CN112251581A - 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法 - Google Patents

屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法 Download PDF

Info

Publication number
CN112251581A
CN112251581A CN202010996819.3A CN202010996819A CN112251581A CN 112251581 A CN112251581 A CN 112251581A CN 202010996819 A CN202010996819 A CN 202010996819A CN 112251581 A CN112251581 A CN 112251581A
Authority
CN
China
Prior art keywords
steel strip
hot
460mpa
yield
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010996819.3A
Other languages
English (en)
Inventor
闫萍
张玉文
尹宽
李建设
赵建勇
王朋飞
王立杰
吕苗苗
任振远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan Stainless Steel Co ltd
Tangshan Iron and Steel Group Co Ltd
Original Assignee
Tangshan Stainless Steel Co ltd
Tangshan Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangshan Stainless Steel Co ltd, Tangshan Iron and Steel Group Co Ltd filed Critical Tangshan Stainless Steel Co ltd
Priority to CN202010996819.3A priority Critical patent/CN112251581A/zh
Publication of CN112251581A publication Critical patent/CN112251581A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,所述生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序。本发明通过合理设计热轧温度制度及冷却策略,采用较高的820~870℃终轧温度,充分发挥铌、钛微合金的强化效果,采用细晶强化和析出强化等手段,使屈服460MPa冷冲压桥壳用钢热轧钢带在具有较高强度的同时仍能保证较高的扩孔性能,可用于制造具有复杂形状的汽车零件。本发明屈服460MPa冷冲压桥壳用钢热轧钢带:抗拉强度Rm:550~720MPa,屈服强度≥460MPa,断后延伸率A≥20%,扩孔率≥60%,0℃冲击功≥200J。

Description

屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法
技术领域
本发明属于冶金技术领域,具体涉及屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法。
背景技术
随着汽车市场对节能、环保、安全、舒适等要求的提高,汽车车身轻量化成为当今汽车技术发展的重要发展方向。由于环保和节能的需要,汽车轻量化已成为当务之急,同时也是世界汽车发展的潮流。特别是在大型客车、重卡和专用车、半挂车行业,将更高强度的材料应用于汽车部件,可以显著的减轻整车重量,提高负载,提高车辆构件的使用寿命,给物流公司带来的好处是提高运输效率,大幅降低物流成本,节能减排社会效益显著。
汽车桥壳,是安装主减速器、差速器、半轴、轮毂和悬架的基础件。桥壳具体有如下功用:1、和从动桥一起承受汽车质量;2、使左、右驱动车轮的轴向相对位置固定;3、汽车行驶时,承受驱动轮传来的各种反力、作用力和力矩,并通过悬架传给车架。对于汽车桥壳钢,以钢板做为原料冲压成型,厚度一般为大于10mm的钢板,随着下游桥壳加工企业冲压设备能力的不断提升,高强度冷成形汽车桥壳钢开始得到应用,在保证桥壳各项性能的同时可减轻桥壳重量,为了适应汽车轻量化的要求,一些高强度钢铁材料在汽车桥壳上开始得到逐渐的推广。
目前桥壳钢冲压成型过程主要采用先加热后冲压,加热对钢的性能有一定的变化,造成强度级别偏低,不利于材料减薄和车辆减重,桥壳钢材料普遍采用较低的 C含量,Nb或Ti微合金化,存在钢卷的通卷性能不稳定问题,同时由于成分设计问题,较难满足冲压过程不开裂及后续的车桥台架试验疲劳周期。
本发明通过热卷原料成分设计和工艺过程控制得到热卷原料产品可直接冷冲压成型替代传统冲压成型的工艺过程,重点在于减少传统冲压成型过程的加热工序,降低能源消耗,通过控制碳当量和裂纹敏感系数,保证焊接性能,实现高扩孔率性能保证桥壳钢的成型翻边性能,满足了汽车行业日益增加的高安全性、高环保性的要求,同时提升汽车用钢产品的整体竞争力。
发明内容
本发明要解决的技术问题是提供屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法。该发明通过合理设计钢带成分、热轧温度制度及冷却策略,充分发挥Nb-Ti微合金的复合强化效果,同时采用细晶强化和析出强化等手段,使所述钢种在具有较高强度的同时仍能保证较高的扩孔性能,可用于制造具有复杂形状的汽车零件,能降低使用钢板厚度,减轻整车重量减少车辆燃油消耗。
为解决上述技术问题,本发明所采取的技术方案是:屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,所述生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序;所述精轧工序,精轧入口温度1020~1080℃、终轧温度820~870℃,经过7道次精轧轧成厚度为9.0~12.7mm的钢带;所述冷却工序,钢带经层流冷却,前部粗调段以35~50℃/s冷速快冷到680~720℃,中间空冷4~8s,再经层流冷却,后部精调段以25~35℃/s冷速快冷到430~480℃。
本发明所述转炉冶炼工序,转炉冶炼加入铁水和废钢,总装入量105~115 t;转炉冶炼终点碳0.020~0.040%,补吹次数≤1次,终点静置时间≥140s,转炉冶炼终点温度≥1660℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量。
为了保证终点P含量合格,防止后吹,采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作。
本发明所述LF炉精炼工序,采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO≤1%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率4~6℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量≥15ppm,钙处理结束进行静吹,静吹时间≥8min,静吹氩气流量控制在20~50NL/min。
本发明所述板坯连铸工序,连铸坯厚度180~230mm。
本发明所述加热工序,经步进式加热炉加热,在加热炉的总驻炉时间160~220min,加热炉均热段加热温度1250~1300℃。
本发明所述粗轧工序,中间坯料厚度38~42mm,经热卷箱卷取头尾颠倒,中间坯≥40mm时热卷箱采用直通模式。
本发明所述卷取工序,卷取温度为430~480℃。
本发明所述热轧钢带:抗拉强度Rm:550~720MPa,屈服强度≥460MPa,断后延伸率A≥20%,扩孔率≥60%,0℃冲击功≥200J。
本发明所述热轧钢带的厚度规格为9.0~12.7mm。
本发明所述热轧钢带化学成分组成及其质量百分含量为:C:0.06~0.09%,Mn:1.00~1.40%,S≤0.010%,P≤0.020%,Si≤0.25%,Ti:0.02~0.05%,Nb:0.035~0.050%,Als:0.020~0.060%,其余为铁和不可避免的杂质。
本发明屈服460MPa冷冲压桥壳用钢热轧钢带产品标准参考GBT 33166-2016 汽车桥壳用热轧钢板和钢带标准;产品性能检测方法标准参考GB-T228金属材料室温拉伸试验方法。
采用上述技术方案所产生的有益效果在于:1、本发明通过合理设计热轧温度制度及冷却策略,采用较高的820~870℃终轧温度,充分发挥铌、钛微合金的强化效果,采用细晶强化和析出强化等手段,使屈服460MPa冷冲压桥壳用钢热轧钢带在具有较高强度的同时仍能保证较高的扩孔性能,可用于制造具有复杂形状的汽车零件。2、本发明屈服460MPa冷冲压桥壳用钢热轧钢带:抗拉强度Rm:550~720MPa,屈服强度≥460MPa,断后延伸率A≥20%,扩孔率≥60%。0℃冲击功≥200J。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为9.0mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量105t;转炉冶炼终点碳0.020%,补吹次数1次,终点静置时间140s,转炉冶炼终点温度1660℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:1%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率4℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量15ppm,钙处理结束进行静吹,静吹时间8min,静吹氩气流量控制在20NL/min;
(3)板坯连铸工序:连铸坯厚度200mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间170min,加热炉均热段加热温度1300℃;
(5)粗轧工序:中间坯料厚度38mm,经热卷箱卷取头尾颠倒;
(6)精轧工序:精轧入口温度1070℃、终轧温度845℃,经过7道次精轧轧成厚度为9.0mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以37℃/s冷速快冷到700℃,中间空冷6s,再经层流冷却,后部精调段以27℃/s冷速快冷到470℃;
(8)卷取工序:卷取温度为470℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例2
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为10.0mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量110t;转炉冶炼终点碳0.040%,补吹次数1次,终点静置时间160s,转炉冶炼终点温度1680℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.5%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率6℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量18ppm,钙处理结束进行静吹,静吹时间10min,静吹氩气流量控制在50NL/min;
(3)板坯连铸工序:连铸坯厚度200mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间200min,加热炉均热段加热温度1280℃;
(5)粗轧工序:中间坯料厚度38mm,经热卷箱卷取头尾颠倒;
(6)精轧工序:精轧入口温度1040℃、终轧温度860℃,经过7道次精轧轧成厚度为10.0mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以39℃/s冷速快冷到680℃,中间空冷6s,再经层流冷却,后部精调段以28℃/s冷速快冷到450℃;
(8)卷取工序:卷取温度为450℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例3
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为10.5mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量105t;转炉冶炼终点碳0.030%,补吹次数1次,终点静置时间160s,转炉冶炼终点温度1680℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.3%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率6℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量20ppm,钙处理结束进行静吹,静吹时间9min,静吹氩气流量控制在30NL/min;
(3)板坯连铸工序:连铸坯厚度230mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间210min,,加热炉均热段加热温度1290℃;
(5)粗轧工序:中间坯料厚度38mm,经热卷箱卷取头尾颠倒;
(6)精轧工序:精轧入口温度1080℃、终轧温度860℃,经过7道次精轧轧成厚度为10.5mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以41℃/s冷速快冷到710℃,中间空冷4.5s,再经层流冷却,后部精调段以30℃/s冷速快冷到480℃;
(8)卷取工序:卷取温度为480℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例4
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为11.0mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量115t;转炉冶炼终点碳0.040%,补吹次数1次,终点静置时间180s,转炉冶炼终点温度1720℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.7%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率5℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量18ppm,钙处理结束进行静吹,静吹时间10min,静吹氩气流量控制在40NL/min;
(3)板坯连铸工序:连铸坯厚度200mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间175min,加热炉均热段加热温度1260℃;
(5)粗轧工序:中间坯料厚度40mm,经热卷箱卷取头尾颠倒,热卷箱采用直通模式;
(6)精轧工序:精轧入口温度1080℃、终轧温度870℃,经过7道次精轧轧成厚度为11.0mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以43℃/s冷速快冷到720℃,中间空冷4s,再经层流冷却,后部精调段以29℃/s冷速快冷到470℃;
(8)卷取工序:卷取温度为470℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例5
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为11.5mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量105t;转炉冶炼终点碳0.040%,补吹次数1次,终点静置时间150s,转炉冶炼终点温度1680℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.8%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率5℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量15ppm,钙处理结束进行静吹,静吹时间8min,静吹氩气流量控制在40NL/min;
(3)板坯连铸工序:连铸坯厚度210mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间160min,加热炉均热段加热温度1250℃;
(5)粗轧工序:中间坯料厚度42mm,经热卷箱卷取头尾颠倒,热卷箱采用直通模式;
(6)精轧工序:精轧入口温度1070℃、终轧温度820℃,经过7道次精轧轧成厚度为11.5mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以45℃/s冷速快冷到690℃,中间空冷5s,再经层流冷却,后部精调段以25℃/s冷速快冷到460℃;
(8)卷取工序:卷取温度为460℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例6
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为12.0mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量110t;转炉冶炼终点碳0.030%,补吹次数1次,终点静置时间180s,转炉冶炼终点温度1690℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.3%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率5℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量15ppm,钙处理结束进行静吹,静吹时间9min,静吹氩气流量控制在20NL/min;
(3)板坯连铸工序:连铸坯厚度225mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间210min,加热炉均热段加热温度1270℃;
(5)粗轧工序:中间坯料厚度42mm,经热卷箱卷取头尾颠倒,热卷箱采用直通模式;
(6)精轧工序:精轧入口温度1060℃、终轧温度840℃,经过7道次精轧轧成厚度为12.0mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以35℃/s冷速快冷到700℃,中间空冷7s,再经层流冷却,后部精调段以29℃/s冷速快冷到460℃;
(8)卷取工序:卷取温度为460℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
实施例7
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带度规格为12.7mm,热轧钢带化学成分组成及其质量百分含量见表1,其生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序,具体工艺步骤如下所述:
(1)转炉冶炼工序:转炉冶炼加入铁水和废钢,总装入量108t;转炉冶炼终点碳0.040%,补吹次数1次,终点静置时间160s,转炉冶炼终点温度1660℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量;采用高拉补吹法进行吹炼,终点出钢前全部采用后搅操作;
(2)LF炉精炼工序:采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO:0.4%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率4℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量15ppm,钙处理结束进行静吹,静吹时间9min,静吹氩气流量控制在30NL/min;
(3)板坯连铸工序:连铸坯厚度180mm,连铸坯化学成分组成及其质量百分含量见表1;
(4)加热工序:经步进式加热炉加热,在加热炉的总驻炉时间220min,加热炉均热段加热温度1300℃;
(5)粗轧工序:中间坯料厚度42mm,经热卷箱卷取头尾颠倒,热卷箱采用直通模式;
(6)精轧工序:精轧入口温度1020℃、终轧温度830℃,经过7道次精轧轧成厚度为12.7mm的钢带;
(7)冷却工序:钢带经层流冷却,前部粗调段以50℃/s冷速快冷到680℃,中间空冷8s,再经层流冷却,后部精调段以35℃/s冷速快冷到430℃;
(8)卷取工序:卷取温度为430℃,卷取后得到屈服460MPa冷冲压桥壳用钢热轧钢带。
本实施例屈服460MPa冷冲压桥壳用钢热轧钢带性能指标见表2。
表1 实施例1-7屈服460MPa冷冲压桥壳用钢热轧钢带化学成分组成
及其质量百分含量(%)
Figure DEST_PATH_IMAGE001
表2 实施例1-7屈服460MPa冷冲压桥壳用钢热轧钢带的力学性能
Figure 806988DEST_PATH_IMAGE002
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述生产方法包括转炉冶炼、LF炉精炼、板坯连铸、加热、粗轧、精轧、冷却和卷取工序;所述精轧工序,精轧入口温度1020~1080℃、终轧温度820~870℃,经过7道次精轧轧成厚度为9.0~12.7mm的钢带;所述冷却工序,钢带经层流冷却,前部粗调段以35~50℃/s冷速快冷到680~720℃,中间空冷4~8s,再经层流冷却,后部精调段以25~35℃/s冷速快冷到430~480℃。
2.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述转炉冶炼工序,转炉冶炼加入铁水和废钢,总装入量105~115t;转炉冶炼终点碳0.020~0.040%,补吹次数≤1次,终点静置时间≥140s,转炉冶炼终点温度≥1660℃,出钢采用双档(滑板挡渣+挡渣标),减少下渣量。
3.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述LF炉精炼工序,采用石灰、预熔型精炼渣以及萤石进行造渣,炉渣TFe+MnO≤1%;采用铝脱氧工艺,根据进站钢水成分以及目标成分进行合金元素的精确控制;采用电极加热,升温速率4~6℃/min,成分温度合格以后,喂入实芯钙铝包芯线进行钙处理,出站钙含量≥15ppm,钙处理结束进行静吹,静吹时间≥8min,静吹氩气流量控制在20~50NL/min。
4.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述板坯连铸工序,连铸坯厚度180~230mm。
5.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述加热工序,经步进式加热炉加热,在加热炉的总驻炉时间160~220min,加热炉均热段加热温度1250~1300℃。
6.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述粗轧工序,中间坯料厚度38~42mm,经热卷箱卷取头尾颠倒,中间坯≥40mm时热卷箱采用直通模式。
7.根据权利要求1所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述卷取工序,卷取温度为430~480℃。
8.根据权利要求1-7任意一项所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述热轧钢带:抗拉强度Rm:550~720MPa,屈服强度≥460MPa,断后延伸率A≥20%,扩孔率≥60%,0℃冲击功≥200J。
9.根据权利要求1-7任意一项所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述热轧钢带的厚度规格为9.0~12.7mm。
10.根据权利要求1-7任意一项所述的屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法,其特征在于,所述热轧钢带化学成分组成及其质量百分含量为:C:0.06~0.09%,Mn:1.00~1.40%,S≤0.010%,P≤0.020%,Si≤0.25%,Ti:0.02~0.05%,Nb:0.035~0.050%,Als:0.020~0.060%,其余为铁和不可避免的杂质。
CN202010996819.3A 2020-09-21 2020-09-21 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法 Pending CN112251581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010996819.3A CN112251581A (zh) 2020-09-21 2020-09-21 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010996819.3A CN112251581A (zh) 2020-09-21 2020-09-21 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法

Publications (1)

Publication Number Publication Date
CN112251581A true CN112251581A (zh) 2021-01-22

Family

ID=74232766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010996819.3A Pending CN112251581A (zh) 2020-09-21 2020-09-21 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法

Country Status (1)

Country Link
CN (1) CN112251581A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957345A (zh) * 2021-10-22 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 590MPa级冷冲压用桥壳钢及其制备方法
CN114107825A (zh) * 2021-12-02 2022-03-01 河北普阳钢铁有限公司 一种低碳当量含钛q420md钢板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243262A (zh) * 2013-05-15 2013-08-14 攀钢集团攀枝花钢铁研究院有限公司 一种汽车车轮用高强度热轧钢板卷及其制造方法
WO2014201887A1 (zh) * 2013-06-19 2014-12-24 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
CN109706401A (zh) * 2019-02-13 2019-05-03 唐山不锈钢有限责任公司 一种690MPa高扩孔钢带的生产工艺
CN109778076A (zh) * 2019-02-12 2019-05-21 唐山不锈钢有限责任公司 低裂纹敏感性s550mc热轧汽车结构钢带的生产方法
CN110079735A (zh) * 2019-05-17 2019-08-02 武汉钢铁有限公司 屈服强度460MPa级的冷轧低合金高强度钢及生产方法
CN110295325A (zh) * 2019-07-22 2019-10-01 唐山不锈钢有限责任公司 Ti微合金化540MPa级高扩孔钢钢带及其生产方法
CN110983196A (zh) * 2019-12-17 2020-04-10 首钢集团有限公司 一种600MPa级热轧镀锌高扩孔钢及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243262A (zh) * 2013-05-15 2013-08-14 攀钢集团攀枝花钢铁研究院有限公司 一种汽车车轮用高强度热轧钢板卷及其制造方法
WO2014201887A1 (zh) * 2013-06-19 2014-12-24 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
CN109778076A (zh) * 2019-02-12 2019-05-21 唐山不锈钢有限责任公司 低裂纹敏感性s550mc热轧汽车结构钢带的生产方法
CN109706401A (zh) * 2019-02-13 2019-05-03 唐山不锈钢有限责任公司 一种690MPa高扩孔钢带的生产工艺
CN110079735A (zh) * 2019-05-17 2019-08-02 武汉钢铁有限公司 屈服强度460MPa级的冷轧低合金高强度钢及生产方法
CN110295325A (zh) * 2019-07-22 2019-10-01 唐山不锈钢有限责任公司 Ti微合金化540MPa级高扩孔钢钢带及其生产方法
CN110983196A (zh) * 2019-12-17 2020-04-10 首钢集团有限公司 一种600MPa级热轧镀锌高扩孔钢及其生产方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957345A (zh) * 2021-10-22 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 590MPa级冷冲压用桥壳钢及其制备方法
CN114107825A (zh) * 2021-12-02 2022-03-01 河北普阳钢铁有限公司 一种低碳当量含钛q420md钢板及其制备方法

Similar Documents

Publication Publication Date Title
CN101701316B (zh) 抗拉强度590MPa级汽车大梁用钢及其制造方法
CN110079740B (zh) 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法
CN111549288A (zh) 一种12.0~16.0mm厚高韧性700MPa级汽车大梁钢及其生产方法
CN109136755B (zh) 一种汽车用冷轧高强度钢及其生产方法
CN102383034B (zh) 13吨级车桥桥壳用钢及其生产方法
CN102363858A (zh) 一种750MPa~880MPa级车辆用高强钢及其生产方法
CN103667908B (zh) 抗拉强度540MPa级热轧高强薄钢板及其生产方法
CN106498293A (zh) 一种热成形用高碳热连轧酸洗钢带的制备方法
CN102912235B (zh) 抗拉强度590MPa级热轧双相钢及其制造方法
CN102127706A (zh) 一种高强度高疲劳寿命重卡汽车用车轮钢及其制造方法
CN106591716A (zh) 高韧性抗拉强度750MPa级汽车大梁用钢及生产方法
CN111809106A (zh) 一种稀土微合金化650cl车轮用钢及其生产方法
CN112251581A (zh) 屈服460MPa冷冲压桥壳用钢热轧钢带的生产方法
CN110343958A (zh) 一种抗拉强度500MPa级汽车桥壳用卷板及其制备方法
CN114574773A (zh) 一种610MPa级低成本热轧高强大梁带钢的生产方法
CN107557682A (zh) 一种3~6mm 540MPa级热轧车轮钢及其生产方法
CN101831585A (zh) 一种高强汽车车轮用钢及其制造方法
CN112981229A (zh) 一种耐高温细晶空心传动半轴用中碳圆钢及其制造方法
CN105039856A (zh) 一种高强度冷成形汽车桥壳钢及其生产方法
CN107354379A (zh) 一种3~6mm 590MPa级热轧车轮钢及其生产方法
CN103866190B (zh) 低脆性650MPa级汽车大梁用钢及其制造方法
CN113930668A (zh) 一种屈服强度550MPa级桥壳用钢板及其制备方法
CN102732778A (zh) 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN114875333B (zh) 一种650MPa级商用车轮辋用钢的制造方法
CN111893385A (zh) 一种汽车车桥桥壳用钢板及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210122