CN112260566B - 一种虚拟同步发电机有功环参数设计方法 - Google Patents

一种虚拟同步发电机有功环参数设计方法 Download PDF

Info

Publication number
CN112260566B
CN112260566B CN202011175094.8A CN202011175094A CN112260566B CN 112260566 B CN112260566 B CN 112260566B CN 202011175094 A CN202011175094 A CN 202011175094A CN 112260566 B CN112260566 B CN 112260566B
Authority
CN
China
Prior art keywords
spc
coefficient
value
damping
synchronous generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011175094.8A
Other languages
English (en)
Other versions
CN112260566A (zh
Inventor
刘威
王锴逸
李辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202011175094.8A priority Critical patent/CN112260566B/zh
Publication of CN112260566A publication Critical patent/CN112260566A/zh
Application granted granted Critical
Publication of CN112260566B publication Critical patent/CN112260566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

本发明公开了一种虚拟同步发电机有功环参数设计方法,属于电力电子变换器技术领域。所述的有功环参数为虚拟转动惯量J和阻尼系数D。为解决虚拟同步发电机运行过程中存在稳定裕度降低不满足稳定性的要求的问题,同时最大限度的降低设计值与实际运行过程中存在的较大偏差,本发明考虑了虚拟同步发电机功角特性的非线性,通过选择合适的同步功率系数参考值建立稳定裕度与有功环参数的关系,得到了有功环参数的可选域。然后通过选择选择合适的同步功率系数参考值,建立动态性能与有功环参数的关系,最终从该可选域中得到所需的有功环参数。经仿真结果验证,本发明提出的参数设计方法均合理、有效。

Description

一种虚拟同步发电机有功环参数设计方法
技术领域
本发明属于电力电子变换器技术领域,具体涉及一种虚拟同步发电机有功环参数设计方法。
背景技术
如今,随着能源需求的不断扩大,以逆变器并网为主的可再生能源微电网在世界范围内逐渐增多。可再生能源发电依赖于并网逆变器,传统的P-Q控制策略缺乏惯性和阻尼,这类控制威胁到微电网的稳定性。因此,许多学者借鉴传统同步发电机,提出了虚拟同步发电机的控制策略来解决上述不足。目前,虚拟同步发电机已成功并广泛应用于光伏发电和风力发电。
虚拟同步发电机的有功环参数包括惯性矩和阻尼系数。研究表明,转动惯量的增加降低了系统的稳定性,阻尼系数的增加提高了系统的稳定性。同时,转动惯量和阻尼系数对虚拟同步发电机的动态性能都有显著影响。一般用超调量、上升时间和稳定时间来衡量系统动态性能特性,这些特性直接由系统的自然频率和阻尼比决定。因此,转动惯量和阻尼系数的变化可以从本质上改变固有的角频率和阻尼比。所以有功环参数的设计对于虚拟同步发电机的稳定性和动态性能都至关重要。
由于虚拟同步发电机功角特性与传统同步发电机类似,均为非线性,所以在输出功率发生变化时,同步功率系数也会变化。同步功率系数对系统的稳定性与动态性能紧密相关,同步功率系数增大造成虚拟同步发电机的稳定性降低从而不符合稳定性的要求,同时随着同步功率系数的变化,实际运行性能与设计相比存在较大误差。
发明内容
本发明要解决的技术问题为针对现有参数设计方法中存在稳定性降低不符合系统稳定性的要求以及实际运行性能与设计相比存在较大误差的问题,建立一种能够满足所需相位裕量且设计与实际的性能偏差较小的虚拟同步发电机有功环参数设计方法。
为实现上述目的,本发明采用的技术方案是:
一种虚拟同步发电机有功环参数设计方法,所述的有功环参数为虚拟转动惯量J和阻尼系数D,其特征在于,包括以下步骤。
步骤1:通过虚拟同步发电机有功功率遍历法采样同步功率系数SPC并绘制成表,然后通过查表得到输出功率变化前对应的同步功率系数SPCfs和变化后对应的同步功率系数SPCls,接着将SPCfs与SPCls进行比较,可以得出相对最大值SPCrmax值以及相对最小值SPCrmin
步骤2:由相角裕度的定义,建立转动惯量J与截止频率fc、阻尼系数D的数学模型,其表达式如下:
式中,SPC为同步功率系数,ωN为角频率的额定值。
步骤3:确定同步功率系数SPC具体值。确定可选域时,采用同步功率系数相对最大值SPCrmax。然后判断虚拟同步发电机的输出功率是增大还是减小,若为增大,在确定具体值时应采用同步功率系数相对最小值SPCrmin。若为减小,则在确定具体值时应选择同步功率系数相对最大值SPCrmax
步骤4:根据步骤2建立的数学模型,得到阻尼系数D的选取范围如下:
式中μmin为所需的最低相角裕度。
步骤5:由频率最大值允许偏移Δωmax计算对应的阻尼系数最小值Df如下:
式中Pset为虚拟同步发电机额定功率。
步骤6:结合步骤4确定的阻尼系数D的最大值Dmax与步骤5确定的Df,截止频率的范围可由下式求取:
步骤7:通过上述步骤建立J和D的可选域如下:
步骤8:建立超调量σ与阻尼比ζ的学模型,其表述式为:
根据需要确定超调量σ,再由上式得出阻尼比ζ。
步骤9:建立转动惯量J与阻尼系数D以及阻尼比ζ的数学模型,其表述式为:
直接确定转动惯量J,然后根据上式计算阻尼系数D,将确定的J、D代入步骤7判断是否在可选域内,若不在可选域内,则需重新选择阻尼比ζ或重新确定转动惯量J,直至符合可选域的要求。
附图说明
图1为虚拟同步发电机并网结构示意图。
图2为虚拟同步发电机有功环参数设计流程图。
图3为输出有功功率由3kW至20kW之间变化时的同步功率系数曲线。
图4为仿真实验中以SPCrmin为参考值进行动态性能设计的设计与实际运行曲线。
图5为仿真实验中以SPCrmax为参考值进行动态性能设计的设计与实际运行曲线。
图6为仿真实验中以SPCrmin为参考值进行稳定性设计的系统bode图。
图7为仿真实验中以SPCrmax为参考值进行稳定性设计的系统bode图。
图8为仿真实验中转动惯量与阻尼系数不选在可选域中的系统bode图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
下面以一台20kW并网逆变器输出有功功率从3kW阶跃至9kW为例具体说明该方法的实施方式。
该逆变器结构如图1所示,从左至右依次为提供功率输入的直流电源VDC、由六个IGBT(Q1、Q2、Q3、Q4、Q5、Q6)构成的全桥逆变电路、由滤波电容C、虚拟同步发电机同步电抗ZVSG、电网电抗Zline组成的滤波电路、最后直接并入交流电网。
为检验本发明所提出有功环参数设计方法的合理性,本案例在MATLAB/Simulink平台上搭建了虚拟同步发电机并网模型,并进行了仿真实验。
该系统预设的主要参数如下:
IGBT的开关频率为10KHZ,直流侧电压为700V,电网相电压有效值为220V,滤波电容C为20μF,同步电抗ZVSG的阻抗值为0.87Ω,电网电抗Zline的阻抗值为1.91Ω。
下面按照本发明所提出的参数设计方法确定阻尼系数D和转动惯量J,具体流程如图2所示。
步骤1:采用有功功率遍历法采样有功功率从3kW至20kW同步功率系数SPC并绘制成波形图,如图3所示。得到阶跃变化过程中SPCrmax=10.37e4和 SPCrmin=7.35e4。
步骤2:建立转动惯量J与截止频率fc、阻尼系数D的数学模型,其表达式为:
步骤3:确定可选域时,采用同步功率系数相对最大值SPCrmax。由于本案例以阶跃响应为例,即同步功率增加,故在确定具体值时应采用同步功率系数相对最小值SPCrmin
步骤4:根据步骤2建立的数学模型,并确定所需的最低相角裕度为30°,得到阻尼系数D的最大值Dmax和最小值Dmin分别为:
步骤5:根据电网标准确定频率最大值允许偏移Δωmax, 这里采用EN-50438标准,得到最大值允许偏移Δωmax=2π,则计算出对应的阻尼系数D的最小值Df
步骤6:结合步骤4确定的阻尼系数D的最大值Dmax与步骤5确定最小值Df,得到截止频率fc的范围为:
步骤7:由步骤4和步骤5确定的阻尼系数D的范围,以及步骤6确定的截止频率fc的范围,再结合步骤2建立的数学模型,转动惯量J与阻尼系数D的可选域为:
或/>
步骤8:令所需的超调量σ=16.3%,则按照公式计算阻尼比ζ=0.5。
步骤9:令转动惯量J=1,结合步骤8得出的阻尼比ζ=0.5,可以计算阻尼系数D为:
将J=1,D=15.3代入步骤7得到fc=2.43Hz,则验证了所求转动惯量与阻尼系数均位于步骤7确定的可选域内。
选用上述参数进行仿真实验,以SPCrmin为参考值进行设计的理论与实际运行结果如图4所示,其动态性能误差为82W;而以SPCrmin为参考值进行设计的理论与实际运行结果如图5所示,其动态性能误差为425W。另外,以SPCrmin为参考值进行设计的案例中实际上升时间比以SPCrmax为参考值的更接近设计值。因此,在本例中,以SPCrmin作为参考可以极大减小设计与实际的动态性能误差。
以边界值为例,判断该有功环参数设计方法对系统稳定性的有效性。图6为以SPCrmin为参考值进行稳定性设计的系统bode图,相角裕度始终低于所需的最小相位裕度30°。因此不宜使用SPCrmin作为参考进行设计。图7为以SPCrmax为参考值进行稳定性设计的系统bode图,相角裕度始终大于所需的最小相位裕度30°。因此应该考虑使用SPCrmax作为参考进行设计。图8为转动惯量与阻尼系数均不选在可选域中,实际相角裕度始终低于所需的最小相位裕度30°。
综上所述,本发明所提出的基于功角特性非线性的虚拟同步发电机有功环参数设计方法合理有效。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
虽然以上结合附图描述了本发明的具体实施方式,但是本领域普通技术人员应当理解,这些仅是举例说明,可以对这些实施方式做出多种变形或修改,而不背离本发明的原理和实质。本发明的范围仅由所附权利要求书限定。

Claims (1)

1.一种虚拟同步发电机有功环参数设计方法,所述的有功环参数为虚拟转动惯量J和阻尼系数D,其特征在于,包括以下步骤:
步骤1:通过虚拟同步发电机有功功率遍历法采样同步功率系数SPC并绘制成表,然后通过查表得到输出功率变化前对应的同步功率系数SPCfs和变化后对应的同步功率系数SPCls,接着将SPCfs与SPCls进行比较,可以得出相对最大值SPCrmax值以及相对最小值SPCrmin
步骤2:由相角裕度的定义,建立转动惯量J与截止频率fc、阻尼系数D的数学模型,其表达式为:
式中,SPC为同步功率系数,ωN为角频率的额定值;
步骤3:确定同步功率系数SPC具体值,确定可选域时,采用同步功率系数相对最大值SPCrmax,然后判断虚拟同步发电机的输出功率是增大还是减小,若为增大,在确定具体值时应采用同步功率系数相对最小值SPCrmin,若为减小,则在确定具体值时应选择同步功率系数相对最大值SPCrmax
步骤4:根据步骤2建立的数学模型,得到阻尼系数D的选取范围:
式中μmin为所需的最低相角裕度;
步骤5:由角频率最大值允许偏移Δωmax计算对应的阻尼系数最小值Df
式中Pset为虚拟同步发电机额定功率,
所得Df与步骤4中阻尼系数D的最小值Dmin进行比较,取较大值作为阻尼系数D可选域的最小值;
步骤6:结合步骤4确定的阻尼系数D的最大值Dmax与步骤5确定的Df,截止频率的范围可由下式求取:
式中Δfmax为频率最大值允许偏移,满足2π·Δfmax=Δωmax
步骤7:通过上述步骤建立J和D的可选域:
或/>
步骤8:建立超调量σ%与阻尼比ζ的数学模型,其表述式为:
根据需要确定超调量σ%,再由上式得出阻尼比ζ;
步骤9:建立转动惯量J与阻尼系数D以及阻尼比ζ的数学模型,其表述式为:
直接确定转动惯量J,然后根据上式计算阻尼系数D,将确定的J、D代入步骤7判断是否在可选域内,若不在可选域内,则需重新选择阻尼比ζ或重新确定转动惯量J,直至符合可选域的要求。
CN202011175094.8A 2020-10-28 2020-10-28 一种虚拟同步发电机有功环参数设计方法 Active CN112260566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011175094.8A CN112260566B (zh) 2020-10-28 2020-10-28 一种虚拟同步发电机有功环参数设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011175094.8A CN112260566B (zh) 2020-10-28 2020-10-28 一种虚拟同步发电机有功环参数设计方法

Publications (2)

Publication Number Publication Date
CN112260566A CN112260566A (zh) 2021-01-22
CN112260566B true CN112260566B (zh) 2023-09-26

Family

ID=74261447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011175094.8A Active CN112260566B (zh) 2020-10-28 2020-10-28 一种虚拟同步发电机有功环参数设计方法

Country Status (1)

Country Link
CN (1) CN112260566B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186554A (zh) * 2015-08-14 2015-12-23 许继集团有限公司 具有转动惯量和阻尼自趋优的超越虚拟同步发电机方法
CN107332275A (zh) * 2017-08-15 2017-11-07 东南大学 一种虚拟同步发电机转动惯量和阻尼系数协同自适应控制方法
CN109256801A (zh) * 2018-09-28 2019-01-22 东北大学 虚拟同步发电机虚拟惯量和虚拟阻尼系数自适应控制方法
CN109659978A (zh) * 2019-01-09 2019-04-19 国网宁夏电力有限公司电力科学研究院 一种自适应参数的虚拟同步发电机控制方法及控制系统
WO2020135904A1 (en) * 2018-12-28 2020-07-02 Vestas Wind Systems A/S Virtual synchronous generator with active damping

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570151B (en) * 2018-01-14 2020-07-15 Zhong Qingchang Reconfiguration of inertia, damping, and fault ride-through for a virtual synchronous machine
CN110112769B (zh) * 2019-04-16 2023-03-31 西安理工大学 虚拟同步机输出反馈自适应控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186554A (zh) * 2015-08-14 2015-12-23 许继集团有限公司 具有转动惯量和阻尼自趋优的超越虚拟同步发电机方法
CN107332275A (zh) * 2017-08-15 2017-11-07 东南大学 一种虚拟同步发电机转动惯量和阻尼系数协同自适应控制方法
CN109256801A (zh) * 2018-09-28 2019-01-22 东北大学 虚拟同步发电机虚拟惯量和虚拟阻尼系数自适应控制方法
WO2020135904A1 (en) * 2018-12-28 2020-07-02 Vestas Wind Systems A/S Virtual synchronous generator with active damping
CN109659978A (zh) * 2019-01-09 2019-04-19 国网宁夏电力有限公司电力科学研究院 一种自适应参数的虚拟同步发电机控制方法及控制系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Optimal Design of Virtual Inertia and Damping Coefficients for Virtual Synchronous Machines;Atinuke Ademola-Idowu et al.;2018 IEEE Power & Energy Society General Meeting (PESGM);第1-5页 *
微网逆变器的VSG转动惯量和阻尼系数自适应控制;温春雪 等;电力系统自动化;第42卷(第17期);第120-126页 *
虚拟同步发电机功率环的建模与参数设计;吴恒 等;中国电机工程学报;第35卷(第24期);第6508-6518页 *

Also Published As

Publication number Publication date
CN112260566A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN108429289B (zh) 一种基于虚拟同步发电机的控制方法及系统
CN112186804B (zh) 一种孤岛微电网母线电压不平衡和谐波补偿方法及系统
CN111245017A (zh) 一种弱电网下并网逆变器电容电压前馈控制方法
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
Rezkallah et al. Implementation of two-level coordinated control for seamless transfer in standalone microgrid
CN114884125A (zh) 一种弱电网下lcl型并网逆变系统的高稳定性控制方法
CN111313474A (zh) 一种改进的微电网并网预同步控制方法
Liu et al. Dynamic circulating current suppression method for multiple hybrid power parallel grid-connected inverters with model reference adaptive system
CN110797885A (zh) 基于虚拟阻抗的三相四桥臂虚拟同步功率解耦控制方法
Elnady et al. Accurate self‐adaptive PI controller of direct power and voltage control for distributed generation systems
CN112260566B (zh) 一种虚拟同步发电机有功环参数设计方法
CN116316697A (zh) 并网变流器在弱电网不对称短路故障下的动态增稳控制方法
CN114499257B (zh) 一种低短路比下提高并网逆变器稳定性的控制方法
Chebabhi et al. Combined voltage oriented control and direct power control based on backstepping control for four-leg PWM rectifier under unbalanced conditions
CN107919682B (zh) 一种适用于三相双谐振滤波器并网逆变系统的控制方法
CN113241766B (zh) 三相四线制并网逆变器的变比组合式电流谐波治理方法
Deng et al. A harmonic current suppression method for single-phase pwm rectifier based on feedback linearization
CN115473237A (zh) 一种虚拟同步发电机并网系统输出功率低频振荡抑制方法
Li et al. Optimal capacity configuration of VSM-controlled grid-connected inverters in a multi-inverter system based on hybrid-mode control under weak grids
Liu et al. Control loop stability criterion and interaction law analysis for grid-connected inverter in weak grid
CN113572204A (zh) 虚拟同步机的自适应控制方法
Tu et al. Impedance-phase and magnitude control method to improve the stability of grid-connected inverters in a weak grid
Hua et al. A Proportional-Lead Compensation Method for LCL Grid-connected Inverter
CN113489291B (zh) 一种lcl型并网变换器正反馈虚拟阻抗的控制方法
Akdogan et al. MDSOGI Based Selective Virtual Impedance Method for Grid-Connected Inverters in an Unbalanced and Distorted Weak Grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant