CN112271144B - 一种太阳能电池耐湿热可靠性的测试方法 - Google Patents

一种太阳能电池耐湿热可靠性的测试方法 Download PDF

Info

Publication number
CN112271144B
CN112271144B CN202011089582.7A CN202011089582A CN112271144B CN 112271144 B CN112271144 B CN 112271144B CN 202011089582 A CN202011089582 A CN 202011089582A CN 112271144 B CN112271144 B CN 112271144B
Authority
CN
China
Prior art keywords
reliability
solar cell
humidity
test
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011089582.7A
Other languages
English (en)
Other versions
CN112271144A (zh
Inventor
孟凡英
刘正新
赵文婕
韩安军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202011089582.7A priority Critical patent/CN112271144B/zh
Publication of CN112271144A publication Critical patent/CN112271144A/zh
Application granted granted Critical
Publication of CN112271144B publication Critical patent/CN112271144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种太阳能电池耐湿热可靠性的测试方法,包括在太阳能电池表面喷涂钠盐溶液,然后进行耐湿热环境可靠性测试,根据可靠性测试前后的电学参数变化量,确定电池耐湿热可靠性能力。本发明可以快速有效的检验太阳电池耐环境气候的可靠性和稳定性,节约组件湿热可靠性试验时间和组件制作成本,提高耐湿热测试的效率和时效性。

Description

一种太阳能电池耐湿热可靠性的测试方法
技术领域
本发明属于太阳能电池性能测试领域,特别涉及一种太阳能电池耐湿热可靠性的测试方法。
背景技术
太阳能光伏组件标称寿命25年以上,为了保证组件的使用寿命,组件必须进行相关耐环境可靠性测试,其中耐湿热(即在温度85℃,湿度85%的环境箱内保存1000小时,或者加强环境测试3000小时)可靠性是最重要的一项测试。
目前测试电池片耐湿热可靠性的方法是通过将电池片封装成组件,在环境试验箱静置1000小时或者3000小时后,进行组件输出参数(开路电压、短路电流、填充因子、转换效率等)的测量,评估其衰减程度和可靠性。根据IEC标准,DH1000测试在双85环境中耗时2个月出结果,而DH3000测试用时6个月出结果。因此,现有方法存在DH测试时间长,对生产线电池产品可靠性品质情况反馈慢,不利于电池性能的快速优化的缺点。
发明内容
本发明所要解决的技术问题是提供一种太阳能电池耐湿热可靠性的测试方法,该方法可以快速有效的检验太阳电池耐环境气候的可靠性和稳定性,节约组件湿热可靠性试验时间和组件制作成本,提高耐湿热测试的效率和时效性。
本发明提供了一种太阳能电池耐湿热可靠性的测试方法,包括:
(1)将钠盐溶液喷涂在单体太阳能电池片表面或者将单体太阳能电池片浸泡于钠盐溶液中,随后在室温下自然干燥或以其他方式干燥,温度不高于250℃;
(2)将干燥后的电池片转移到温度为85℃、湿度为85%RH的高低温湿热交变箱中静置,进行耐湿热环境可靠性测试;根据可靠性测试前后的电学参数变化量,确定电池片耐湿热可靠性能力。
所述单体太阳能电池片为PERC电池或硅异质结电池或全背面金属接触电池(HBC)。
所述表面为单体太阳能电池片的入光面和/或背光面。
所述钠盐溶液为NaHCO3溶液,浓度为0.1-5.0%。所使用的碳酸氢钠溶液浓度可依据实际需求选择,针对不同尺寸的太阳电池,所需要的碳酸氢钠溶液质量不同,且误差范围不超过10%。
所述静置时间为10分钟至5小时。1小时实验等效于传统组件可靠性DH测试的1000小时;3小时实验等效于传统组件可靠性DH测试的3000小时。
包括开路电压、短路电流、填充因子、转换效率、反向漏电、串联电阻、并联电阻、最大输出功率等其中的一种或几种。
本发明利用钠盐溶液中的Na离子模拟太阳能电池组件封装玻璃(钠钙玻璃)中的Na离子,在湿热环境下Na离子向电池内部迁移,引起电池性能劣化,测试电池的可靠性。
有益效果
(1)本发明直接用电池片做测试,无须封装成组件即可测试其可靠性,节约成本;
(2)本发明提供的方法可以用1小时测试结果等效于常规组件DH测试1000小时;可以用3小时实验结果等效于常规组件3000小时,节约时间;
(3)本发明可以快速有效的检验太阳电池耐环境气候的可靠性和稳定性,节约组件湿热可靠性试验时间和组件制作成本,提高耐湿热测试的效率和时效性,为电池工艺快速优化提供强有力支撑。
附图说明
图1为硅异质结太阳能电池的结构示意图。
图2为不同TCO工艺对硅异质结(SHJ)太阳电池可靠性影响分析。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
以硅异质结(SHJ)太阳能电池为例,首先制备SHJ太阳能电池,其工艺流程是:原始硅片→清洗制绒→CVD制备非晶硅薄膜(包括本征非晶硅、N型非晶硅、P型非晶硅),形成PN结和NN+高低结→制作透明导电氧化物薄膜(简称TCO)→金属化技术形成电极→电性能测试分选→包装入库。硅异质结(SHJ)太阳能电池结构如图1所示。
从上述SHJ太阳能电池工艺流程可以发现,影响太阳电池和组件可靠性的部分包括:硅片品质、非晶硅薄膜结构和缺陷特性、TCO材料成分和结构、金属电极等。
本实施例以检验不同TCO材料对SHJ太阳电池可靠性影响为例,进行测试过程说明:(1)选择TCO材料base工艺的单体太阳能电池片不少于10片,分成2组,每组不少于5片,1组做正面涂钠,另1组做背面涂钠;
(2)改变TCO工艺,比如调整制作过程中氧分压,改变3个TCO工艺制作3批电池,选择每批电池片不少于10片电池,分成2组,每组不少于5片,其中1组做正面涂钠,另一组做背面涂钠;
(3)配置浓度为3.0-5.0%的NaHCO3溶液;
(4)将碳酸氢钠水溶液均匀喷涂在单体太阳电池片的正表面或者背表面,在室温条件下自然干燥;
(5)将自然干燥后的电池片需放置在温度为85℃,湿度为85%RH的高低温湿热交变环境试验箱中1h,进行耐湿热环境可靠性测试;
(6)在环境试验箱测试结束后,测试所有太阳电池的电性能参数,包括开路电压(Voc)、短路电流(Isc)、填充因子(FF)、转换效率(Eta)、串联电阻(Rs)、并联电阻(Rsh)、反向漏电流(IRev2)、最大输出功率(Pmpp)等。
(7)根据太阳电池表面涂钠可靠性测试前后电学参数变化量,判断新工艺材料带来的太阳电池耐湿热可靠性能力的强弱,如图2所示。图2中,TCO工艺3是基准base工艺,当改变TCO条件,如TCO工艺1、TCO工艺2、TCO工艺4,制作3批电池,可以发现改变TCO工艺对正面影响较小,通常效率衰减率不超过3%,但TCO背面工艺对电池可靠性影响较明显,当采用TCO-base工艺时,效率衰减率为18.54%,当采用TCO工艺2时衰减上升至24%以上,TCO工艺1、4能有效降低衰减,尤其是TCO工艺4,可以将衰减率控制在10%,明显改善了电池可靠性。可见,本实施例为材料优化并满足可靠性要求提供了非常快捷有效的方法。
以此类推,当调整和优化其他材料工艺,如硅片、非晶硅、金属电极的情况下,也可以采用本发明的方法进行可靠性测试,与base比对,从而判断其可靠性能力的强弱。
硅异质结太阳电池正面可靠性较好,容易导致可靠性失效的主要是背面材料工艺。采用本发明专利的方法,通过比对功能材料优化前后太阳电池各项参数的变化,尤其是太阳电池的效率或功率变化程度来判断电池的耐环境可靠性,可以快速为太阳电池新材料和新技术改进提供思路和依据。

Claims (3)

1.一种太阳能电池耐湿热可靠性的测试方法,包括:
(1)将钠盐溶液喷涂在单体太阳能电池片表面或者将单体太阳能电池片浸泡于钠盐溶液中,随后在室温下自然干燥或以其他方式干燥,温度不高于250℃;其中,所述钠盐溶液为NaHCO3溶液,浓度为0.1-5.0%;
(2)将干燥后的电池片转移到温度为85℃、湿度为85%RH的高低温湿热交变箱中静置,进行耐湿热环境可靠性测试;根据可靠性测试前后的电学参数变化量,确定电池片耐湿热可靠性能力;其中,所述静置时间为10分钟至5小时;所述电学参数包括开路电压、短路电流、填充因子、转换效率、反向漏电、串联电阻、并联电阻、最大输出功率其中的一种或几种。
2.根据权利要求1所述的测试方法,其特征在于:所述单体太阳能电池片为PERC电池或硅异质结电池。
3.根据权利要求1所述的测试方法,其特征在于:所述表面为单体太阳能电池片的入光面和/或背光面。
CN202011089582.7A 2020-10-13 2020-10-13 一种太阳能电池耐湿热可靠性的测试方法 Active CN112271144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011089582.7A CN112271144B (zh) 2020-10-13 2020-10-13 一种太阳能电池耐湿热可靠性的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011089582.7A CN112271144B (zh) 2020-10-13 2020-10-13 一种太阳能电池耐湿热可靠性的测试方法

Publications (2)

Publication Number Publication Date
CN112271144A CN112271144A (zh) 2021-01-26
CN112271144B true CN112271144B (zh) 2024-01-30

Family

ID=74337967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011089582.7A Active CN112271144B (zh) 2020-10-13 2020-10-13 一种太阳能电池耐湿热可靠性的测试方法

Country Status (1)

Country Link
CN (1) CN112271144B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154626A (zh) * 2010-12-31 2011-08-17 常州天合光能有限公司 一种测量硅片扩散长度的表面处理方法
CN204088270U (zh) * 2014-07-08 2015-01-07 浙江格普新能源科技有限公司 一种太阳能电池板的湿热测试装置
CN108511553A (zh) * 2018-06-11 2018-09-07 西南石油大学 一种高耐候性异质结太阳电池
CN109103290A (zh) * 2018-08-09 2018-12-28 苏州福斯特光伏材料有限公司 太阳能电池封装用的阻燃背板及太阳能电池组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054326B2 (ja) * 2006-05-01 2012-10-24 昭和シェル石油株式会社 Cis系薄膜太陽電池モジュールの改良された耐久性試験方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154626A (zh) * 2010-12-31 2011-08-17 常州天合光能有限公司 一种测量硅片扩散长度的表面处理方法
CN204088270U (zh) * 2014-07-08 2015-01-07 浙江格普新能源科技有限公司 一种太阳能电池板的湿热测试装置
CN108511553A (zh) * 2018-06-11 2018-09-07 西南石油大学 一种高耐候性异质结太阳电池
CN109103290A (zh) * 2018-08-09 2018-12-28 苏州福斯特光伏材料有限公司 太阳能电池封装用的阻燃背板及太阳能电池组件

Also Published As

Publication number Publication date
CN112271144A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
Sai et al. Potential of very thin and high‐efficiency silicon heterojunction solar cells
Hacke et al. Test-to-failure of crystalline silicon modules
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
Bunea et al. Low light performance of mono-crystalline silicon solar cells
CN114551636B (zh) 一种高效异质结太阳能电池及制备方法
EP2763190B1 (en) Heat treatment process of solar cells
Yamamoto et al. Thin film silicon solar cell and module
Xiong et al. PV module durability testing under high voltage biased damp heat conditions
Bätzner et al. Properties of high efficiency silicon heterojunction cells
Zaraket et al. Capacitance evolution of PV solar modules under thermal stress
Bunea et al. Simulation and characterization of high efficiency back contact cells for low-concentration photovoltaics
Kobayashi et al. Heterojunction solar cells with 23% efficiency on n‐type epitaxial kerfless silicon wafers
Farshchi et al. Mechanisms for light-soaking induced carrier concentration changes in the absorber layer of Cu (In, Ga) Se 2 solar cells
CN112271144B (zh) 一种太阳能电池耐湿热可靠性的测试方法
Stodolny et al. PID-and UVID-free n-type solar cells and modules
Hamelmann et al. Light-induced degradation of thin film silicon solar cells
Fathil et al. The impact of minority carrier lifetime and carrier concentration on the efficiency of CIGS solar cell
Condorelli et al. Initial results of enel green power silicon heterojunction factory and strategies for improvements
Condorelli et al. High efficiency hetero-junction: from pilot line to industrial production
CN111739986A (zh) 一种提高高效晶硅异质结太阳能电池短路电流的方法
CN114613882B (zh) 一种异质结电池的处理方法
Guha et al. Science and technology of amorphous silicon alloy photovoltaics
CN109037034A (zh) 硒化锑薄膜及其制备方法、应用其的太阳能电池
CN102169924A (zh) 晶体硅太阳能电池及其钝化方法
Jiang et al. Test and analysis of potential induced degradation in crystalline silicon PV modules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant