学 一种分子刷接枝的自清洁材料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002952384A0 (en) * 2002-10-31 2002-11-14 Swinburne University Of Technology Structures
KR101620786B1 (ko) * 2015-06-08 2016-05-12 아주대학교산학협력단 초소수성 표면 형성 방법
CN106862039B (zh) * 2017-01-18 2020-05-22 华南理工大学 一种耐久性的亲水-超疏水双极自洁复合膜及其制备方法
US20190262829A1 (en) * 2018-02-28 2019-08-29 Volta Labs, Inc. Directing Motion of Droplets Using Differential Wetting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467282A (zh) * 2018-03-21 2018-08-31 北京航空航天大学 一种分子刷接枝的自清洁材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Anisotropic Sliding of Underwater Bubbles On Microgrooved Slippery Surfaces by One-Step Femtosecond Laser Scanning";吕晓东等;《ACS APPLIED MATERIALS & INTERFACES》;20190605;第11卷(第22期);第20574-20580页 *

Also Published As

Publication number Publication date
CN112280083A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
George et al. Recent progress in fabricating superaerophobic and superaerophilic surfaces
Yu et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials
Yang et al. Creation of topological ultraslippery surfaces for droplet motion control
Cui et al. Bioinspired smart materials for directional liquid transport
EP3500662B1 (en) High-throughput system and method for the temporary permeabilization of cells
Xiao et al. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment
Miao et al. Bioinspired superspreading surface: from essential mechanism to application
Yu et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles
Tian et al. Interfacial material system exhibiting superwettability
Wang et al. Inner surface design of functional microchannels for microscale flow control
Xiao et al. Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater
Liu et al. Flexible functional surface for efficient water collection
Zhang et al. Unidirectional self-driving liquid droplet transport on a monolayer graphene-covered textured substrate
CN112280083B (zh) 一种仿生猪笼草二维功能材料的制备方法及用途
Wang et al. A review of capillary pressure control valves in microfluidics
Zhang et al. Ultrastable super-hydrophobic surface with an ordered scaly structure for decompression and guiding liquid manipulation
Vourdas et al. Droplet mobility manipulation on porous media using backpressure
Li et al. Enhanced movement of two-component droplets on a wedge-shaped Ag/Cu surface by a wettability gradient
Zhuang et al. Efficient bubble transport on bioinspired topological ultraslippery surfaces
Chen et al. Bioinspired functional structures for lubricant control at surfaces and interfaces: wedged-groove with oriented capillary patterns
Lin et al. Directional transport of underwater bubbles on solid substrates: principles and applications
Wang et al. Thermally driven interfacial switch between adhesion and antiadhesion on gas bubbles in aqueous media
Yong et al. Self‐Driving Underwater “Aerofluidics”
Cheng et al. Applications of textured surfaces on bubble trapping and degassing for microfluidic devices
Liu et al. Spontaneous transport mechanics of water droplets under a synergistic action of designed pattern and non-wetting gradient

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant