CN112259356B - 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法 - Google Patents

一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法 Download PDF

Info

Publication number
CN112259356B
CN112259356B CN202011127176.5A CN202011127176A CN112259356B CN 112259356 B CN112259356 B CN 112259356B CN 202011127176 A CN202011127176 A CN 202011127176A CN 112259356 B CN112259356 B CN 112259356B
Authority
CN
China
Prior art keywords
soft magnetic
alloy
layer
magnetic particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011127176.5A
Other languages
English (en)
Other versions
CN112259356A (zh
Inventor
王涛
王国武
王辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202011127176.5A priority Critical patent/CN112259356B/zh
Publication of CN112259356A publication Critical patent/CN112259356A/zh
Application granted granted Critical
Publication of CN112259356B publication Critical patent/CN112259356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明涉及在微波频段具有高磁导率、低磁损耗的合金软磁颗粒的制备方法,该方法采用磁控溅射,在涂有可溶缓冲层的Si片上制作图案化的片状合金软磁颗粒,然后采用溶解方法从缓冲层上剥离合金软磁材料,获得固定直径和厚度的合金软磁颗粒。相比传统的机械球磨法,该方法获得的片状合金软磁颗粒具有低缺陷、低内应力及低损耗角正切
Figure DDA0002733992530000011
等优势,而且可以精确控制合金软磁颗粒的直径和厚度,抑制所有磁性颗粒的涡流损耗。

Description

一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备 方法
技术领域
本发明涉及软磁材料技术领域,特别涉及软磁材料的高频化能量传输和转换应用方面。
背景技术
软磁材料最主要的作用是进行能量在电和磁之间的转换,是变压器、开关电源及电感等电力电子器件必不可少的成分。随着半导体行业的飞速发展,SiC和GaN等宽禁带半导体的出现让电能调节的理论频率超过了100MHz,然而目前还没有一种软磁材料可以有效地应用在该频段。目前应用于电力电子器件的软磁材料主要是软磁铁氧体(MnZn和NiZn铁氧体),有效工作频段在KHz范围以内,远达不到宽禁带半导体的同等水平。所以,为了能充分挖掘宽禁带半导体的潜能,合金软磁复合物成为最先被考虑的候选材料。
合金软磁颗粒要发挥其作用,必须制备成高径厚比的片状结构,这样主要有利于以下两方面:(1)降低磁能颗粒的尺寸到趋肤深度以下,避免趋肤效应,降低磁性颗粒在使用过程中的涡流;(2)高径厚比的磁性颗粒会在C轴方向受强大退磁场作用,结合平面内的面内各向异性场,形成双各向异性结构,这种结构可以让磁粉芯突破Snoek极限的约束,工作在更高的频段。传统的制备方法为机械球磨法,这种方法可以有效提高复合物的自然共振频率和初始磁导率。然而由于制备技术的局限,一方面,这种制备方法获得的磁性颗粒在径厚比上存在很大的差异,很难将所有颗粒的厚度降低至趋肤深度以下,部分磁性颗粒内的涡流依然很严重;另一方面,机械球磨法会在颗粒内产生一些空隙、杂志和内应力等缺陷,这些缺陷会增加颗粒在磁化过程中的畴壁位移阻尼。这两方面的局限性表现在磁谱上就是磁导率在低于理论的频段出现磁频散现象,磁导率虚部较大;变现在实际应用中就是降低软磁复合物的应用频段,增加高频磁化过程中的能量损耗。
发明内容
本发明旨在提供一种微波频段高磁导率、低磁损耗的合金软磁颗粒及其制备方法,该磁性颗粒能够在更高的频段下工作,且具有很低的损耗角正切
Figure BDA0002733992510000021
Figure BDA0002733992510000022
本发明解决其技术问题所采用的技术方案是:
一种微波频段高磁导率、低磁损耗合金软磁颗粒的制备方法,包括如下步骤:
步骤A:采用磁控溅射的方式在Si片上涂一层可溶性缓冲层;
步骤B:在可溶性缓冲层上制备一层图案化的合金软磁颗粒;
步骤C:采用溶解或腐蚀的方法,从可溶性缓冲层上剥离软磁合金,获得软磁颗粒;
其中:
所述步骤A中的缓冲层可被某种酸碱溶液腐蚀(金属),或者可被水溶解(水溶性物质),或者可被某种有机溶剂溶解(可溶有机物)。
所述步骤B中的图案化软磁合金的制备方法包括光刻、溅射和电镀等方法。
所述步骤B中的软磁合金可为FeNi、FeCo、FeCoB等一切可以被溅射或电镀实现的软磁合金。
所述步骤B中的软磁合金厚度在100~500nm之间,优选200nm。
本发明的有益效果是:提出一种能在更高工作频率具有高磁导率,且更低磁损耗的合金软磁颗粒及其制备方法。相比传统的机械球磨法,这种制备方法主要有以下优势:
(1)可以获得确定径厚比的磁性颗粒,厚度可以在纳米和亚微米级别自由选择。
(2)可以制备任意形状的磁性颗粒,包括圆形、方形等。
(3)可以获得低缺陷、低内应力的磁性颗粒,降低磁化过程中畴壁位移的阻尼,降低动态磁化过程中的损耗,提高工作频率。
(4)有利于科研计算,通过制备确定尺寸的磁粉芯颗粒,可以准确计算出磁性颗粒的形状因子,计算一些与形状有关的磁学参量将更准确,更具说服力。
附图说明
图1为采用该专利方法制备FeNi软磁颗粒的工艺示意图;
图2为采用该专利方法制备的FeNi软磁复合物的高频磁谱;
图3(a)为采用该专利方法制备的FeNi软磁复合物的损耗角正切;
图3(b)为传统球磨方法制备FeNi软磁复合物的损耗角正切。
具体实施方法
下面结合具体实施例,对本发明作进一步说明,但本发明并不受实施例中参数及范围的限制。
实施例1
选择干净的Si片作为基底层,采用磁控溅射的方式在Si片上沉积一层100nm厚度的金属Al作为过渡层。在Al层上继续溅射沉积一层200nm厚度的FeCoB合金;然后在FeCoB上涂一层反光刻胶,采用激光直写的方式在光刻胶上遮盖一层掩模版(直径为20um的周期性排列的圆孔);对掩模版遮盖的光刻胶进行曝光,使接受光照的部分光刻胶受曝光而变质;紧接着用腐蚀的方法在光刻胶上显影出与掩模版相反的图案;用离子束刻蚀方法,刻蚀掉不受光刻胶遮盖的部分FeCoB;待刻蚀过程结束后,将整块材料放置在丙酮中,溶化掉光刻胶构成的显影图案,然后转入NaOH溶液中腐蚀掉Al层,此时,直径为20um、厚度为200nm的FeCoB合金从Si片上剥离下来,获得确定形状的FeCoB软磁颗粒。
实施例2
选择干净的Si片作为基底层,采用磁控溅射的方式在Si片上沉积一层100nm厚度的金属Al作为过渡层。在Al层上面涂一层500nm厚度的正光刻胶,采用激光直写的方式在光刻胶上遮盖一层掩模版(直径为20um的周期性排列的圆孔);对掩模版遮盖的光刻胶进行曝光,使接受光照的部分光刻胶受曝光而变质;紧接着用腐蚀的方法在光刻胶上显影出于掩模版相同的图案;采用溶液电镀的方式在显影出来的图案中生长FeCo合金;待显影图案完全被FeCo合金填满后,将整块材料放置在丙酮中,溶化掉光刻胶构成的显影图案,然后转入NaOH溶液中腐蚀掉Al层,此时,直径为20um、厚度为500nm的FeCo合金从Si片上剥离下来,获得确定形状的FeCo软磁颗粒。
实施例3
选择干净的Si片作为基底层,采用磁控溅射的方式在Si片上沉积一层100nm厚度的金属Al作为过渡层。在Al层上面涂一层500nm厚度的正光刻胶,采用激光直写的方式在光刻胶上遮盖一层掩模版(直径为20um的周期性排列的圆孔);对掩模版遮盖的光刻胶进行曝光,使接受光照的部分光刻胶受曝光而变质;紧接着用腐蚀的方法在光刻胶上显影出于掩模版相同的图案;继续采用磁控溅射的方式在显影出来的图案中溅射FeNi合金;待显影图案完全被FeNi合金填满后,将整块材料放置在丙酮中,溶化掉光刻胶构成的显影图案,然后转入NaOH溶液中腐蚀掉Al层,此时,直径为20um、厚度为500nm的FeNi合金从Si片上剥离下来,获得确定形状的FeNi软磁颗粒。制备工艺如附图1所示。
采用该专利方法获得的FeNi软磁颗粒,与聚氨酯超声复合,在4MPa的压力下压制成块体软磁复合材料。附图2所示为采用该专利方法制备的FeNi软磁复合物的高频磁谱;附图3(a)为该复合物的损耗角正切
Figure BDA0002733992510000041
,附图3(b)所示为传统球磨方法制备FeNi软磁颗粒制备软磁复合物的损耗角正切,表1所示为采用传统的机械球磨法和采用该专利方法制备的FeNi软磁颗粒在高频动态磁化过程中的损耗角正切。对比图3(a)、(b)和表1中数据可以明显发现,采用该专利方法制备的FeNi软磁颗粒,可将在高频动态磁化过程中的损耗角正切降低接近一个数量级。
表1
Figure BDA0002733992510000042
本发明涉及在微波频段,具有高磁导率、低磁损耗的合金软磁颗粒的制备方法。该方法采用磁控溅射,在涂有可溶缓冲层的Si片上制作图案化的片状合金软磁颗粒,然后采用溶解方法从缓冲层上剥离合金软磁材料,获得固定直径和厚度的合金软磁颗粒。相比传统的机械球磨法,该方法获得的片状合金软磁颗粒具有低缺陷、低内应力及低损耗角正切
Figure BDA0002733992510000051
等优势,而且可以精确控制合金软磁颗粒的直径和厚度,抑制所有磁性颗粒的涡流损耗。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种微波频段高磁导率、低磁损耗合金软磁颗粒的制备方法,其特征在于,包括如下步骤:
步骤A:采用磁控溅射的方式在Si片上生长一层可溶性缓冲层;
步骤B:在可溶性缓冲层上制备一层图案化的合金软磁颗粒;
步骤C:采用溶解的方法,从可溶性缓冲层上剥离软磁合金,获得均匀软磁颗粒;
所述步骤A中的可溶缓冲层为能被溶液腐蚀的金属、水溶性物质或能被有机溶剂溶解的有机物;
所述步骤B中的一层图案化软磁颗粒通过先制作图案基底,然后生长合金软磁层的方式实现;
所述步骤B中的一层图案化软磁颗粒通过直接在缓冲层上生长一层软磁合金,然后采用刻蚀方法将软磁层刻蚀成图案化颗粒的方法获得;
图案化基底层的制作方法可为光刻法或模板法;
合金软磁层的生长方法可为电镀或溅射;
软磁合金层厚度在100~500nm之间,磁矩分布在软磁层面内;
所述步骤B中的软磁合金为可以被溅射或电镀实现的软磁合金。
2.如权利要求1中所述的一种微波频段高磁导率、低磁损耗合金软磁颗粒的制备方法,其特征在于,所述步骤A中的溅射方法为直流溅射或射频溅射。
3.一种权利要求1或2所述方法制备的微波频段高磁导率、低磁损耗合金软磁颗粒。
CN202011127176.5A 2020-10-20 2020-10-20 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法 Active CN112259356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011127176.5A CN112259356B (zh) 2020-10-20 2020-10-20 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011127176.5A CN112259356B (zh) 2020-10-20 2020-10-20 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN112259356A CN112259356A (zh) 2021-01-22
CN112259356B true CN112259356B (zh) 2022-12-16

Family

ID=74244179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011127176.5A Active CN112259356B (zh) 2020-10-20 2020-10-20 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN112259356B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643893A (zh) * 2021-08-25 2021-11-12 兰州大学 软磁复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
CN102650037A (zh) * 2012-05-09 2012-08-29 中国科学院上海技术物理研究所 Mn-Co-Ni-O薄膜材料磁控溅射靶材制作方法
CN105928924B (zh) * 2016-04-25 2019-08-23 上海交通大学 一种金银复合纳米颗粒sers基底的制备方法
CN106531287B (zh) * 2016-11-09 2018-03-20 华中科技大学 一种超高纯度碳纳米管导电浆料及其制备方法

Also Published As

Publication number Publication date
CN112259356A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US20070077395A1 (en) Thin film device and thin film inductor
CN102044319A (zh) 复合吸波材料及其制备方法
CN112259356B (zh) 一种微波频段高磁导率、低磁损耗合金软磁颗粒及其制备方法
US10937586B2 (en) Electromagnetic device having layered magnetic material components and methods for making same
Sun et al. Magnetic property and stress study of barium hexaferrite thin films with different structures
Sai et al. High-$ Q $ on-chip $ C $-band inductor with a nanocrystalline MnZn-ferrite film core
CN113643893A (zh) 软磁复合材料及其制备方法
Lu et al. Effect of pH on the structural properties of electrodeposited nanocrystalline FeCo films
JP2022008547A (ja) SiO2含有被膜を備えたSi含有Fe基合金粉及びその製造方法
CN105568228A (zh) 一种放射状金属纳米线-陶瓷复合薄膜的制备方法
Imran et al. FeGaB (25 nm)/Al2O3/FeGaB (25 nm) Multilayer Structures: Effects of Variation of Al2O3Thickness on Static and Dynamic Magnetic Properties
CN110444364B (zh) 一种叠层磁性薄膜及其制备方法
CN104183570A (zh) 一种近零涡流损耗互连线及其制备方法
CN111117564B (zh) 蛋黄-蛋壳型磁性碳复合材料、制备方法及应用
US11735349B2 (en) Magnetic core with vertical laminations having high aspect ratio
CN111416036B (zh) 一种自支撑的磁电纳米复合结构及其制备方法
Lee et al. Effects of geometries on permeability spectra of CoTaZr magnetic cores for high frequency applications
KR20230092988A (ko) 자기 다층 플레이크들을 포함하는 고주파 전력 인덕터 재료
Tian et al. Surface Texturing and Enhanced Microwave Absorption of Fe–B Alloy Flakes Through a Dealloying Process
Wei et al. Development of CoZrTaB laminated thin films with novel CMOS compatible dielectric material
He et al. Magnetic CoFe 2 O 4 films with controllable dendritic arrays by a combined method of electrodeposition and anode activation
Marczyńska et al. Strong and Weak Interlayer Exchange Coupling in V/Fe Multilayers
Tang et al. Review of some recent progress on materials science researches in China
CN112899629B (zh) 一种高熵氧化物薄膜及其制备方法和应用
Kacel et al. Structure, Morphology And Magnetic Properties Of Electrodeposited Ni Films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant