CN112272216A - Remote monitoring method for safety management based on smart city - Google Patents

Remote monitoring method for safety management based on smart city Download PDF

Info

Publication number
CN112272216A
CN112272216A CN202011082869.7A CN202011082869A CN112272216A CN 112272216 A CN112272216 A CN 112272216A CN 202011082869 A CN202011082869 A CN 202011082869A CN 112272216 A CN112272216 A CN 112272216A
Authority
CN
China
Prior art keywords
monitoring camera
rubber sheet
smart city
monitoring method
remote monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011082869.7A
Other languages
Chinese (zh)
Other versions
CN112272216B (en
Inventor
陈钲仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Chengshi Electronic Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011082869.7A priority Critical patent/CN112272216B/en
Publication of CN112272216A publication Critical patent/CN112272216A/en
Application granted granted Critical
Publication of CN112272216B publication Critical patent/CN112272216B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

The invention discloses a remote monitoring method for safety management based on a smart city, which belongs to the related technical field of safety management, and can promote high-temperature water vapor to be liquefied and form water drops after contacting a shielding protective top cover through the contact of burning smoke and a monitoring camera, a supporting bulge expands after absorbing water so as to jack up a separation rubber sheet on the upper side of the supporting bulge, so that the water is contacted with an effervescent disintegrant through a gap between the separation rubber sheet and the monitoring camera, thereby generating a large amount of carbon dioxide gas, on one hand, through the escape of the carbon dioxide gas, downward blowing gas can be generated, so that the possibility that flying ash is adhered to the surface of the lens of the monitoring camera is reduced, on the other hand, through the flame retardant effect of the carbon dioxide gas, the possibility that part of flying ash particles which are not fully burnt can be continuously burnt can be reduced, therefore, the protection effect on the monitoring camera is improved.

Description

Remote monitoring method for safety management based on smart city
Technical Field
The invention relates to the technical field related to safety management, in particular to a remote monitoring method for safety management based on a smart city.
Background
Smart City (English) is originated from the media field, and means that various information technologies or innovative concepts are utilized to make the system and service of the City open and integrated to improve the efficiency of resource application, optimize City management and service, and improve the quality of life of citizens, the Smart City is a City informationized advanced form which fully applies the new generation information technology to all trades in the City based on the next generation innovation (innovation 2.0) of knowledge society, thus realizing the deep integration of informatization, industrialization and urbanization, being beneficial to relieving the disease of the big City, improving the quality of urbanization, realizing the fine and dynamic management, and improving the effect of City management and the quality of life of citizens.
Safety Management (Safety Management) refers to the basic functions of the security department of a country or an enterprise. The method coordinates the relationship between the development of the social economy and the safety production by using administrative, legal, economic, educational and scientific technical means and the like, and processes the mutual relationship of safety problems related to each department of the national economy, each social group and individuals, so that the development of the social economy meets the requirements of the material and cultural life of people, meets the requirements of the society and the individuals on safety, and ensures the smooth and effective development of the social economic activities and the production and scientific research activities.
In the prior art, a fire disaster is one of the main disasters which most often and most generally threaten public safety and social development, so that the history of using fire by human beings and the history of fighting against the fire disaster are concomitant, people continuously summarize the fire occurrence rule while using fire, the fire disaster and the harm to the human beings are reduced as far as possible, people need to escape safely and quickly when encountering the fire disaster, but in the actual life, the people can only react and adjust in time after the fire disaster occurs, so that the prevention and the control before the fire disaster occur are lacked, and particularly the remote monitoring of an area where the fire disaster easily occurs is adopted.
Disclosure of Invention
1. Technical problem to be solved
Aiming at the problems in the prior art, the invention aims to provide a remote monitoring method for safety management based on a smart city, the scheme is that the burning smoke is contacted with a monitoring camera, can promote high-temperature water vapor to be liquefied and form water drops after contacting the shielding protective top cover, the supporting bulge expands after absorbing water so as to jack up the separating rubber sheet on the upper side of the supporting bulge, thereby promoting the water to contact with the effervescent disintegrant through the gap between the separation rubber sheet and the monitoring camera, thereby generating a large amount of carbon dioxide gas, on the one hand, by means of the escape of the carbon dioxide gas, a downward blowing gas can be generated, thereby reducing the possibility that the fly ash is adhered to the surface of the lens of the monitoring camera, and on the other hand, by virtue of the flame retardant effect of the carbon dioxide gas, the possibility that the fly ash particles which are not sufficiently combusted continue to be combusted can be reduced, thereby improving the protection effect on the monitoring camera.
2. Technical scheme
In order to solve the above problems, the present invention adopts the following technical solutions.
The remote monitoring method for safety management based on the smart city comprises the following steps:
s1, positioning the position where fire easily occurs in the city through a remote control center, surveying the surrounding environment, selecting a proper position to install a monitoring camera, and connecting the data transmission end of the monitoring camera with a local area network nearby;
s2, integrating local area networks where a plurality of monitoring cameras are located, connecting the local area networks with the same router through network cables, uploading video information acquired by different monitoring cameras to a cloud storage end through the router respectively, and storing and backing up the video information;
s3, downloading the updated video data in the cloud storage end through the remote control center, estimating the danger degree value of the possible fire at the corresponding geographic position in the video through observing the video information, and contacting the personnel around the position to timely correct and prevent the fire.
Further, a shielding protection top cover is connected to the upper end of the monitoring camera in the step S1, a separation rubber sheet is connected between the shielding protection top cover and the monitoring camera, an effervescent disintegrant is filled between the separation rubber sheet and the shielding protection top cover, a plurality of supporting protrusions which are uniformly distributed and are in contact with the separation rubber sheet are connected to the upper end of the monitoring camera, a plurality of flexible capsules which are uniformly distributed and are positioned on the left side of the separation rubber sheet are connected to the inner wall of the shielding protection top cover, a thermal variable hemisphere connected with the inner wall of the shielding protection top cover is arranged in the flexible capsule, the shielding protection top cover is liquefied and forms water drops after being contacted with high-temperature water vapor through the contact of burning smoke and the monitoring camera, the supporting protrusions expand after absorbing water so as to jack up the separation rubber sheet on the upper side of the supporting protrusions, and water is contacted with the effervescent disintegrant through gaps between the separation rubber sheet and the monitoring camera, therefore, a large amount of carbon dioxide gas is generated, on one hand, by means of the escape of the carbon dioxide gas, downward blowing gas can be generated, so that the possibility that the fly ash is adhered to the surface of the lens of the monitoring camera is reduced, on the other hand, by means of the flame retardant effect of the carbon dioxide gas, the possibility that the fly ash particles which are partially insufficiently combusted continue to combust can be reduced, and the protection effect on the monitoring camera is improved;
in addition, the heat of the reaction between the reductive iron powder and the air entering the effervescent disintegrant can promote the flexible capsule and the thermal change hemisphere to expand rapidly, so that the flexible capsule is converted into a round convex shape from a pointed shape in an initial state, on one hand, the hydrophilicity of the inner wall of the shielding protective top cover can be improved by means of the initial pointed shape, so that water vapor is favorably liquefied in the presence of cold and attached to the inner wall of the shielding protective top cover, on the other hand, the superhydrophobicity of the surface of the shielding protective top cover can be improved by means of the conversion of the flexible capsule into the round convex shape, so that the flowing of the formed liquid water is improved and the formed liquid water contacts with the effervescent disintegrant by simulating the mastoid on the surface of the lotus leaf, and the efficiency of the reaction of the effervescent.
Further, a built-in magnetic ball is arranged in the heat-changing hemisphere, a connecting fiber rope is connected between the separation rubber sheet and the inner wall of the shielding protective top cover, the connecting fiber rope is embedded in the effervescent disintegrant, the outer end of the connecting fiber rope is fixedly connected with a plurality of reducing iron powder which are uniformly distributed, and the air enters the right side of the separating rubber sheet by virtue of the part of the air after the separating rubber sheet is propped up, the reaction of air and the reducing iron powder can be promoted, and a large amount of heat can be released, on one hand, by means of the continuous generation of heat, can improve the efficiency of releasing carbon dioxide gas after the effervescent disintegrant contacts water, on the other hand, by means of ferroferric oxide powder generated after the reaction of reducing iron powder, can promote the connecting fiber rope to move in the effervescent disintegrant under the attraction of the built-in magnetic ball to the connecting fiber rope, thereby agitating the effervescent disintegrant, thereby increasing the efficiency of the reaction of the effervescent disintegrant with water to produce carbon dioxide gas.
Furthermore, fire detector is installed to the surveillance camera head bottom, fire detector and router signal connection can detect the conflagration through setting up fire detector to this corresponding preparation of making that can be timely reduces the possibility that the intensity of a fire lasts the expansion.
Further, support protruding being made by meeting water inflation material, support protruding through using the preparation of meeting water inflation material, can make and support protruding meeting water after-expansion to produce the gap between separation sheet rubber jack-up to separation sheet rubber and the surveillance camera head with its upside.
Furthermore, a plurality of uniformly distributed magnetic insulation particles are embedded in the thermal variable hemisphere, the magnetic insulation particles are made of nickel-titanium memory alloy materials with the nickel content of 80%, and after the thermal variable hemisphere expands, the magnetic insulation particles can relieve magnetic shielding of the flexible capsule in the thermal variable hemisphere by means of increasing the distance between the magnetic insulation particles.
Furthermore, the built-in magnetic balls are made of single-sided magnet materials, and the possibility of mutual attraction between adjacent built-in magnetic balls after the thermal change hemispheres expand can be reduced by manufacturing the built-in magnetic balls through the single-sided magnets.
Furthermore, the connecting fiber rope is made of a nickel-titanium memory alloy material, the balance temperature of the connecting fiber rope is 40 ℃, and the connecting fiber rope is made of the nickel-titanium memory alloy material, so that the temperature of the connecting fiber rope can be promoted to be recovered to a high-temperature phase state after being increased, and the effervescent disintegrant can be fully stirred and dispersed by means of deformation of the connecting fiber rope.
3. Advantageous effects
Compared with the prior art, the invention has the advantages that:
(1) the flue gas and the contact of surveillance camera head that this scheme passes through the burning, can make high temperature vapor contact and shelter from liquefaction and form the water droplet behind the protection top cap, thereby support protruding inflation after absorbing water and with the separation rubber piece jack-up of its upside, thereby make water contact with effervescent disintegrant with the help of the gap between separation rubber piece and the surveillance camera head, thereby produce a large amount of carbon dioxide gas, on the one hand with the help of carbon dioxide gas's effusion, can produce the gas that blows downwards, with this possibility of reducing the flying dust adhesion on surveillance camera head lens surface, on the other hand with the help of carbon dioxide gas's flame retardant efficiency, can reduce the possibility that the insufficient flying dust granule of partial combustion continues the burning, with this improvement to surveillance camera head's guard effect.
(2) By means of the reaction heat of the reducing iron powder and the air entering the effervescent disintegrant, the flexible capsule and the thermal change hemisphere can be promoted to expand rapidly, so that the tip shape of the flexible capsule in an initial state is converted into a round convex shape, on one hand, by means of the initial tip shape, the hydrophilicity of the inner wall of the shielding protective top cover can be improved, water vapor is favorably liquefied in the presence of cold and attached to the inner wall of the shielding protective top cover, on the other hand, by means of the conversion of the flexible capsule into the round convex shape, the superhydrophobicity of the surface of the shielding protective top cover can be improved, so that the flowing of formed liquid water is improved and the formed liquid water is contacted with the effervescent disintegrant by simulating the mastoid on the surface of lotus leaves, and the efficiency of the effervescent disintegrant reacting.
(3) A built-in magnetic ball is arranged in the heat-variable hemisphere, a connecting fiber rope is connected between the separating rubber sheet and the inner wall of the shielding protective top cover and embedded in the effervescent disintegrant, a plurality of reducing iron powders which are uniformly distributed are fixedly connected at the outer end of the connecting fiber rope, and the air of the part of the separating rubber sheet after being supported enters the right side of the separating rubber sheet, the reaction of air and the reducing iron powder can be promoted, and a large amount of heat can be released, on one hand, by means of the continuous generation of heat, can improve the efficiency of releasing carbon dioxide gas after the effervescent disintegrant contacts water, on the other hand, by means of ferroferric oxide powder generated after the reaction of reducing iron powder, can promote the connecting fiber rope to move in the effervescent disintegrant under the attraction of the built-in magnetic ball to the connecting fiber rope, thereby agitating the effervescent disintegrant, thereby increasing the efficiency of the reaction of the effervescent disintegrant with water to produce carbon dioxide gas.
(4) Fire detector is installed to the surveillance camera head bottom, and fire detector and router signal connection can be surveyed the conflagration through setting up fire detector to this can be timely make corresponding preparation, thereby reduce the possibility that the intensity of a fire lasts the expansion.
(5) The support arch is made of water-swelling material, and the support arch is made of water-swelling material, so that the support arch can expand after encountering water, and a gap is formed between the separation rubber sheet and the monitoring camera by jacking the separation rubber sheet on the upper side of the support arch.
(6) A plurality of uniformly distributed magnetic insulation particles are embedded in the thermal variable hemisphere, the magnetic insulation particles are made of nickel-titanium memory alloy materials with the nickel content of 80%, and after the thermal variable hemisphere expands, the magnetic insulation particles can relieve magnetic shielding of a flexible capsule in the thermal variable hemisphere by means of increasing the distance between the magnetic insulation particles.
(7) The built-in magnetic balls are made of single-sided magnet materials, and the possibility of mutual attraction between the adjacent built-in magnetic balls after the thermal change hemispheres expand can be reduced by using the single-sided magnets to make the built-in magnetic balls.
(8) The connecting fiber rope is made of a nickel-titanium memory alloy material, the balance temperature of the connecting fiber rope is 40 ℃, the connecting fiber rope is made of the nickel-titanium memory alloy material, the temperature of the connecting fiber rope can be promoted to be recovered to a high-temperature phase state after rising, and therefore the effervescent disintegrant can be fully stirred and dispersed by means of deformation of the connecting fiber rope.
Drawings
FIG. 1 is a block diagram of the present invention in its entirety;
FIG. 2 is a cross-sectional view of a surveillance camera head portion of the present invention;
FIG. 3 is a dynamic cross-sectional view of a surveillance camera of the present invention;
FIG. 4 is a dynamic cross-sectional view of a portion of the shield protection canopy of the present invention;
fig. 5 is a schematic view of the structure at a in fig. 4.
The reference numbers in the figures illustrate:
the system comprises a remote control center 1, a cloud storage end 2, a router 3, a monitoring camera 4, a fire detector 401, a shielding protective top cover 5, a separation rubber sheet 6, an effervescent disintegrant 7, a supporting bulge 8, a flexible capsule 9, a thermal change hemisphere 10, a built-in magnetic ball 11, a connecting fiber rope 12 and reducing iron powder 13.
Detailed Description
The drawings in the embodiments of the invention will be combined; the technical scheme in the embodiment of the invention is clearly and completely described; obviously; the described embodiments are only some of the embodiments of the invention; but not all embodiments, are based on the embodiments of the invention; all other embodiments obtained by a person skilled in the art without making any inventive step; all fall within the scope of protection of the present invention.
In the description of the present invention, it should be noted that the terms "upper", "lower", "inner", "outer", "top/bottom", and the like indicate orientations or positional relationships based on those shown in the drawings, and are only for convenience of description and simplification of description, but do not indicate or imply that the referred device or element must have a specific orientation, be constructed in a specific orientation, and be operated, and thus should not be construed as limiting the present invention. Furthermore, the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
In the description of the present invention, it should be noted that, unless otherwise explicitly specified or limited, the terms "mounted," "disposed," "sleeved/connected," "connected," and the like are to be construed broadly, e.g., "connected," which may be fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meanings of the above terms in the present invention can be understood in specific cases to those skilled in the art.
Example 1:
referring to fig. 1, the remote monitoring method for security management based on smart city includes the following steps:
s1, positioning the position where fire easily occurs in the city through the remote control center 1, surveying the surrounding environment, selecting a proper position to install the monitoring camera 4, and connecting the data transmission end of the monitoring camera 4 with a nearby local area network;
s2, integrating local area networks where a plurality of monitoring cameras 4 are located, connecting the local area networks with the same router 3 through network cables, and uploading video information acquired by different monitoring cameras 4 to the cloud storage end 2 through the router 3 for storage and backup;
s3, downloading the updated video data in the cloud storage end 2 through the remote control center 1, estimating the danger degree value of the possible fire at the corresponding geographic position in the video through observing the video information, and contacting the personnel around the position to timely correct and prevent the fire.
Referring to fig. 2-5, in S1, a shielding protection cap 5 is connected to the upper end of a monitoring camera 4, a separation rubber sheet 6 is connected between the shielding protection cap 5 and the monitoring camera 4, an effervescent disintegrant 7 is filled between the separation rubber sheet 6 and the shielding protection cap 5, a plurality of support protrusions 8 are connected to the upper end of the monitoring camera 4, the support protrusions are uniformly distributed and contact with the separation rubber sheet 6, a plurality of flexible capsules 9 are connected to the inner wall of the shielding protection cap 5, the flexible capsules 9 are connected to the inner wall of the shielding protection cap 5, a thermal variable hemisphere 10 is provided therein, the thermal variable hemisphere is connected to the inner wall of the shielding protection cap 5, the thermal variable hemisphere can cause high temperature vapor to liquefy and form water drops after contacting the shielding protection cap 5 by contacting the burning smoke with the monitoring camera 4, the support protrusions 8 expand after absorbing water to lift up the separation rubber sheet 6 on the upper side, the water is promoted to contact with the effervescent disintegrant 7 through a gap between the separation rubber sheet 6 and the monitoring camera 4, so that a large amount of carbon dioxide gas is generated, on one hand, the downward blowing gas can be generated through the escape of the carbon dioxide gas, so that the possibility that the fly ash is adhered to the lens surface of the monitoring camera 4 is reduced, on the other hand, the possibility that part of the insufficiently combusted fly ash particles continue to combust can be reduced through the flame retardant effect of the carbon dioxide gas, and the protection effect on the monitoring camera 4 is improved;
in addition, the heat of the reaction between the reducing iron powder 13 and the air entering the effervescent disintegrant 7 can promote the flexible capsule 9 and the thermal variable hemisphere 10 to expand rapidly, so that the tip shape of the flexible capsule 9 in the initial state is converted into a round convex shape, on one hand, the hydrophilicity of the inner wall of the shielding protective top cover 5 can be improved by the aid of the initial tip shape, so that water vapor is favorably liquefied in the cold and attached to the inner wall of the shielding protective top cover 5, on the other hand, the superhydrophobicity of the surface of the shielding protective top cover 5 can be improved by the aid of the conversion of the flexible capsule 9 into the round convex shape, so that the flowing of the formed liquid water is improved and the formed liquid water contacts with the effervescent disintegrant 7 by simulating the mastoid on the surface of lotus leaves, and the efficiency of the reaction of the effervescent disintegrant 7.
Referring to fig. 2 and 5, a built-in magnetic ball 11 is arranged in a thermal variation hemisphere 10, a connection fiber rope 12 is connected between the separation rubber sheet 6 and the inner wall of the shielding top cover 5, the connection fiber rope 12 is embedded in the effervescent disintegrant 7, the outer end of the connection fiber rope 12 is fixedly connected with a plurality of uniformly distributed reducing iron powders 13, the air of the supported part of the separation rubber sheet 6 enters the right side of the separation rubber sheet 6 to promote the air to react with the reducing iron powders 13 and release a large amount of heat, on one hand, the efficiency of releasing carbon dioxide gas after the contact of the effervescent disintegrant 7 and water can be improved by the continuous generation of heat, on the other hand, the connection fiber rope 12 can be promoted to move in the effervescent disintegrant 7 under the attraction effect of the built-in magnetic ball 11 by virtue of ferroferric oxide powder generated after the reaction of the reducing iron powders 13, so as to stir and disperse the effervescent disintegrant 7, thereby increasing the efficiency of the effervescent disintegrant 7 in reacting with water to form carbon dioxide gas.
Please refer to fig. 2 and fig. 3, fire detector 401 is installed to surveillance camera head 4 bottom, fire detector 401 and 3 signal connection of router, can survey the conflagration through setting up fire detector 401, with this corresponding preparation of making that can be timely, thereby reduce the possibility that the intensity of a fire lasts the expansion, support arch 8 is made by meeting water expanded material, support arch 8 through using water expanded material preparation, can make support arch 8 meet water back inflation, thereby produce the gap to separating rubber sheet 6 jack-up to separating between rubber sheet 6 and the surveillance camera head 4 with its upside.
Referring to fig. 2 and 5, a plurality of uniformly distributed magnetism insulation particles are embedded in the thermal hemisphere 10, the magnetism insulation particles are made of nickel-titanium memory alloy material with 80% of nickel content, the magnetism insulation particles can relieve magnetic shielding of the flexible capsule 9 in the thermal hemisphere 10 by increasing the distance between the magnetism insulation particles after the thermal hemisphere 10 expands, the built-in magnetic ball 11 is made of single-sided magnet material, the possibility of mutual attraction between the adjacent built-in magnetic balls 11 after the thermal hemisphere 10 expands can be reduced by making the built-in magnetic ball 11 with single-sided magnet, the connecting fiber rope 12 is made of nickel-titanium memory alloy material, the equilibrium temperature of the connecting fiber rope 12 is 40 ℃, the connecting fiber rope 12 is made of nickel-titanium memory alloy material, the temperature of the connecting fiber rope 12 can be promoted to be restored to the high-temperature phase state after being increased, and the connecting fiber rope 12 is deformed, the effervescent disintegrant 7 can be thoroughly stirred apart.
The above; but are merely preferred embodiments of the invention; the scope of the invention is not limited thereto; any person skilled in the art is within the technical scope of the present disclosure; the technical scheme and the improved concept of the invention are equally replaced or changed; are intended to be covered by the scope of the present invention.

Claims (8)

1. A remote monitoring method for safety management based on a smart city is characterized in that: the method comprises the following steps:
s1, positioning the position where fire easily occurs in the city through the remote control center (1), surveying the surrounding environment, selecting a proper position to install the monitoring camera (4), and connecting the data transmission end of the monitoring camera (4) with a local area network nearby;
s2, integrating local area networks where a plurality of monitoring cameras (4) are located, connecting the local area networks with the same router (3) through network cables, uploading video information acquired by different monitoring cameras (4) to a cloud storage end (2) through the router (3) respectively, and storing and backing up the video information;
s3, downloading the updated video data in the cloud storage end (2) through the remote control center (1), estimating the danger degree value of the possible fire at the corresponding geographic position in the video through observing the video information, and contacting the personnel around the position to timely correct and prevent the fire.
2. The smart city-based remote monitoring method for security management as claimed in claim 1, wherein: monitoring camera (4) upper end among the S1 is connected with shelters from protection top cap (5), be connected with between sheltering from protection top cap (5) and the monitoring camera (4) and separate rubber sheet (6), it has effervescent disintegrant (7) to separate between rubber sheet (6) and the protection top cap (5) of sheltering from to fill, monitoring camera (4) upper end is connected with a plurality of evenly distributed and with the support arch (8) of separating rubber sheet (6) mutual contact, shelter from protection top cap (5) inner wall connection have a plurality of evenly distributed and be located the left flexible cyst (9) of separation rubber sheet (6), be equipped with in flexible cyst (9) and shelter from protection top cap (5) inner wall connection' S heat altered hemisphere (10).
3. The smart city-based remote monitoring method for security management as claimed in claim 2, wherein: be equipped with built-in magnetism ball (11) in heat change hemisphere (10), separate rubber sheet (6) and shelter from to be connected with between protection top cap (5) the inner wall and connect fine rope (12), connect fine rope (12) and inlay and locate in effervescent disintegrant (7), connect fine rope (12) outer end fixedly connected with a plurality of evenly distributed's reducing iron powder (13).
4. The smart city-based remote monitoring method for security management as claimed in claim 3, wherein: and a fire detector (401) is installed at the bottom end of the monitoring camera (4), and the fire detector (401) is in signal connection with the router (3).
5. The smart city-based remote monitoring method for security management as claimed in claim 3, wherein: the supporting protrusions (8) are made of water-swellable material.
6. The smart city-based remote monitoring method for security management as claimed in claim 2, wherein: a plurality of uniformly distributed magnetic insulation particles are embedded in the thermal change hemisphere (10), and the magnetic insulation particles are made of nickel-titanium memory alloy materials with the nickel content of 80%.
7. The smart city-based remote monitoring method for security management as claimed in claim 3, wherein: the built-in magnetic ball (11) is made of a single-sided magnet material.
8. The smart city-based remote monitoring method for security management as claimed in claim 3, wherein: the connecting fiber rope (12) is made of a nickel-titanium memory alloy material, and the equilibrium temperature of the connecting fiber rope (12) is 40 ℃.
CN202011082869.7A 2020-10-12 2020-10-12 Remote monitoring method for safety management based on smart city Active CN112272216B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011082869.7A CN112272216B (en) 2020-10-12 2020-10-12 Remote monitoring method for safety management based on smart city

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011082869.7A CN112272216B (en) 2020-10-12 2020-10-12 Remote monitoring method for safety management based on smart city

Publications (2)

Publication Number Publication Date
CN112272216A true CN112272216A (en) 2021-01-26
CN112272216B CN112272216B (en) 2023-01-13

Family

ID=74337794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011082869.7A Active CN112272216B (en) 2020-10-12 2020-10-12 Remote monitoring method for safety management based on smart city

Country Status (1)

Country Link
CN (1) CN112272216B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379992A (en) * 2021-06-04 2021-09-10 大百科实验室设备工程(江苏)有限公司 Laboratory safety risk early warning system based on internet of things
CN114991328A (en) * 2022-06-15 2022-09-02 中国建筑第二工程局有限公司 Novel noise-reducing sound-insulating fireproof plate for building and mounting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176270A (en) * 2011-02-25 2011-09-07 广州飒特电力红外技术有限公司 Safety monitoring and fire alarming integrated system and method
CN204178495U (en) * 2014-11-19 2015-02-25 天津新海秀电子技术有限公司 A kind of video monitoring system with warning function
JP2017134790A (en) * 2016-01-29 2017-08-03 日本ドライケミカル株式会社 Disaster prevention system
CN108806163A (en) * 2018-07-27 2018-11-13 黄河科技学院 The fireproof monitoring system deployed to ensure effective monitoring and control of illegal activities based on cloud
KR102065786B1 (en) * 2018-11-20 2020-01-13 문병국 BLE communication system for smart city care

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176270A (en) * 2011-02-25 2011-09-07 广州飒特电力红外技术有限公司 Safety monitoring and fire alarming integrated system and method
CN204178495U (en) * 2014-11-19 2015-02-25 天津新海秀电子技术有限公司 A kind of video monitoring system with warning function
JP2017134790A (en) * 2016-01-29 2017-08-03 日本ドライケミカル株式会社 Disaster prevention system
CN108806163A (en) * 2018-07-27 2018-11-13 黄河科技学院 The fireproof monitoring system deployed to ensure effective monitoring and control of illegal activities based on cloud
KR102065786B1 (en) * 2018-11-20 2020-01-13 문병국 BLE communication system for smart city care

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379992A (en) * 2021-06-04 2021-09-10 大百科实验室设备工程(江苏)有限公司 Laboratory safety risk early warning system based on internet of things
CN113379992B (en) * 2021-06-04 2023-03-17 大百科实验室设备工程(江苏)有限公司 Laboratory safety risk early warning system based on internet of things
CN114991328A (en) * 2022-06-15 2022-09-02 中国建筑第二工程局有限公司 Novel noise-reducing sound-insulating fireproof plate for building and mounting method
CN114991328B (en) * 2022-06-15 2023-07-21 中国建筑第二工程局有限公司 Novel noise-reduction and sound-insulation fireproof plate for house building and installation method

Also Published As

Publication number Publication date
CN112272216B (en) 2023-01-13

Similar Documents

Publication Publication Date Title
CN112272216B (en) Remote monitoring method for safety management based on smart city
US20230408725A1 (en) Systems, Methods and Apparatus for Real-Time, Multi-Location Wildfire Surveillance, Local Parameter Acquisition, Data Transmission, and Integrated Situation Monitoring and Analysis for Improved Wildfire Management and Suppression
US8907799B2 (en) Fire detection
CN107230313A (en) A kind of building fire-fighting linked system
CN106205009B (en) Video Monitoring System for Forest Fire Prevention
Szajewska Development of the thermal imaging camera (TIC) technology
CN109389877A (en) A kind of building fire escape drilling system based on virtual reality technology
CN110363949A (en) A kind of fire alarm system and method based on Internet of Things
EP4381483A1 (en) An intelligent fire&occupant safety system and method
Masuda Disaster refuge and relief urban park system in Japan
WO2016158801A1 (en) Work planning system, work planning method, decision-making support system, computer program, and storage medium
CN115063942A (en) Fire-fighting fire re-ignition monitoring and early warning method and device, electronic equipment and storage medium
CN110459032A (en) Formula fire alarm sensing device can be shed
CN206275950U (en) Intelligent spherical monitors extinguishing device
CN106157542B (en) Secondary disaster gridding method for early warning and early warning system
KR102661212B1 (en) Firefighting drone with thermal imaging camera
CN210574172U (en) Formula of can jettisoning conflagration early warning sensing device
KR102143236B1 (en) Stand-alone temperature response automatic fire alarm device
CN105597254A (en) Image monitoring fire extinguishing device
CN215436929U (en) Unmanned aerial vehicle is surveyed to small condition of a fire
Hoehler On the development of a transparent enclosure for 360° video cameras to observe severe fires in situ
CN217588209U (en) Industrial high-sulfur-content material stockpiling fire detection and alarm system
CN211952706U (en) Emergency lighting lamp convenient to use
CN214707769U (en) Remote monitoring equipment of fire-fighting internet of things convenient for remote early warning
CN206977462U (en) A kind of fire command system based on Internet of Things

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221226

Address after: Room 301, block B, Jinan International Innovation Industrial Park, No. 2 Wanshou Road, Shizhong District, Jinan, Shandong Province, 250000

Applicant after: SHANDONG CHENGSHI ELECTRONIC TECHNOLOGY CO.,LTD.

Address before: 434000 Yueqiao village, Guanju Town, Shashi District, Jingzhou City, Hubei Province

Applicant before: Chen Zhengren

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant