CN112268542B - 一种风电机组塔筒倾斜角的检测方法及测量装置 - Google Patents

一种风电机组塔筒倾斜角的检测方法及测量装置 Download PDF

Info

Publication number
CN112268542B
CN112268542B CN202011145712.4A CN202011145712A CN112268542B CN 112268542 B CN112268542 B CN 112268542B CN 202011145712 A CN202011145712 A CN 202011145712A CN 112268542 B CN112268542 B CN 112268542B
Authority
CN
China
Prior art keywords
measuring
point
tower
laser
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011145712.4A
Other languages
English (en)
Other versions
CN112268542A (zh
Inventor
何婧琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Concrete Technology Co ltd
Original Assignee
Hunan Concrete Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Concrete Technology Co ltd filed Critical Hunan Concrete Technology Co ltd
Priority to CN202011145712.4A priority Critical patent/CN112268542B/zh
Publication of CN112268542A publication Critical patent/CN112268542A/zh
Application granted granted Critical
Publication of CN112268542B publication Critical patent/CN112268542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开了一种风电机组塔筒倾斜角的检测方法及测量装置,该检测方法通过在基础环内同一标高面上取三个或三个以上的点进行测量,计算出该标高面的空间平面方程,然后通过计算空间平面方程与水平面的夹角,得出风机基础环倾斜角,使用该方法可精确计算得到基础环的倾斜度,而且可减少误差,并可提高测量效率;本发明还提供一种测量装置,使用本发明所提供的测量装置,可准确测量并计算得到基础环同一标高面上的任一点的空间坐标,通过至少三个点的空间坐标计算该标高面的空间平面方程,根据该平面方程计算出该标高面与水平面的夹角,从而得到基础环的倾斜角。

Description

一种风电机组塔筒倾斜角的检测方法及测量装置
技术领域
本发明涉及风电机组塔筒技术领域,具体涉及一种风电机组塔筒倾斜角的检测方法及检测设备。
背景技术
风力发电机组通常由上部的机舱、叶片,中部的钢结构塔筒1和下部的钢筋混凝土基础4组成(图1)。钢结构塔筒与钢筋混凝土基础的联结有多种形式,包括基础环安装和锚栓安装,无论采用哪种形式安装,在风机运行过程中,塔筒会发生摆动和扭转,塔筒底部(即塔基)需要承受塔筒上部传递过来的往复弯矩和扭矩,使得与塔基连接的基底(与钢筋混凝土联结的部分)需要承受塔筒上部传递过来的往复弯矩和扭矩,在这种往复荷载的长期作用下,钢筋混凝土基础由于不均匀沉降或局部破损会导致基底发生倾斜,进而导致塔筒倾斜。风机顶端的偏移量可达塔基偏移量的H/D倍,其中,H为风机轮毂高度,D为塔基直径,例如H=80m,D=4m,则为20倍,风机塔筒倾斜过大会导致风机发生安全事故,因此需要对塔基的倾斜角度定期检测,以了解风机的安全状况,以避免发生风机事故。
目前工程中采用全站仪、水准仪等光学仪器进行测量,但现有的测量方式均存在以下不足:1)测量时需要根据现场的视线遮挡情况确定圆环标高面上测点的位置,并确定各测点之间的空间关系,比如确定测点之间的夹角或距离等,再根据各测点的数据计算出圆环标高面的倾角,而测点的布置过程耗时费力,大大降低了测量效率;2)光学测量仪器需要对焦、读数,这个过程易受到测量人员的主观影响。
发明内容
针对现有技术中存在的上述技术问题,本发明的目的之一在于提供一种风电机组塔筒倾斜角的检测方法,通过该方法,可精确测量计算所述塔筒的倾斜角度,减少测量误差,而且可提高测量效率,减少测量人员对测量结果的影响。
为了实现上述目的,本发明的技术方案如下:
一种风电机组塔筒倾斜角的检测方法,包括以下步骤:
S1:在所述塔筒内任取一点O,取经过O点并平行于大地水平面的平面为水平面;
S2:在所述塔筒内同一标高面上任取不在同一直线上的点B1、B2…Bn,其中,n≥3;
S3:由点B1、B2…Bn分别做垂线与所述水平面相交分别形成交点A1、A2…An
S4:以O为原点,建立平面极坐标系,所述平面极坐标系与过O点的垂线Z轴共同形成三维坐标系,以OA1、OA2…OAn其中一条水平线作为角度起始轴,分别测量其他所述水平线与所述起始轴之间的夹角;
S5:分别测量线段OA1、OA2…OAn的长度以及线段A1B1、A2B2、…AnBn的长度;
S6:根据步骤S4所测得的夹角和步骤S5测得的OA1、OA2…OAn的长度以及线段A1B1、A2B2、…AnBn的长度,确定点B1、B2…Bn的空间坐标;
S7:根据点B1、B2…Bn的空间坐标计算所述标高面的空间平面方程;
S8:根据所述标高面的空间平面方程计算所述标高面与大地水平面的夹角,所述夹角为所述塔筒的倾斜角。
进一步地,上述的检测方法中点B1、B2…Bn的空间坐标由测量装置测量并计算而得。
进一步地,所述测量装置包括底板、调平螺母、底盘、轴杆、旋转盘和标靶,所述底板、调平螺母、底盘、轴杆和旋转盘从下到上依次设置,所述底盘上垂直设有第一激光系统,所述第一激光系统能够发射向上并平行于所述底盘的中轴线的第一测距激光;所述轴杆上固定设有一斜盘,所述轴杆的一端可转动地设置于所述底盘上、另一端与所述旋转盘固定连接,所述底盘、所述轴杆、所述旋转盘三者的中轴线重合;所述旋转盘包括上水平支撑面和下水平支撑面,所述上水平支撑面和下水平支撑面的中轴位置分别固定一水平仪和第二激光系统,所述第二激光系统能向一侧发射呈固定距离的第二测距激光和第三测距激光,所述第二测距激光与第三测距激光与所述中轴线垂直,第二测距激光、第三测距激光和所述中轴线在同一平面上;所述标靶包括依次连接的球形磁性部件、连杆和圆锥体,所述球形磁性部件、连杆和圆锥体三者的中轴线重合,每个所述标靶尺寸一致。
进一步地,所述底盘上设有一轴管,所述轴管与所述底盘的中轴线重合,所述轴杆可转动地嵌套于所述轴管中。
进一步地,所述水平仪为双轴倾角仪。
进一步地,所述圆锥体的正投影呈等腰直角三角形形状。
进一步地,所述底板下方固定设有支架,所述支架可调节所述测量装置在竖直方向上的高度。
进一步地,所述点B1、B2…Bn的空间坐标的测量方法包括以下步骤:
步骤一:将所述测量装置固定于所述塔筒内部,调节该测量装置使所述底盘与所述水平面平行;
步骤二:选取所述塔筒内同一标高面上的点B1、B2…Bn,将所述标靶的球形磁性部件分别安装在所述点B1、B2…Bn上,且每个所述标靶的球形磁性部件安装在所述点B1、B2…Bn的部位相同,并且每个标靶的连杆与第二激光系统发射的第二测距激光垂直;其中,n≥3;
步骤三:调节所述测量装置的高度,使所述第二激光系统的第二测距激光投射在所述标靶的连杆上,且第三测距激光投射在圆锥体的侧面上;
步骤四:以所述步骤二中的其中一个点为起始点,始终保持顺时针或逆时针方向旋转所述旋转盘使所述第二测距激光和第三测距激光依次对准各个所述标靶的连杆和圆锥体,测量并计算得到步骤二中点B1、B2…Bn的空间坐标。
本发明的目的之二在于提供一种风电机组塔筒倾斜角的测量装置,所述测量装置包括底板、调平螺母、底盘、轴杆、旋转盘和标靶,所述底板、调平螺母、底盘、轴杆和旋转盘从下到上依次设置,所述底盘上垂直设有第一激光系统,所述第一激光系统能够发射向上并平行于所述底盘的中轴线的第一测距激光;所述轴杆上固定设有一斜盘,所述轴杆的一端可转动地设置于所述底盘上、另一端与所述旋转盘固定连接,所述底盘、所述轴杆、所述旋转盘三者的中轴线重合;所述旋转盘包括上水平支撑面和下水平支撑面,所述上水平支撑面和下水平支撑面的中轴位置分别固定一水平仪和第二激光系统,所述第二激光系统能向一侧发射呈固定距离的第二测距激光和第三测距激光,所述第二测距激光和第三测距激光分别与所述中轴线垂直,第二测距激光、第三测距激光和所述中轴线在同一平面上;所述标靶包括依次连接的球形磁性部件、连杆和圆锥体,所述球形磁性部件、连杆和圆锥体的中轴线重合,每个所述标靶尺寸一致。
进一步地,所述圆锥体的正投影呈等腰直角三角形形状。
相较于现有技术,本发明的有益效果如下:
本发明采用不在同一直线上的三个点确定一个平面的原理,通过确定风电机组塔筒同一标高面上的三个点的空间极坐标,根据空间平面方程f(φ,L,Z),计算出所述标高面的空间平面方程,然后通过公式计算所述标高面与大地水平面(或所述水平面)的夹角,该夹角即为所述塔筒的倾斜角。通过本发明的检测方法,可精确计算出所述塔筒的倾斜角,且无需通过在所述塔筒中测量多个点即可准确得到所述塔筒的倾斜角,操作方便且减少检测次数和流程。
为了快速准确得到所述标高面上的点的空间坐标,本发明提供的测量装置,包括底板、调平螺母、底盘、轴杆、旋转盘和标靶,所述底板、调平螺母、底盘、轴杆和旋转盘从下到上依次设置,所述底盘上垂直设有第一激光系统,所述第一激光系统能够发射向上并平行于所述底盘的中轴线的第一测距激光;所述轴杆上固定设有一斜盘,所述轴杆的一端可转动地设置于所述底盘上、另一端与所述旋转盘固定连接,所述底盘、所述轴杆、所述旋转盘三者的中轴线重合;所述旋转盘包括上水平支撑面和下水平支撑面,所述上水平支撑面和下水平支撑面的中轴位置分别固定一水平仪和第二激光系统,所述第二激光系统能向一侧发射呈固定距离的第二测距激光和第三测距激光,所述第二测距激光和第三测距激光分别与所述中轴线垂直,第二测距激光、第三测距激光和所述中轴线在同一平面上;所述标靶包括依次连接的球形磁性部件、连杆和圆锥体,所述球形磁性部件、连杆和圆锥体的中轴线重合,每个标靶的尺寸一致。安装时,使所述标靶的连杆与第二测距激光垂直,并且通过调节该测量装置的高度,使得第二测距激光投射在所述标靶的连杆上、第三测距激光投射在所述标靶的圆锥体侧面上。使用时,将标靶的球形磁性部件的同一部位分别安装在同一标高面的测量点上,然后标靶的连杆与第二测距激光垂直;调节该测量装置在竖直方向的位置,使得第二测距激光投射在标靶的连杆上、第三测距激光投射在标靶的圆锥体侧面上,因标靶的连杆垂直于第二测距激光,而每个标靶的球形磁性部件在测量点安装的部位相同,因此可测得每个标靶的高度,以测量点中最低点所在的水平面建立平面极坐标,与测量装置的旋转盘(或轴杆或底盘)的中轴线共同形成三维坐标系,该测量点在该三维坐标系中的高度(Z值)为0,其他测量点在该三维坐标系中的高度(即Z值)分别为其他测量点的高度测量值减去该测量点的高度测量值,从而得出其他测量点在Z轴上的坐标;因轴杆的一端可转动地设置于底盘上、另一端与旋转盘连接,且轴杆上固定设有一斜盘,当旋转所述旋转盘时,旋转盘带动所述轴杆旋转,以带动轴杆上的斜盘旋转,因斜盘所在的平面的空间平面方程是固定的,并且斜盘旋转一定角度时,通过第一测距激光发射的光在斜盘上投射的点,可确定该点在Z轴上的读数,而第一测距激光在X轴上的位置固定,根据空间平面方程f(φ,L,Z),计算得到该点与起始点的夹角φ,该夹角即为塔筒同一标高面上的点在水平面上的投影到起始点在水平面上的投影的夹角。以测量点中最低点所在的水平面建立平面极坐标,与旋转盘(或底盘或轴杆)的中轴线共同形成三维坐标系,通过计算确定测量点的三维空间坐标,然后计算出不在同一直线上的至少三个测量点所在的标高面的空间平面方程,接着计算出该标高面与水平面的夹角,该夹角即为所述塔筒的倾斜角。
使用本发明所提供的测量装置,可准确测量并计算得到所述塔筒同一标高面上的任一点的空间坐标,通过不在同一直线上的至少三个点的空间坐标计算该标高面的空间平面方程,根据该平面方程计算出该标高面与水平面的夹角,从而得到所述塔筒的倾斜角。而且测量精确,还可以提高测量效率,减少测量人员主观对测量结果的影响。
附图说明
图1为本发明实施例风机结构示意图。
图2为本发明实施例基础环结构示意图。
图3为本发明实施例基础环与塔筒接触处的结构示意图。
图4为本发明所提供的检测方法的原理图。
图5为图4上的a、b、c三点在平面M上的投影图。
图6为本发明实施例的测量装置结构示意图。
图7为本发明实施例的测量装置的标靶的结构示意图。
图8为本发明测量装置进行测量的示意图。
图9为实施例中,当斜盘随着轴杆旋转时,第一测距激光在斜盘上投射的示意图。
附图标识说明:
1-塔筒,11-塔筒上法兰,2-基础环,21-基础环上法兰,3-螺栓,31-球形磁性部件,32-连杆,33-圆锥体,4-钢筋混凝土基础,5-底板,51-支架,6-调平螺母,7-底盘,71-第一激光系统,72-轴管,8-轴杆,9-旋转盘,91-上水平支撑面,92-下水平支撑面,93-第二激光系统,94-水平仪,10-斜盘,J1-第二测距激光,J2-第三测距激光,J3-第一测距激光。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
关于本申请中的术语“同一标高面”,是指圆筒形工业产品在未发生偏移(圆筒与大地水平面垂直)时,大地水平面与圆筒的交线。
本实施例的风电机组塔筒与钢筋混凝土的联结形式为基础环式联结,如图2,基础环2通过螺栓3与塔筒1联结,具体地,如图3,基础环上法兰21与塔筒上法兰11通过螺栓3联结。
本发明所提供的风机基础环检测方法,其原理如下:
如图4-5,在塔筒内任取一点O,过O点作水平面,塔筒任一标高面N上任取三点a、b、c,点a、b、c在所述水平面M上的投影分别为A、B、C。
OA、OB、OC的长度分别为LA、LB、LC,AOB、BOC的夹角分别为α、β,Aa、Bb、Cc的长度分别为ZA、ZB、ZC
以O点为原点,建立平面极坐标系,以过O点的垂线为Z轴,该平面极坐标系与Z轴共同形成三维坐标系。若以OA为角度起始轴,那么a、b、c三点的空间坐标分别为(0,LA,ZA)、(α,LB、ZB)、(α+β、LC、ZC);
若点c为最低点,过点c作水平面,以该水平面建立极坐标系,并与Z轴共同形成三维坐标系,以OA为角度起始轴,那么a、b、c三点的空间坐标分别为(0,LA、ZA-ZC)、(α,LB、ZB-ZC)、(α+β、LC、0);
已知a、b、c三点的空间坐标,根据不在同一直线上的三点确定一个平面的原理,因a、b、c三点位于塔筒内的同一标高面上,因此可通过a、b、c三点确定该标高面的空间平面方程,从而计算出该标高面与水平面的夹角θ,该夹角θ即为塔筒的倾斜角。
综上可知,如能测得三个测点在同一水平面上的投影的夹角α和β、测点之间的高度差,以及测点至Z轴的距离L,就能通过计算得到塔筒的倾斜角。
为了便于测量a、b、c三点的高度,本发明通过检测装置进行测量,具体如图6-7所示,本实施例提供的风机基础环倾斜角的检测装置,包括底板5、调平螺母6、底盘7、轴杆8、旋转盘9和标靶,底板5、调平螺母6、底盘7、轴杆8和旋转盘9从下到上依次设置,底盘7上垂直设有第一激光系统71,第一激光系统71能够发射向上并平行于底盘的中轴线S1的第一测距激光J3;轴杆8上固定设有一斜盘10,轴杆8的一端可转动地设置于底盘7上、另一端与旋转盘9固定连接,旋转旋转盘9可带动轴杆8绕自身中轴线360°旋转,轴杆8的旋转可带动斜盘10同角度同方向旋转。底盘7、轴杆8和旋转盘9三者的中轴线重合。旋转盘9包括上水平支撑面91和下水平支撑面92,上水平支撑面91和下水平支撑面92的中心位置分别固定第二激光系统93和水平仪94,第二激光系统93能向一侧发射呈固定距离的第二测距激光J1和第三测距激光J2,第二测距激光J1和第三测距激光J2分别中轴线S1垂直且三者在同一平面上;标靶包括依次连接的球形磁性部件31、连杆32和圆锥体33,球形磁性部件31、连杆32和圆锥体33的中轴线重合,每个标靶的尺寸一致。本实施例中,连杆32呈管状且外径很小,相对于连杆的长度,其外径可忽略;而且连杆32和圆锥体33均由金属制成,因球形磁性部件31具备磁性,球形磁性部件31、连杆32和圆锥体33三者之间通过磁力连接并在竖直方向保持动态平衡状态,即球形磁性部件31的任意部位吸附于其他金属上,连杆32和圆锥体33始终位于球形磁性部件31的底部且呈连杆32呈竖直状态。
具体地,本实施例中,水平仪94为双轴倾角仪;底板5下方还固定有一支架51,支架51可调节测量装置在与大地水平面垂直的方向(即竖直方向)上的高度。
具体地,以下结合图8对本发明测量装置的使用进行详细说明。
基础环2安装时,所有基础环上法兰21下表面最靠近基础环2圆心的点形成一个标高面,本实施例中,以每个基础环上法兰21下表面最靠近基础环2圆心的点为测量点,标靶分别安装于每个测量点上,安装时,因球形磁性部件31具备磁性,而法兰为金属,将球形磁性部件31的顶部固定于测量点上,然后依次连接连杆32和圆锥体33,连杆32和圆锥体33在磁力作用下在竖直方向上保持平衡。
将该测量装置用于测量时,先将支架51固定于基础环2内部任一位置,将测量装置固定于支架51上,通过调节平衡螺母6使双轴倾角仪与大地水平面平行,从而使底盘7与大地水平面平行、底盘7的中轴线S1与大地水平面垂直。因第一激光系统71垂直设在底盘7上,由第一激光系统71发射的第一测距激光J3保持与大地水平面垂直;因第二测距激光J1和第三测距激光J2与底盘7的中轴线S1垂直且位于同一平面上,因此第二测距激光J1和第三测距激光J2分别与大地水平面平行。任选标高面上的三个测量点,将标靶分别安装于每个测量点上,安装时,标靶的球形磁性部件31顶部依靠磁力附着于测量点上。
在进行测量前,先上下调节支架51的高度,以调节第二激光系统93的高度,使得第二测距激光J1和第三测距激光J2投射在每个标靶上时,第二测距激光J1投射在标靶的连杆32上、第三测距激光J2投射在圆锥体33的侧面上。标靶安装完成后,以经过第三测距激光J2并平行于大地水平面的平面为水平面,以底盘7中轴线S1为Z轴建立极坐标系;以其中一个标靶所在的测量点为起始点,打开第一、第二、第三测距激光,如图8-9,使第一测距激光J3投射在斜盘10上、第二测距激光J1投射在标靶的连杆32上、第三测距激光J2投射在标靶的圆锥体33的侧面上,此时,起始点在极坐标系中的极坐标为(0,L1,Z1),而第一测距激光J3投射在斜盘10上的第一个点的极坐标为(0,l1,z1);逆时针方向旋转旋转盘9,使第二、第三测距激光投射在第二个标靶上,此时,旋转盘9旋转的角度为α,第一测距激光投射在斜盘上的第二个点的极坐标为(α,l2,z2),测得第二个标靶所在的测量点的极坐标为(α,L2,Z2);继续逆时针方向旋转旋转盘9,使第二测距激光J2投射在第三个点的标靶上,此时,旋转盘9旋转的角度为β,第一测距激光J3投射在斜盘10上的第三个点的极坐标为(α+β,l3,z3),第三个标靶所在的点的极坐标为(α+β,L3,Z3)。
因斜盘10固定于轴杆8上,因此斜盘10的空间平面方程是固定的,斜盘10的平面方程为已知,而第一测距激光J3在底盘7上的位置固定,则第一测距激光J3与底盘7的中轴线S1(极坐标的Z轴)的距离是固定的,因此l1、l2、l3为已知,z1、z2、z3分别由第一测距激光J3测量而得,第一测距激光J3投射在斜盘10上的第一个点时的读数,即为z1,同理,第一测距激光J3投射在斜盘10上的第二个点、第三个点的读数分别为z2和z3,由此,根据空间平面方程f(φ,L,Z),计算得到α、α+β,进而算出β。该测量装置进行测量时,斜盘10与旋转盘9的旋转方向和角度相同,因此,α和β即分别为第二测距激光J1从第一测量点到第二测量点、第二测量点到第三测量点的旋转角度。而因标靶的连杆32的外径足够小可忽略,因此,第二测距激光投射在每个标靶的连杆30时的读数即为每个测量点到Z轴的距离L,即L1、L2、L3可通过第二测距激光J1测量直接得到,第二测距激光J1投射在每个标靶上的读数即分别为L1、L2、L3;Z1、Z2、Z3通过第二测距激光J1和第三测距激光J2测量并计算而得,如图8,以第一个测量点a的高度Z1为具体说明,具体测量和计算方式为:靶标的尺寸一样,每个标靶的连杆32长度相同,当第二测距激光J1和第三测距激光J2投射在该连杆32标靶上时,第三测距激光J2的读数比第二测距激光J1的读数小△L,ω为圆锥体的正投影斜边与底边的夹角,根据“两直线平行,内错角相等”的原理,ω为已知,由公式△H=△L·tanω,计算得到△H;因标靶的尺寸一致,因此,球形磁性部件的顶部与连杆底部之间的距离一致,假设该距离为H,若以经过J2的水平面为参照面,则三个测量点的Z1、Z2、Z3分别为H+△H1、H+△H2、H+△H3
假设三个测量点中,第三个测量点为最低点,以三个测量点中最低点所在的水平面建立平面极坐标,与底盘(或轴杆或旋转盘)的中轴线(该中轴线垂直于该水平面)共同形成三维坐标系,则第一个测量点的极坐标为(0,L1,Z1-Z3),第二个测量点的极坐标为(α,L2,Z2-Z3),第三个测量点的极坐标为(α+β,L3,0)。确定三个点的极坐标后,通过平面方程f(φ,L,Z)计算出三个测量点所在的标高面的平面方程,接着根据该平面方程计算出平面方程与水平面的夹角,该夹角即为塔筒的倾斜角。
进一步地,为了使轴杆8在底盘7上旋转时不发生倾斜或偏移,底盘7的中心位置设有垂直于底盘的轴管72,轴杆8可旋转地嵌套于轴管72中。
进一步地,为了便于△H的计算,圆锥体的正投影呈等腰直角三角形形状,该正投影的底边与斜边的夹角为45°,通过J1与J2的读数差值即可得到△H的值。
除此之外,虽然本实施例中,球形磁性部件通过磁力作用使整个标靶安装于测量点上,但并不说明该球形磁性部件仅能通过磁力作用安装于测量点上,也不能限定为测量点仅限为金属材质,若测量点不是金属材质不能通过磁力作用与球形磁性部件连接,还可通过外物辅助作用将球形磁性部件于测量点连接,比如通过粘结剂粘接等方式也可使球形磁性部件安装于测量点上,从而实现标靶的安装。
通过本发明所提供的方案,可快速精确得到基础环的倾斜角,操作方便;而且可提高测量效率,减少测量人员对测量结果的影响。
需要说明的是,本申请中所提到的标靶的尺寸一致,是指每个标靶的球形磁性部件、连杆和圆锥体的尺寸和形状均一致。另外,测量点可不仅限于三个,可为三个以上,测量点越多,测量精确度随之增加。而且,本发明所提供的方法和测量装置不仅限于能够用于上述具体实施例,除了本发明具体实施例之外,本发明的方法和测量装置还可适用于采用其他形式安装的风电机组塔筒,如锚栓安装等,或者任意安装方式,除此之外,本发明提供的测量装置不仅可应用于与钢筋混凝土联结的基底,还可在塔筒任意位置进行测量,只要能在塔筒上找到标高面并可安装本发明的测量装置,并且能够调节测量装置使得该测量装置的第二测距激光和第三测距激光分别位于连杆和圆锥体的侧面上,即可采用本发明所提供的方法测量风电机组塔筒的倾斜角。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种风电机组塔筒倾斜角的测量装置,其特征在于,包括底板、调平螺母、底盘、轴杆、旋转盘和标靶,所述底板、调平螺母、底盘、轴杆和旋转盘从下到上依次设置,所述底盘上垂直设有第一激光系统,所述第一激光系统能够发射向上并平行于所述底盘的中轴线的第一测距激光;所述轴杆上固定设有一斜盘,所述轴杆的一端可转动地设置于所述底盘上、另一端与所述旋转盘固定连接,所述底盘、所述轴杆、所述旋转盘三者的中轴线重合;所述旋转盘包括上水平支撑面和下水平支撑面,所述上水平支撑面和下水平支撑面的中轴位置分别固定一水平仪和第二激光系统,所述第二激光系统能向一侧发射呈固定距离的第二测距激光和第三测距激光,所述第二测距激光与第三测距激光与所述中轴线垂直,第二测距激光、第三测距激光和所述中轴线在同一平面上,使第一测距激光投射在斜盘上、第二测距激光投射在标靶的连杆上、第三测距激光投射在标靶的圆锥体的侧面上;所述标靶包括依次连接的球形磁性部件、连杆和圆锥体,所述球形磁性部件、连杆和圆锥体的中轴线重合,每个标靶的尺寸一致,所述圆锥体的正投影呈等腰直角三角形形状。
2.根据权利要求1所述的一种风电机组塔筒倾斜角的测量装置的检测方法,其特征在于,包括以下步骤:
S1:在所述塔筒内任取一点O,取经过O点并平行于大地水平面的平面为水平面;
S2:在所述塔筒内同一标高面上任取不在同一直线上的点B1、B2…Bn,其中,n≥3;
S3:由点B1、B2…Bn分别做垂线与所述水平面相交分别形成交点A1、A2…An
S4:以O为原点,建立平面极坐标系,所述平面极坐标系与过O点的垂线Z轴共同形成三维坐标系,以OA1、OA2…OAn其中一条水平线作为角度起始轴,分别测量其他所述水平线与所述起始轴之间的夹角;
S5:分别测量线段OA1、OA2…OAn的长度以及线段A1B1、A2B2、…AnBn的长度;
S6:根据步骤S4所测得的夹角和步骤S5测得的OA1、OA2…OAn的长度以及线段A1B1、A2B2、…AnBn的长度,确定点B1、B2…Bn的空间极坐标;
S7:根据点B1、B2…Bn的空间极坐标计算所述标高面的空间平面方程;
S8:根据所述标高面的空间平面方程计算所述标高面与大地水平面的夹角,所述夹角为所述塔筒的倾斜角。
3.根据权利要求2所述的风电机组塔筒倾斜角的测量装置的检测方法,其特征在于,所述点B1、B2…Bn的空间坐标由测量装置测量并计算而得。
4.根据权利要求1所述的风电机组塔筒倾斜角的测量装置,其特征在于,所述底盘上设有一轴管,所述轴管与所述底盘的中轴线重合,所述轴杆可转动地嵌套于所述轴管中。
5.根据权利要求1所述的风电机组塔筒倾斜角的测量装置,其特征在于,所述水平仪为双轴倾角仪。
6.根据权利要求1所述的风电机组塔筒倾斜角的测量装置,其特征在于,圆锥体的正投影呈等腰直角三角形形状。
7.根据权利要求1所述的风电机组塔筒倾斜角的测量装置,其特征在于,所述底板下方固定设有支架,所述支架可调节所述测量装置在竖直方向上的高度。
8.根据权利要求2所述的风电机组塔筒倾斜角的测量装置的检测方法,其特征在于,所述点B1、B2…Bn的空间坐标的测量方法包括以下步骤:
步骤一:将所述测量装置固定于所述塔筒内部,调节该测量装置使所述底盘与大地水平面平行;
步骤二:选取所述塔筒内同一标高面上的点B1、B2…Bn,将所述标靶的球形磁性部件分别安装在点B1、B2…Bn上,且每个标靶的球形磁性部件安装在所述点B1、B2…Bn的部位相同,并且每个标靶的连杆与第二激光系统发射的第二测距激光垂直;其中,n≥3;
步骤三:调节所述测量装置的高度,使所述第二激光系统的第二测距激光投射在所述标靶的连杆上,且第三测距激光投射在圆锥体的侧面上;
步骤四:以所述步骤二中的其中一个点为起始点,始终保持顺时针或逆时针方向旋转所述旋转盘使所述第二测距激光和第三测距激光依次对准各个所述标靶的连杆和圆锥体,测量并计算得到步骤二中点B1、B2…Bn的空间坐标。
CN202011145712.4A 2020-10-23 2020-10-23 一种风电机组塔筒倾斜角的检测方法及测量装置 Active CN112268542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011145712.4A CN112268542B (zh) 2020-10-23 2020-10-23 一种风电机组塔筒倾斜角的检测方法及测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011145712.4A CN112268542B (zh) 2020-10-23 2020-10-23 一种风电机组塔筒倾斜角的检测方法及测量装置

Publications (2)

Publication Number Publication Date
CN112268542A CN112268542A (zh) 2021-01-26
CN112268542B true CN112268542B (zh) 2022-11-08

Family

ID=74341661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011145712.4A Active CN112268542B (zh) 2020-10-23 2020-10-23 一种风电机组塔筒倾斜角的检测方法及测量装置

Country Status (1)

Country Link
CN (1) CN112268542B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029103B (zh) * 2021-05-26 2021-09-07 风脉能源(武汉)股份有限公司 一种风机塔筒基础环的倾斜测量方法、系统和存储介质
CN113607053B (zh) * 2021-08-13 2022-06-14 西北工业大学 基于筒体内表面特征点的位姿调整装置、方法及系统
CN114295105B (zh) * 2021-12-30 2024-05-28 赤峰华源新力科技有限公司 一种新型测量风电塔筒倾角的装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245666A2 (en) * 1986-04-14 1987-11-19 Fmc Corporation Turn tilt table
CN201255639Y (zh) * 2008-09-11 2009-06-10 沈建明 自动安平的激光线发生器
CN102679952A (zh) * 2011-08-25 2012-09-19 新疆天风发电股份有限公司 风力机组塔架倾斜度测量方法
WO2015173625A1 (en) * 2014-05-15 2015-11-19 Lunavia Bipin Kumar Nathalal Verification of a laser leveling device for providing reference planes
CN204984738U (zh) * 2015-09-17 2016-01-20 浙江运达风电股份有限公司 一种风电机组塔架基础环倾斜时的垫平装置
CN105370506A (zh) * 2015-11-16 2016-03-02 华北电力大学 一种风电机组塔架倾斜与沉降监测装置
CN105887811A (zh) * 2015-12-17 2016-08-24 深圳市福田建安建设集团有限公司 基于高精度信息化监控超深软土桩柱一体化施工方法
CN106248049A (zh) * 2016-08-31 2016-12-21 上海应谱科技有限公司 风电机组塔筒基础不均匀沉降离线检测方法及在线监测方法
CN107328387A (zh) * 2017-07-04 2017-11-07 成都康烨科技有限公司 夹角测量方法、装置及摄影机
CN207379492U (zh) * 2017-11-10 2018-05-18 中国大唐集团科学技术研究院有限公司西北分公司 一种风力发电机塔筒垂直度测量装置
JP2019086330A (ja) * 2017-11-02 2019-06-06 計測ネットサービス株式会社 タワー構造物の変位計測システム
CN110186422A (zh) * 2019-05-29 2019-08-30 中国长江三峡集团有限公司福建分公司 海上风机塔筒倾斜角度和基础沉降测量方法及终端
CN110307789A (zh) * 2019-07-19 2019-10-08 哈尔滨工业大学 一种基于磁悬浮的浮子周向角位移可控装置
CN110735444A (zh) * 2019-10-17 2020-01-31 湖南砼联科技有限责任公司 一种竖锚自保护式风机基础及其施工方法
CN210664448U (zh) * 2019-10-12 2020-06-02 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) 一种建筑斜顶倾角测量装置
CN111220123A (zh) * 2020-03-06 2020-06-02 湖南砼联科技有限责任公司 基础环倾斜角监测系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20171169A1 (en) * 2017-07-13 2018-11-19 Pipe Pilot As Method for aligning pipes coaxially

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245666A2 (en) * 1986-04-14 1987-11-19 Fmc Corporation Turn tilt table
CN201255639Y (zh) * 2008-09-11 2009-06-10 沈建明 自动安平的激光线发生器
CN102679952A (zh) * 2011-08-25 2012-09-19 新疆天风发电股份有限公司 风力机组塔架倾斜度测量方法
WO2015173625A1 (en) * 2014-05-15 2015-11-19 Lunavia Bipin Kumar Nathalal Verification of a laser leveling device for providing reference planes
CN204984738U (zh) * 2015-09-17 2016-01-20 浙江运达风电股份有限公司 一种风电机组塔架基础环倾斜时的垫平装置
CN105370506A (zh) * 2015-11-16 2016-03-02 华北电力大学 一种风电机组塔架倾斜与沉降监测装置
CN105887811A (zh) * 2015-12-17 2016-08-24 深圳市福田建安建设集团有限公司 基于高精度信息化监控超深软土桩柱一体化施工方法
CN106248049A (zh) * 2016-08-31 2016-12-21 上海应谱科技有限公司 风电机组塔筒基础不均匀沉降离线检测方法及在线监测方法
CN107328387A (zh) * 2017-07-04 2017-11-07 成都康烨科技有限公司 夹角测量方法、装置及摄影机
JP2019086330A (ja) * 2017-11-02 2019-06-06 計測ネットサービス株式会社 タワー構造物の変位計測システム
CN207379492U (zh) * 2017-11-10 2018-05-18 中国大唐集团科学技术研究院有限公司西北分公司 一种风力发电机塔筒垂直度测量装置
CN110186422A (zh) * 2019-05-29 2019-08-30 中国长江三峡集团有限公司福建分公司 海上风机塔筒倾斜角度和基础沉降测量方法及终端
CN110307789A (zh) * 2019-07-19 2019-10-08 哈尔滨工业大学 一种基于磁悬浮的浮子周向角位移可控装置
CN210664448U (zh) * 2019-10-12 2020-06-02 安徽省(水利部淮河水利委员会)水利科学研究院(安徽省水利工程质量检测中心站) 一种建筑斜顶倾角测量装置
CN110735444A (zh) * 2019-10-17 2020-01-31 湖南砼联科技有限责任公司 一种竖锚自保护式风机基础及其施工方法
CN111220123A (zh) * 2020-03-06 2020-06-02 湖南砼联科技有限责任公司 基础环倾斜角监测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
浅谈天宝TX8三维激光扫描仪在风电厂风机塔筒垂直度监测中的应用;苏宗跃等;《测绘通报》;20161025(第10期);146-147 *

Also Published As

Publication number Publication date
CN112268542A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN112268542B (zh) 一种风电机组塔筒倾斜角的检测方法及测量装置
CN106908028B (zh) 管廊沉降检测系统及检测方法
CN105698776B (zh) 一种二维基准垂直传递装置及其测量方法
CN104215258A (zh) 一种车载经纬仪测角精度测试方法及系统
CN111220123B (zh) 基础环倾斜角监测系统及方法
CN105486284A (zh) 风力发电机组塔筒垂直度检测方法和装置
CN111982088B (zh) 预制混凝土塔筒垂直度的测量方法
CN103759719B (zh) 点位工装及测量检测环形轨道梁安装精度用基准点的方法
CN105974368A (zh) 一种GNSS-DInSAR技术集成的角反射装置
CN105739538B (zh) 基于机械臂运动装置的定位方法、定位测试装置及方法
CN216283541U (zh) 一种装配式建筑柱子安装垂直度快速精准测量装置
CN108225293B (zh) 一种自动激光测垂仪及垂直度测量方法
CN210533641U (zh) 一种桥梁挠度测量装置
WO2015173625A1 (en) Verification of a laser leveling device for providing reference planes
CN205482963U (zh) 一种二维基准垂直传递装置
CN108507549A (zh) 高温气冷堆堆内石墨砖和碳砖的安装测量方法
RU2286549C1 (ru) Способ градуировки резервуара для определения вместимости, соответствующей высоте его наполнения
CN215491665U (zh) 风机塔底倾角测量装置
CN115752396A (zh) 一种建筑幕墙测量施工方法
CN113737664B (zh) 大节段宽幅跨刚构桥转体梁施工监测方法及监测装置
CN108502736A (zh) 一种基于gnss的塔机吊钩定位方法
CN111879252A (zh) 一种储罐罐体在线测绘检测装置及其方法
CN110090475B (zh) 一种快速调节自动提耙浓缩机中心轴垂直对中的方法
CN111322996B (zh) 一种激光指向法立柱模板倾斜度控制结构及其使用方法
CN107588762A (zh) 多功能测量仪器基座及其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant