CN112274301B - 含氧化层锆铌合金踝关节假体系统及制备方法 - Google Patents

含氧化层锆铌合金踝关节假体系统及制备方法 Download PDF

Info

Publication number
CN112274301B
CN112274301B CN202011195113.3A CN202011195113A CN112274301B CN 112274301 B CN112274301 B CN 112274301B CN 202011195113 A CN202011195113 A CN 202011195113A CN 112274301 B CN112274301 B CN 112274301B
Authority
CN
China
Prior art keywords
component
tibia
niobium alloy
talus
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011195113.3A
Other languages
English (en)
Other versions
CN112274301A (zh
Inventor
朱晓静
黄洁茹
叶萍
赵晶
刘璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiasite Huajian Medical Equipment Tianjin co ltd
Original Assignee
Jiasite Huajian Medical Equipment Tianjin co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiasite Huajian Medical Equipment Tianjin co ltd filed Critical Jiasite Huajian Medical Equipment Tianjin co ltd
Priority to CN202011195113.3A priority Critical patent/CN112274301B/zh
Publication of CN112274301A publication Critical patent/CN112274301A/zh
Priority to PCT/CN2021/101284 priority patent/WO2022088702A1/zh
Priority to US17/916,711 priority patent/US20240138995A1/en
Application granted granted Critical
Publication of CN112274301B publication Critical patent/CN112274301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • A61F2002/4205Tibial components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了含氧化层锆铌合金踝关节假体系统及制备方法,步骤:以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的中间产物和胫骨部件的中间产物,经热等静压、深冷和表面氧化,得到距骨部件或胫骨部件;所述胫骨部件与距骨部件滑动连接;在距骨部件本体的下表面和两个第一固定柱的外表面以及胫骨部件本体的上表面和两个第二固定柱的外表面设置有骨小梁,提高假体的骨长入性能。本发明采用3D打印一体成型,骨小梁与实体结合强度高,不易脱落,提升假体寿命。本发明一体化实现骨整合界面的优良生物相容性、骨长入性和摩擦界面的超强耐磨性、低磨损率;本发明无需使用衬垫,解决现有技术中胫骨部件和衬垫之间微动的难题。

Description

含氧化层锆铌合金踝关节假体系统及制备方法
技术领域
本发明涉及一种踝关节假体,尤其是涉及含氧化层锆铌合金踝关节假体系统及制备方法。
背景技术
关节置换术是目前临床上针对终末期关节疾患的有效治疗方式。但是,关节假体长期植入人体,在体内复杂生理、力学环境长期作用下,软体材料,如:超高分子量聚乙烯(UHMWPE),会因关节面磨损产生大量磨屑颗粒,磨屑聚集可引起一系列组织反应,导致骨溶解,无菌松动,假体失效。并且,对于钴铬合金、镍钛合金和不锈钢合金等金属关节材料,会在体内摩擦、腐蚀长期共同作用下释放有毒金属离子,如Cr、Ni、Mn、Mo和V等离子,一方面会引起过敏反应;另一方面也存在其它不明潜在危害。
锆铌合金具有优异耐腐蚀性、力学性能和良好生物相容性,被逐渐应用于医疗器械领域。锆铌合金可与N、C、O等元素反应在表面形成坚硬的氧化层,具有优异耐磨性和低磨损率,可降低对软体材料的磨损,即具有关节界面的优异耐磨性;且氧化层可降低金属离子的释放,具有优异生物相容性,即具有骨整合界面的优异生物相容性。低磨损率的关节面与骨长入性能优异的骨整合界面(骨小梁)有机配伍,可使假体同时实现两界面优点。
目前临床上使用的关节假体包括骨水泥固定型假体和非骨水泥固定型假体。有研究显示,采用骨水泥固定的假体在骨水泥凝固过程中产生的高温会造成部分骨细胞的死亡,影响后期的骨生长。非骨水泥固定型假体由于良好的骨生长性能,因此得到了越来越广泛的应用。非骨水泥固定型假体的骨整合界面通常采用表面喷涂羟基磷灰石涂层或钛涂层,其优点是克服了骨水泥凝固时的高温,有利于骨细胞的生长,缺点是表面涂层容易脱落,影响使用效果,严重时会造成手术失败。随着金属3D打印技术的发展,采用3D打印技术在假体与宿主骨组织接触的表面打印多孔结构的金属骨小梁不仅解决了涂层的脱落问题,而且实现了骨组织从骨长上向骨长入的转变。但3D打印产品实体部分易存在显微组织不均匀、内部缺陷等问题,力学性能不佳;骨小梁部分结构中粉末未能得到良好熔结,力学性能差。
因此,制备一种力学性能优异,且同时具有两界面优点的踝关节假体系统,具有重要意义。
发明内容
本发明的主要目的在于克服现有技术不足,提供含氧化层锆铌合金踝关节假体系统。
本发明的第二个目的是提供含氧化层锆铌合金踝关节假体系统的制备方法。
本发明的技术方案概述如下:
含氧化层锆铌合金踝关节假体系统的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的第一中间产物和胫骨部件的第一中间产物,将两种第一中间产物放入热等静压炉,在氦气或氩气保护下,升温至1250℃-1400℃,在140MPa-180MPa,恒温放置1h-3h,降至常压,随炉冷却至200℃以下取出,得到两种第二中间产物;
2)将两种第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h,从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温,得到两种第三中间产物;
3)将两种第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃~-120℃,恒温放置5h-10h;从程序性降温盒中取出;在液氮中再放置16h-36h,调节温度至室温;得两种第四中间产物;
4)将两种第四中间产物进行机加工修整、抛光、清洗和干燥,得两种第五中间产物,所述距骨部件第五中间产物的上表面和胫骨部件的第五中间产物的下表面的粗糙度Ra≤0.050μm;
5)将两种第五中间产物放置于管式炉内,通入含氧质量百分比为5%-15%的常压氦气或氩气,以5℃/min-20℃/min加热至500℃-700℃,以0.4℃/min-0.9℃/min降温至400℃-495℃,再自然冷却至200℃以下取出,分别得到距骨部件或胫骨部件;
距骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
胫骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
所述含氧化层锆铌合金踝关节假体系统的结构包括距骨部件1和胫骨部件2,所述距骨部件1包括距骨部件本体4和设置在距骨部件本体下表面前后的两个第一固定柱3;
所述胫骨部件2包括胫骨部件本体5和设置在胫骨部件本体上表面前后的两个第二固定柱6;
所述胫骨部件2与距骨部件1滑动连接;
在距骨部件本体4的下表面和两个第一固定柱3的外表面设置有骨小梁7,在胫骨部件本体5的上表面和两个第二固定柱6的外表面设置有骨小梁7,骨小梁7孔径为0.35mm-1.10mm;孔隙率为55%-78%;通孔率为100%;厚度为0.5mm-3mm。
所述锆铌合金粉的化学成分按质量百分比为85.6%-96.5%的Zr,1.0%-12.5%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45μm-150μm。
步骤2)、3)所述调节温度为:升温至-120℃~-80℃,恒温保持3h-5h;再升温至-40℃~-20℃,恒温保持3h-5h;再升温至4℃-8℃,恒温保持1h-3h,升温。
上述方法制备的含氧化层锆铌合金踝关节假体系统。
本发明具有以下有益效果:
本发明含氧化层锆铌合金踝关节假体系统的骨小梁设置,提高假体的骨长入性能。本发明采用3D打印一体成型,解决传统机加工无法制备复杂结构的难题,且骨小梁与实体结合强度高,不易脱落,提升假体寿命。本发明可一体化实现骨整合界面的优良生物相容性、骨长入性和摩擦界面的超强耐磨性、低磨损率。本发明的距骨部件和胫骨部件的氧化层与基体之间存在富氧层,富氧层有过渡层作用,提高氧化层与基体之间附着力,避免氧化层脱落;且氧化层硬度高。本发明的含氧化层锆铌合金踝关节假体系统低伪影,对核磁干扰小,可进行核磁检测。本发明无需使用衬垫,解决现有技术中胫骨部件和衬垫之间微动的难题。
附图说明
图1为本发明含氧化层锆铌合金踝关节假体系统示意图。
图2为距骨部件的轴测图。
图3为距骨部件轴测图(不含骨小梁)。
图4为胫骨部件轴测图。
图5为胫骨部件轴测图(不含骨小梁)。
图6为对照组1的胫骨部件的实体部分金相显微结构图(A为放大50倍观察;B为放大500倍观察)。
图7为实施例1的胫骨部件的未进行制备方法中步骤4)和步骤5)的实体部分金相显微结构图(A为放大50倍观察;B为放大500倍观察)。
图8为对照组1的胫骨部件的骨小梁部分SEM图。
图9为实施例1的胫骨部件的未进行制备方法中步骤4)和步骤5)的骨小梁部分SEM图。
图10为实施例1的胫骨部件的氧化层与基体的横截面SEM图。
图11为实施例1的胫骨部件的氧化层表面的XRD曲线。
具体实施方式
下面通过具体实施例对本发明作进一步的说明。
实施例1
含氧化层锆铌合金踝关节假体系统的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的第一中间产物或胫骨部件的第一中间产物,将两种第一中间产物放入热等静压炉,在氩气保护下,升温至1250℃,在180MPa,恒温放置3h,降至常压,随炉冷却至200℃以下取出,得到两种第二中间产物;
2)将两种第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h,从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温,得到两种第三中间产物;
3)将两种第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h;从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温;得两种第四中间产物;
4)将两种第四中间产物进行机加工修整、抛光、清洗和干燥,得两种第五中间产物,所述距骨部件第五中间产物的上表面和胫骨部件的第五中间产物的下表面的粗糙度Ra=0.012μm;
5)将两种第五中间产物放置于管式炉内,通入含氧质量百分比为5%的常压氩气,以5℃/min加热至500℃,以0.4℃/min降温至400℃,再自然冷却至200℃以下取出,分别得到距骨部件或胫骨部件;
距骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
胫骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
所述含氧化层锆铌合金踝关节假体系统的结构,(见图1-图5)包括距骨部件1和胫骨部件2;所述距骨部件1包括距骨部件本体4和设置在距骨部件本体下表面前后的两个第一固定柱3;所述胫骨部件2包括胫骨部件本体5和设置在胫骨部件本体上表面前后的两个第二固定柱6;所述胫骨部件2与距骨部件1滑动连接;
在距骨部件本体4的下表面和两个第一固定柱3的外表面设置有骨小梁7,在胫骨部件本体5的上表面和两个第二固定柱6的外表面设置有骨小梁7;骨小梁7孔径为0.80mm,孔隙率为72%,通孔率为100%;厚度为0.5mm。
所述锆铌合金粉的化学成分按质量百分比为85.6%的Zr,12.5%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45μm-150μm。
步骤2)、3)所述调节温度为:升温至-120℃,恒温保持5h;再升温至-40℃,恒温保持5h;再升温至4℃,恒温保持3h,升温。
所述距骨部件1安装于根骨上,所述胫骨部件2安装于胫骨底部;
实施例2
含氧化层锆铌合金踝关节假体系统的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的第一中间产物或胫骨部件的第一中间产物,将两种第一中间产物放入热等静压炉,在氦气保护下,升温至1325℃,在160MPa,恒温放置2h,降至常压,随炉冷却至200℃以下取出,得到两种第二中间产物;
2)将两种第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h,从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温,得到两种第三中间产物;
3)将两种第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-100℃,恒温放置7h;从程序性降温盒中取出;在液氮中再放置24h,调节温度至室温;得两种第四中间产物;
4)将两种第四中间产物进行机加工修整、抛光、清洗和干燥,得两种第五中间产物,所述距骨部件第五中间产物的上表面和胫骨部件的第五中间产物的下表面的粗糙度Ra=0.035μm;
5)将两种第五中间产物放置于管式炉内,通入含氧质量百分比为10%的常压氦气,以15℃/min加热至600℃,以0.7℃/min降温至450℃,再自然冷却至200℃以下取出,分别得到距骨部件或胫骨部件;
距骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
胫骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
所述含氧化层锆铌合金踝关节假体系统的结构包括距骨部件1和胫骨部件2;所述距骨部件1包括距骨部件本体4和设置在距骨部件本体下表面前后的两个第一固定柱3;所述胫骨部件2包括胫骨部件本体5和设置在胫骨部件本体上表面前后的两个第二固定柱6;所述胫骨部件2与距骨部件1滑动连接;在距骨部件本体4的下表面和两个第一固定柱3的外表面设置有骨小梁7,在胫骨部件本体5的上表面和两个第二固定柱6的外表面设置有骨小梁7;骨小梁7孔径为0.35mm,孔隙率为55%,通孔率为100%,厚度为1.5mm。
所述锆铌合金粉的化学成分按质量百分比为93.4%的Zr,5.1%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45μm-150μm。
步骤2)、3)所述调节温度为:升温至-100℃,恒温保持4h;再升温至-30℃,恒温保持4h;再升温至6℃,恒温保持2h,升温。
实施例3
含氧化层锆铌合金踝关节假体系统的制备方法,包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的第一中间产物或胫骨部件的第一中间产物,将两种第一中间产物放入热等静压炉,放入热等静压炉,在氩气保护下,升温至1400℃,在140MPa,恒温放置1h,降至常压,随炉冷却至200℃以下取出,得到两种第二中间产物;
2)将两种第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h,从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温,得到两种第三中间产物;
3)将两种第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-120℃,恒温放置5h;从程序性降温盒中取出;在液氮中再放置36h,调节温度至室温;得两种第四中间产物;
4)将两种第四中间产物进行机加工修整、抛光、清洗和干燥,得两种第五中间产物,所述距骨部件第五中间产物的上表面和胫骨部件的第五中间产物的下表面的粗糙度Ra=0.050μm;
5)将两种第五中间产物放置于管式炉内,通入含氧质量百分比为15%的常压氩气,以20℃/min加热至700℃,以0.9℃/min降温至495℃,再自然冷却至200℃以下取出,分别得到距骨部件或胫骨部件;
距骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
胫骨部件的第一中间产物、第二中间产物、第三中间产物、第四中间产物和第五中间产物的结构与距骨部件的结构相同。
所述含氧化层锆铌合金踝关节假体系统的结构包括距骨部件1和胫骨部件2;所述距骨部件1包括距骨部件本体4和设置在距骨部件本体下表面前后的两个第一固定柱3;所述胫骨部件2包括胫骨部件本体5和设置在胫骨部件本体上表面前后的两个第二固定柱6;所述胫骨部件2与距骨部件1滑动连接;在距骨部件本体4的下表面和两个第一固定柱3的外表面设置有骨小梁7,在胫骨部件本体5的上表面和两个第二固定柱6的外表面设置有骨小梁7;骨小梁7孔径为1.10mm,孔隙率为78%,通孔率为100%;厚度为3mm。
所述锆铌合金粉的化学成分按质量百分比为96.5%的Zr,1.0%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45μm-150μm。
步骤2)、3)所述调节温度为:升温至-80℃,恒温保持3h;再升温至-20℃,恒温保持3h;再升温至8℃,恒温保持1h,升温。
对照组1
以锆铌合金粉(同实施例1)为原料,经3D打印一体成型和机加工修整,得到结构同实施例1的踝关节假体系统。
实验验证:
倒置万能材料显微镜(Axio Vert.A1,德国蔡司zeiss公司,德国)对对照组1的胫骨部件的实体部分和实施例1的胫骨部件的未进行所述制备方法中步骤4)和步骤5)的实体部分进行金相显微组织观察。结果如图6和7所示,对照组1的胫骨部件的金相照片中可以观察到细小α马氏体,组织较细小,易产生应力集中,塑性较差;实施例1的胫骨部件的金相显示为α相,呈网篮结构,晶粒细化。结果提示,本发明所述胫骨部件的基体部分(不含氧化层)具有优异的强度和塑性。
扫描电子显微镜(Crossbeam340/550,蔡司,德国)对对照组1的胫骨部件的骨小梁部分和实施例1的胫骨部件的未进行所述制备方法中步骤4)和步骤5)骨小梁部分进行观察分析,结果如图8-9所示,与对照组1相比,实施例1的胫骨部件的骨小梁结构中锆铌合金粉发生进一步熔结,提示骨小梁综合性能提高。
电子万能试验机(UTM5105,深圳三思纵横科技股份有限公司,中国)对实施例1的胫骨部件未进行所述制备方法中步骤4)和步骤5)的实体压缩试件(试件大小为:8*8*10mm3)和对照组1的胫骨部件的实体压缩试件(试件大小为:8*8*10mm3)进行压缩性能测试,实施例1和对照组1的实体压缩试件各5个。结果如表1所示,实施例1的抗压屈服强度为546.72MPa,优于对照组1(P<0.05),提示本发明制得的胫骨部件的实体部分具有优异抗压缩性能。
表1对照组1和实施例1的实体试件抗压缩实验结果(*P<0.05,与对照组1比较)
电子万能试验机(UTM5105,深圳三思纵横科技股份有限公司,中国)对对照组1的胫骨部件的孔径为0.80mm,孔隙率为72%,通孔率为100%的骨小梁压缩试件和实施例1的胫骨部件的未进行所述制备方法中步骤4)和步骤5)的孔径为0.80mm,孔隙率为72%,通孔率为100%的骨小梁压缩试件(试件大小为:8*8*10mm3)进行压缩实验,对照组1和实施例1的骨小梁压缩试件各5个。结果如表2所示,实施例1的骨小梁屈服强度为18.39MPa,显著高于对照组1(P<0.05),提示本发明制得的胫骨部件的骨小梁部分抗压性能优异。
表2对照组1和实施例1的骨小梁试件抗压缩实验结果(*P<0.05,与对照组1比较)
扫描电子显微镜(Crossbeam340/550,蔡司,德国)对实施例1的胫骨部件的锆铌合金基体与氧化层的横截面进行观察,(见图10)。并对实施例2、3的胫骨部件的锆铌合金基体与氧化层的横截面进行观察,其氧化层厚度分别为10.3μm、17.2μm和20.6μm,且氧化层与锆铌合金基体之间存在富氧层,增强锆铌金属基体与氧化层之间的结合力。
XRD(D8DISCOVER,Bruker,德国)对实施例1的胫骨部件的氧化层进行分析(如图11所示),氧化层包含单斜相二氧化锆和四方相二氧化锆。
显微硬度仪(MHVS-1000PLUS,上海奥龙星迪检测设备有限公司,中国)对实施例1-3的胫骨部件进行显微硬度测量,测试载荷为0.05kg,试件载荷时间为20s,每个试件取8个点。实施例1-3测得平均硬度值为1948.6Hv、1923.7Hv和1967.2Hv,提示本发明的胫骨部件的氧化层硬度高。
实验证明,实施例2、3制备的胫骨部件、距骨部件和实施例1制备的距骨部件的骨小梁部分的锆铌合金粉熔结程度、抗压强度,实体部分抗压性能、金相组织,氧化层的晶体结构、厚度和硬度与实施例1制备的胫骨部件相似。

Claims (2)

1.含氧化层锆铌合金踝关节假体系统的制备方法,其特征是包括如下步骤:
1)以锆铌合金粉为原料,经3D打印一体成型分别得到距骨部件的第一中间产物或胫骨部件的第一中间产物,将两种第一中间产物放入热等静压炉,在氩气保护下,升温至1250℃,在180MPa,恒温放置3h,降至常压,随炉冷却至200℃以下取出,得到两种第二中间产物;
2)将两种第二中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h,从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温,得到两种第三中间产物;
3)将两种第三中间产物放置于程序性降温盒中以1℃/min的速度降温至-80℃,恒温放置10h;从程序性降温盒中取出;在液氮中再放置16h,调节温度至室温;得两种第四中间产物;
4)将两种第四中间产物进行机加工修整、抛光、清洗和干燥,得两种第五中间产物,所述距骨部件第五中间产物的上表面和胫骨部件的第五中间产物的下表面的粗糙度Ra=0.012μm;
5)将两种第五中间产物放置于管式炉内,通入含氧质量百分比为5%的常压氩气,以5℃/min加热至500℃,以0.4℃/min降温至400℃,再自然冷却至200℃以下取出,分别得到距骨部件或胫骨部件;
所述含氧化层锆铌合金踝关节假体系统的结构,包括距骨部件(1)和胫骨部件(2);所述距骨部件(1)包括距骨部件本体(4)和设置在距骨部件本体下表面前后的两个第一固定柱(3);所述胫骨部件(2)包括胫骨部件本体(5)和设置在胫骨部件本体上表面前后的两个第二固定柱(6);所述胫骨部件(2)与距骨部件(1)滑动连接;
在距骨部件本体(4)的下表面和两个第一固定柱(3)的外表面设置有骨小梁(7),在胫骨部件本体(5)的上表面和两个第二固定柱(6)的外表面设置有骨小梁(7);骨小梁(7)孔径为0.80mm,孔隙率为72%,通孔率为100%;厚度为0.5mm;
所述锆铌合金粉的化学成分按质量百分比为85.6%的Zr,12.5%的Nb,其余为不可避免的杂质;所述锆铌合金粉的粒径为45μm-150μm。
2.权利要求1的方法制备的含氧化层锆铌合金踝关节假体系统。
CN202011195113.3A 2020-10-30 2020-10-30 含氧化层锆铌合金踝关节假体系统及制备方法 Active CN112274301B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011195113.3A CN112274301B (zh) 2020-10-30 2020-10-30 含氧化层锆铌合金踝关节假体系统及制备方法
PCT/CN2021/101284 WO2022088702A1 (zh) 2020-10-30 2021-06-21 含氧化层锆铌合金踝关节假体系统及制备方法
US17/916,711 US20240138995A1 (en) 2020-10-30 2021-06-21 Oxide layer-containing zirconium-niobium alloy ankle joint prosthetic system and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011195113.3A CN112274301B (zh) 2020-10-30 2020-10-30 含氧化层锆铌合金踝关节假体系统及制备方法

Publications (2)

Publication Number Publication Date
CN112274301A CN112274301A (zh) 2021-01-29
CN112274301B true CN112274301B (zh) 2024-04-09

Family

ID=74353914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011195113.3A Active CN112274301B (zh) 2020-10-30 2020-10-30 含氧化层锆铌合金踝关节假体系统及制备方法

Country Status (3)

Country Link
US (1) US20240138995A1 (zh)
CN (1) CN112274301B (zh)
WO (1) WO2022088702A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112274301B (zh) * 2020-10-30 2024-04-09 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金踝关节假体系统及制备方法
CN115673339B (zh) * 2023-01-03 2023-04-07 西安赛隆增材技术股份有限公司 一种锆铌合金骨科植入物的三维制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553967A (zh) * 2001-07-20 2004-12-08 史密夫和内修有限公司 表面氧化锆和锆合金的方法以及最终的产品
CN104087729A (zh) * 2014-06-25 2014-10-08 南通大学 一种提高3d打印金属件性能的处理方法
CN209316157U (zh) * 2018-11-20 2019-08-30 中国人民解放军陆军军医大学第一附属医院 一种踝关节假体胫骨侧部件
CN110742711A (zh) * 2019-06-05 2020-02-04 湖南普林特医疗器械有限公司 一种激光增材制造-高温真空烧结的医用仿骨小樑结构多孔钽骨植入假体制造方法
CN110833470A (zh) * 2019-12-24 2020-02-25 安徽中健三维科技有限公司 一种基于3d打印技术的个性化仿骨小梁结构金属垫片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617242B2 (en) * 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
CN102048600B (zh) * 2009-10-27 2013-06-12 上海交通大学医学院附属第九人民医院 全踝全距骨假体
US10865468B2 (en) * 2013-10-23 2020-12-15 Avalign Technologies, Inc. Methods of forming an oxide layer on a metal body
CN109330748A (zh) * 2018-11-20 2019-02-15 中国人民解放军陆军军医大学第附属医院 一种踝关节假体胫骨侧部件
CN109674561A (zh) * 2019-02-01 2019-04-26 上海交通大学医学院附属第九人民医院 一种距骨分体式全踝假体
CN111826603B (zh) * 2020-07-21 2022-09-30 苏州微创关节医疗科技有限公司 制备金属基底表面氧化陶瓷层的方法及应用
CN112274301B (zh) * 2020-10-30 2024-04-09 嘉思特华剑医疗器材(天津)有限公司 含氧化层锆铌合金踝关节假体系统及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553967A (zh) * 2001-07-20 2004-12-08 史密夫和内修有限公司 表面氧化锆和锆合金的方法以及最终的产品
CN104087729A (zh) * 2014-06-25 2014-10-08 南通大学 一种提高3d打印金属件性能的处理方法
CN209316157U (zh) * 2018-11-20 2019-08-30 中国人民解放军陆军军医大学第一附属医院 一种踝关节假体胫骨侧部件
CN110742711A (zh) * 2019-06-05 2020-02-04 湖南普林特医疗器械有限公司 一种激光增材制造-高温真空烧结的医用仿骨小樑结构多孔钽骨植入假体制造方法
CN110833470A (zh) * 2019-12-24 2020-02-25 安徽中健三维科技有限公司 一种基于3d打印技术的个性化仿骨小梁结构金属垫片

Also Published As

Publication number Publication date
WO2022088702A1 (zh) 2022-05-05
US20240138995A1 (en) 2024-05-02
CN112274301A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN112294499B (zh) 含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法
CN112315627B (zh) 带有骨小梁的含氧化层锆铌合金胫骨平台假体及制备方法
CN112274301B (zh) 含氧化层锆铌合金踝关节假体系统及制备方法
CN112296342B (zh) 含氧化层锆铌合金分区骨小梁单间室股骨髁及制备方法
Yehia et al. Effect of zirconia content and sintering temperature on the density, microstructure, corrosion, and biocompatibility of the Ti–12Mo matrix for dental applications
US20230023628A1 (en) Biomedical beta titanium alloy and preparation method thereof
CN112404433B (zh) 含氧化层锆铌合金分区骨小梁单间室胫骨平台及制备方法
WO2022088701A1 (zh) 含氧化层锆铌合金髋关节假体系统及制备方法
Xiang et al. Ultra-high strength TiZrNbTa high entropy alloy substrate coated by coral-like metal oxide nanotubes to enhance biocompatibility
CN112155801B (zh) 含氧化层锆铌合金骨小梁单间室胫骨平台假体及制备方法
CN112294496B (zh) 含氧化层锆铌合金肩关节假体系统及制备方法
WO2022198965A1 (zh) 一种骨修复钛钼基羟基磷灰石复合材料及其制备方法
Miao et al. Preparation of porous Ta-10% Nb alloy scaffold and its in vitro biocompatibility evaluation using MC3T3-E1 cells
CN112404432B (zh) 含氧化层锆铌合金骨小梁单间室股骨髁假体及制备方法
Xie et al. Deposition and biological evaluation of Ta coating on porous SiC scaffold for orthopedic application
CN112155802A (zh) 带有骨小梁的钴合金胫骨平台假体及制备方法
CN114831780A (zh) 含氮化层钴合金骨小梁股骨髁假体及制备方法
RL et al. SUITABILITY OF Mg-PSZ FOR HIP ENDO-PROSTHESIS ARTICULATION AGAINST ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE
Barbosa et al. Characterization of HDH titanium powder for biomaterial applications
YACOB Titanium-graphite composites for biomedical applications: A study on mechanical properties and biocompatibility

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant