CN112226519B - A microsatellite marker-based paternity test kit and method for Chinese barb carp - Google Patents
A microsatellite marker-based paternity test kit and method for Chinese barb carp Download PDFInfo
- Publication number
- CN112226519B CN112226519B CN202011079611.1A CN202011079611A CN112226519B CN 112226519 B CN112226519 B CN 112226519B CN 202011079611 A CN202011079611 A CN 202011079611A CN 112226519 B CN112226519 B CN 112226519B
- Authority
- CN
- China
- Prior art keywords
- chinese
- barb
- primer
- offspring
- pcr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001333583 Puntius semifasciolatus Species 0.000 title claims abstract description 56
- 108091092878 Microsatellite Proteins 0.000 title claims abstract description 39
- 238000012360 testing method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 17
- 241000252233 Cyprinus carpio Species 0.000 title claims description 6
- 239000003550 marker Substances 0.000 title abstract description 7
- 108020004414 DNA Proteins 0.000 claims abstract description 52
- 108700028369 Alleles Proteins 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 238000012408 PCR amplification Methods 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000003205 genotyping method Methods 0.000 claims abstract description 5
- 238000005251 capillar electrophoresis Methods 0.000 claims abstract description 4
- 238000004925 denaturation Methods 0.000 claims description 10
- 230000036425 denaturation Effects 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 108090000790 Enzymes Proteins 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 108010006785 Taq Polymerase Proteins 0.000 claims description 6
- 239000011535 reaction buffer Substances 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 239000012154 double-distilled water Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000012257 pre-denaturation Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 238000003752 polymerase chain reaction Methods 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 1
- 230000035755 proliferation Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000002068 genetic effect Effects 0.000 abstract description 7
- 238000009395 breeding Methods 0.000 description 7
- 230000001488 breeding effect Effects 0.000 description 7
- 238000005204 segregation Methods 0.000 description 6
- 230000007717 exclusion Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- BAAVRTJSLCSMNM-CMOCDZPBSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]pentanedioic acid Chemical compound C([C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 BAAVRTJSLCSMNM-CMOCDZPBSA-N 0.000 description 1
- 241000252210 Cyprinidae Species 0.000 description 1
- 241000252206 Cypriniformes Species 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241001275876 Spinibarbus Species 0.000 description 1
- 241001053214 Spinibarbus sinensis Species 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012165 high-throughput sequencing Methods 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 238000009309 intensive farming Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 108091035233 repetitive DNA sequence Proteins 0.000 description 1
- 102000053632 repetitive DNA sequence Human genes 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 108010032276 tyrosyl-glutamyl-tyrosyl-glutamic acid Proteins 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种基于微卫星标记的中华倒刺鲃亲子鉴定试剂盒及其方法。提取中华倒刺鲃个体样本的基因组DNA;PCR扩增:中华倒刺鲃亲子鉴定用引物组中的15对微卫星引物的每对引物的正向引物的5’端标记上荧光物质,利用上述引物组中的各标记荧光引物对获得的DNA基因组进行梯度PCR扩增,扩增产物在测序仪上进行毛细管电泳,读取每个个体的等位基因大小,获取基因分型数据;中华倒刺鲃家系的亲子鉴定分析:基于基因型数据进行亲本和子代数据分析,根据子代基因型和亲本基因型之间的相关性,确定子代与亲本间的亲子关系。本发明方法简单、快捷,可在中华倒刺鲃的种质鉴定、家系遗传管理方面推广应用,并为增殖放流效果评估提供了一种新的技术手段。The invention discloses a microsatellite marker-based parentage identification kit for Chinese barb and a method thereof. Extract genomic DNA from individual samples of Chinese barb; PCR amplification: The 5' end of the forward primer of each pair of 15 pairs of microsatellite primers in the primer set for Chinese barb paternity test is labeled with a fluorescent substance, using the above Each labeled fluorescent primer in the primer set performs gradient PCR amplification on the obtained DNA genome, and the amplified products are subjected to capillary electrophoresis on a sequencer to read the allele size of each individual to obtain genotyping data; Chinese barbs Paternity test analysis of barb family: Based on genotype data, parent and offspring data are analyzed, and the parent-child relationship between offspring and parent is determined according to the correlation between offspring genotype and parental genotype. The method of the invention is simple and fast, can be popularized and applied in the germplasm identification and family genetic management of Chinese barb, and provides a new technical means for evaluating the effect of proliferation and release.
Description
技术领域technical field
本发明涉及鱼类育种和分子标记技术领域,涉及一种基于微卫星标记对中华倒刺鲃进行亲子鉴定的技术,具体为中华倒刺鲃亲子鉴定试剂盒及其微卫星PCR鉴定方法。The invention relates to the technical field of fish breeding and molecular markers, and relates to a technology for parentage identification of Chinese barb based on microsatellite markers, in particular to a Chinese barb paternity test kit and a microsatellite PCR identification method.
背景技术Background technique
中华倒刺鲃(Spinibarbus sinensis)隶属于鲤形目(Cypriniformes)、鲤科(Cyprinidae)、倒刺鲃属(Spinibarbus),俗称“青波”,为长江上游干支流水系重要的经济鱼类之一,在乌江流域和赤水河中下游流域中的渔获物比例较高。中华倒刺鲃个体大、生性活泼,喜水质清澈的急流河滩,生长较快、杂食性,深受人民群众的喜爱。然而,近年来由于捕捞过度、水污染严重,以及水利工程建设及运行造成的栖息地破坏等因素影响,中华倒刺鲃野生资源日益枯竭,开展种资资源保护、恢复与资源增殖研究非常重要。Spinibarbus sinensis belongs to the order Cypriniformes, Cyprinidae, and Spinibarbus, commonly known as "Qingbo". The proportion of fish catch was higher in the Wujiang River Basin and the middle and lower reaches of the Chishui River. Chinese barbs are large in size and lively in nature. They like rapids and rivers with clear water. They grow rapidly and are omnivorous. They are deeply loved by the people. However, in recent years, due to factors such as overfishing, serious water pollution, and habitat destruction caused by the construction and operation of water conservancy projects, the wild resources of Chinese barb have been increasingly depleted. It is very important to carry out research on the protection, restoration and proliferation of seed resources.
中华倒刺鲃资源的保护主要采用人工增殖的方式,即通过养殖中华倒刺鲃亲本,大规模繁殖出苗后,再人工放流至河流,补充其野生种群,迅速壮大野生资源量。由于中华倒刺鲃个体大、生长较快、饲养饵料来源广,适合于池塘、湖泊、水库、鱼类增殖站等开展集约化养殖。多年来,有关中华倒刺鲃营养特性、人工养殖和繁殖技术等的研究已非常成熟,基本可以实现规模化的成鱼生产,为苗种的大规模增殖放流奠定了基础。然而,一方面,中华倒刺鲃繁殖群体的持续圈养,容易造成亲本的近亲交配,从而造成种群的遗传多样性水平下降;另一方面,多省份多机构持续多年开展的增殖放流来源于不同的家系,如何快速有效辨别不同的中华倒刺鲃家系及来源,高效评估其增殖放流效果,已成为中华倒刺鲃种群资源恢复的主要障碍和重要课题之一。The protection of Chinese barb resources mainly adopts the method of artificial proliferation, that is, by breeding Chinese barb parents, after large-scale reproduction and emergence, they are artificially released to rivers to supplement their wild populations and rapidly increase the amount of wild resources. Due to its large size, rapid growth, and wide sources of feeding bait, Chinese barb is suitable for intensive farming in ponds, lakes, reservoirs, and fish breeding stations. Over the years, the research on the nutritional characteristics, artificial breeding and breeding technology of Chinese barbs has been very mature, and large-scale production of adult fish can basically be realized, which has laid the foundation for the large-scale proliferation and release of fry. However, on the one hand, the continuous captive breeding of the breeding population of Chinese barb may easily lead to the inbreeding of the parents, thus resulting in a decrease in the level of genetic diversity of the population; How to quickly and effectively identify different families and sources of Chinese barb, and how to efficiently evaluate their proliferation and release effects, has become one of the main obstacles and important issues for the recovery of Chinese barb population resources.
微卫星(Microsatellite)是一类广泛存在于真核生物基因组中的具有高度变异性的简单重复DNA序列。它具有按照孟德尔方式分离、多态信息含量丰富、呈共显性遗传等特点,可简便快速的基因型检测,是一种广泛应用的遗传学分子标记。同时,由于微卫星标记的使用简单、结果稳定、费用低廉,已经在亲子鉴定中有较多的应用。目前,尚未发现将微卫星标记应用于中华倒刺鲃亲子鉴定的研究报道。本发明旨在基于微卫星标记建立中华倒刺鲃的亲子鉴定技术,为中华倒刺鲃的家系管理、种群遗传管理和增殖放流效果评估提供技术途径。Microsatellites are a class of simple repetitive DNA sequences with high variability that are widely present in eukaryotic genomes. It has the characteristics of separation according to Mendelian method, rich polymorphism information, and co-dominant inheritance. It can be used for simple and rapid genotype detection and is a widely used genetic molecular marker. At the same time, because of the simple use, stable results and low cost of microsatellite markers, they have been widely used in paternity testing. At present, there is no research report on the application of microsatellite markers to the paternity test of Chinese barb. The invention aims to establish a paternity identification technology for Chinese barbs based on microsatellite markers, and provides a technical approach for family management, population genetic management and effect evaluation of proliferation and release of Chinese barbs.
发明内容SUMMARY OF THE INVENTION
本发明涉及一种基于微卫星标记的中华倒刺鲃亲子鉴定试剂盒及其微卫星PCR鉴定方法。The invention relates to a microsatellite marker-based parentage identification kit for Chinese barb and a microsatellite PCR identification method.
本发明采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
提供用于基于微卫星标记的中华倒刺鲃亲子鉴定用引物组,分别为:ZHDCB24、ZHDCB27、ZHDCB28、ZHDCB29、ZHDCB33、ZHDCB35、ZHDCB41、ZHDCB43、ZHDCB50、ZHDCB57、ZHDCB58、ZHDCB66、ZHDCB79、ZHDCB80、ZHDCB88,各引物的序列如下表:Provides primer sets for paternity testing of Chinese barb based on microsatellite markers: ZDCB24, ZDCB27, ZHDCB28, ZDCB29, ZDCB33, ZDCB35, ZDCB41, ZDCB43, ZDCB50, ZDCB57, ZDCB58, ZDCB66, ZDCB79, ZDCB80, ZDCB88 , the sequence of each primer is as follows:
。 .
按上述方案,每对引物的正向引物的5’端标记有荧光物质。所述的荧光物质可选择为FAM荧光物质。According to the above scheme, the 5' end of the forward primer of each pair of primers is labeled with a fluorescent substance. The fluorescent substance can be selected as FAM fluorescent substance.
提供一种基于微卫星标记的中华倒刺鲃亲子鉴定试剂盒,包括Taq酶PCR预先混合液、上述中华倒刺鲃亲子鉴定用引物组,其中Taq酶PCR预先混合液主要成分为0.1U/μl TaqDNA聚合酶、2X PCR反应缓冲液、3mM MgCl2,以及0.4mM dNTPs;中华倒刺鲃基因组DNA的浓度为30-50ng/uL;中华倒刺鲃亲子鉴定用引物组(15个引物)分别为:ZHDCB24、ZHDCB27、ZHDCB28、ZHDCB29、ZHDCB33、ZHDCB35、ZHDCB41、ZHDCB43、ZHDCB50、ZHDCB57、ZHDCB58、ZHDCB66、ZHDCB79、ZHDCB80、ZHDCB88。A microsatellite marker-based paternity test kit for Chinese barbs is provided, comprising a Taq enzyme PCR premix and the above-mentioned primer set for Chinese barb paternity testing, wherein the main components of the Taq PCR premix are 0.1U/μl TaqDNA polymerase, 2X PCR reaction buffer, 3mM MgCl 2 , and 0.4mM dNTPs; the concentration of genomic DNA of Chinese barb is 30-50ng/uL; the primer set (15 primers) for Chinese barb paternity test are respectively : ZDCB24, ZDCB27, ZDCB28, ZDCB29, ZDCB33, ZDCB35, ZDCB41, ZDCB43, ZDCB50, ZDCB57, ZDCB58, ZDCB66, ZDCB79, ZDCB80, ZDCB88.
按上述方案,所述的中华倒刺鲃亲子鉴定试剂盒还包括双蒸水。According to the above scheme, the described kit for paternity test of Chinese barb also includes double distilled water.
提供一种微卫星PCR鉴定方法,包括以下步骤:A microsatellite PCR identification method is provided, comprising the following steps:
(1)提取中华倒刺鲃个体样本的基因组DNA:将中华倒刺鲃亲本的鳍条和子代鱼苗个体,采用高盐提取法获得每个个体的基因组DNA,保存备用;(1) Extracting the genomic DNA of the individual samples of Chinese barb: the fin rays and offspring fry individuals of the Chinese barb parent were obtained by high-salt extraction method to obtain the genomic DNA of each individual, and stored for future use;
(2)PCR扩增:将中华倒刺鲃亲子鉴定用引物组中的15对微卫星引物ZHDCB24、ZHDCB27、ZHDCB28、ZHDCB29、ZHDCB33、ZHDCB35、ZHDCB41、ZHDCB43、ZHDCB50、ZHDCB57、ZHDCB58、ZHDCB66、ZHDCB79、ZHDCB80、ZHDCB88中的每对引物的正向引物的5’端标记上FAM荧光物质,利用上述引物组中的各标记荧光引物对步骤(1)获得的DNA基因组进行梯度PCR扩增,扩增产物在测序仪上进行毛细管电泳,读取每个个体的等位基因大小,获取基因分型数据;(2) PCR amplification: 15 pairs of microsatellite primers ZDCB24, ZHDCB27, ZHDCB28, ZHDCB29, ZHDCB33, ZDCB35, ZHDCB41, ZDCB43, ZHDCB50, ZHDCB57, ZHDCB58, ZHDCB66, ZDCB79, The 5' end of the forward primer of each pair of primers in ZHDCB80 and ZHDCB88 is labeled with a FAM fluorescent substance, and the DNA genome obtained in step (1) is subjected to gradient PCR amplification using each labeled fluorescent primer in the above-mentioned primer set, and the amplified product Perform capillary electrophoresis on the sequencer, read the allele size of each individual, and obtain genotyping data;
(3)中华倒刺鲃家系的亲子鉴定分析:基于步骤(3)获取的基因型数据转换成生物软件能够读取的格式,进行亲本和子代数据分析,根据子代基因型和亲本基因型之间的相关性,确定子代与亲本间的亲子关系。(3) Paternity identification analysis of the Chinese barb family: Based on the genotype data obtained in step (3), convert the genotype data obtained in step (3) into a format that can be read by biological software, and analyze the parent and offspring data. Correlation between offspring and parents to determine the parent-child relationship.
按上述方案,所述的PCR扩增程序为:95℃预变性5min;95℃变性30s,62℃→52℃梯度温度(touch down)退火30s,72℃延伸30s,进行10个循环;95℃变性30s,52℃退火30s,72℃延伸30s,进行22个循环;最后72℃再延伸20min。According to the above scheme, the PCR amplification procedure is as follows: 95°C pre-denaturation for 5 min; 95°C denaturation for 30s, 62°C→52°C gradient temperature (touch down) annealing for 30s, 72°C extension for 30s, 10 cycles; 95°C Denaturation for 30 s, annealing at 52 °C for 30 s, and extension at 72 °C for 30 s were performed for 22 cycles; the final extension was at 72 °C for 20 min.
按上述方案,所述的PCR反应体系为:5.0uL Taq酶PCR预先混合液(主要成分为0.1U/μl Taq DNA聚合酶、2X PCR反应缓冲液、3mM MgCl2,以及0.4mM dNTPs)、1.0uL模板基因组DNA(浓度30-50ng/uL)、上下游扩增引物各0.4uL(浓度10uM),加3.2uL ddH2O至总体积10uL。According to the above scheme, the PCR reaction system is: 5.0uL Taq enzyme PCR premix (the main components are 0.1U/μl Taq DNA polymerase, 2X PCR reaction buffer, 3mM MgCl 2 , and 0.4mM dNTPs), 1.0 uL template genomic DNA (concentration 30-50ng/uL), upstream and downstream amplification primers each 0.4uL (concentration 10uM), add 3.2uL ddH2O to the total volume of 10uL.
本发明基于精心筛选的15个多态性微卫星位点,获得清晰、稳定的效果后,开展荧光标记微卫星引物(根据实验室自行筛选分离中华倒刺鲃微卫星序列中筛选出扩增稳定、结果清晰,特异性强、杂合度高的引物),共筛选出15对:ZHDCB24、ZHDCB27、ZHDCB28、ZHDCB29、ZHDCB33、ZHDCB35、ZHDCB41、ZHDCB43、ZHDCB50、ZHDCB57、ZHDCB58、ZHDCB66、ZHDCB79、ZHDCB80、ZHDCB88)进行PCR扩增实验,获取亲本和子代的微卫星分型信息,获得家系中亲本和子代的基因型数据,最后开展亲子鉴定分析,分析亲本和子代基因型间的相关性,从而确定子代与亲本间的亲子关系关系。The present invention is based on carefully selected 15 polymorphic microsatellite sites. After obtaining clear and stable effects, fluorescently labeled microsatellite primers (according to laboratory self-screening and isolation of Chinese barb microsatellite sequences screened for stable amplification) , primers with clear results, strong specificity and high heterozygosity), a total of 15 pairs were screened: ZHDCB24, ZDCB27, ZHDCB28, ZHDCB29, ZHDCB33, ZDCB35, ZDCB41, ZDCB43, ZDCB50, ZDCB57, ZDCB58, ZHDCB66, ZDCB79, ZDCB80, ZDCB88 ) to carry out PCR amplification experiments to obtain microsatellite typing information of parents and offspring, obtain genotype data of parents and offspring in the family, and finally conduct parent-child identification analysis to analyze the correlation between parent and offspring genotypes, so as to determine offspring Parent-child relationship with parents.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明利用荧光标记的微卫星位点与毛细管电泳技术相结合,依据高通量测序的微卫星分型,对中华倒刺鲃家系进行了亲子分析;(1) The present invention utilizes the combination of fluorescently labeled microsatellite sites and capillary electrophoresis technology, and based on the microsatellite typing of high-throughput sequencing, a parent-child analysis is carried out on the Chinese barb family lineage;
(2)本发明筛选的15个多态性微卫星位点,主要为三碱基或四碱基重复单元的位点,其扩增效果稳定、清晰,为后期数据规整提供了较客观的依据。(2) The 15 polymorphic microsatellite sites screened by the present invention are mainly sites of three-base or four-base repeat units, and their amplification effect is stable and clear, which provides a more objective basis for later data regularization .
(3)本发明的建立为中华倒刺鲃种质鉴定、家系遗传管理和增殖放流效果评估提供了一种新的技术手段。(3) The establishment of the present invention provides a new technical means for germplasm identification, family genetic management and effect evaluation of proliferation and release of Chinese barb.
附图说明Description of drawings
图1为引物ZHDCB027测序图(依次为亲本F1(基因型为203/207)、亲本M1(基因型为199/203)、子一代Z1-1(基因型为199/207)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律Figure 1 shows the sequencing map of primer ZHDCB027 (in order, parental F1 (genotype: 203/207), parental M1 (genotype: 199/203), and offspring Z1-1 (genotype: 199/207)), two offspring The alleles come from the male and female parents, respectively, in accordance with Mendel's law of segregation
图2为引物ZHDCB043测序图(依次为亲本F1(基因型为228/232)、亲本M1(基因型为228/232)、子一代Z1-1(基因型为228/228)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律Figure 2 shows the sequence diagram of primer ZHDCB043 (in order, parental F1 (genotype: 228/232), parental M1 (genotype: 228/232), offspring Z1-1 (genotype: 228/228)), two offspring The alleles come from the male and female parents, respectively, in accordance with Mendel's law of segregation
图3为引物ZHDCB080测序图(依次为亲本F1(基因型为274/274)、亲本M1(基因型为274/278)、子一代Z1-1(基因型为274/278)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律Figure 3 shows the sequencing map of primer ZHDCB080 (in order, parental F1 (genotype: 274/274), parental M1 (genotype: 274/278), and offspring Z1-1 (genotype: 274/278)). The alleles come from the male and female parents, respectively, in accordance with Mendel's law of segregation
具体实施方式Detailed ways
实施例:Example:
下面结合实例,对本发明作进一步说明。The present invention will be further described below in conjunction with examples.
一种基于微卫星标记的中华倒刺鲃亲子鉴定方法,其步骤是:A microsatellite marker-based paternity test method for Chinese barb, the steps of which are:
(1)提取中华倒刺鲃个体样本的基因组DNA:将经过人工配对获取的家系6尾亲本和96尾子代鱼苗的样品取出来,按照高盐法提取基因组DNA。具体步骤为:剪取0.5g左右的鳍条组织(子代鱼苗个体用全部鱼苗用做),用双蒸水洗净保存样品沾附的酒精,充分剪碎,放入1.5mL离心管中;向离心管中加入500μL的细胞裂解液和6μL的蛋白酶K,在55℃水浴过夜消化,前30分钟摇动数次;加500μL氯化钠(4.5mol/L),300μL氯仿,摇床中速混匀20分钟,在13000rpm,10℃下离心10分钟;转移上清液到新管(大概850μL左右),加595μL无水异丙醇,摇床中速混匀20分钟,在13000rpm,10℃下离心10分钟,倒掉上清;加500μL 75%的乙醇,在55℃水浴消化5分钟,在13000rpm,10℃下离心20分钟,倒掉上清;将离心管置于超净工作台中干燥1小时,加入50~100μL的TE 8.0,4℃过夜溶解DNA,放置于-20℃冰箱保存备用。(1) Extraction of genomic DNA from individual samples of Chinese barb: Take out samples of 6 parents and 96 offspring fry obtained by manual pairing, and extract genomic DNA according to the high-salt method. The specific steps are: cut about 0.5g of fin ray tissue (the individual offspring fry is used for all the fry), wash the alcohol adhered to the preserved sample with double-distilled water, fully cut it into pieces, and put it into a 1.5mL centrifuge tube; Add 500 μL of cell lysate and 6 μL of proteinase K to the centrifuge tube, digest in a water bath at 55°C overnight, shake several times in the first 30 minutes; add 500 μL of sodium chloride (4.5 mol/L), 300 μL of chloroform, and mix quickly in a shaker Homogenize for 20 minutes, centrifuge at 13,000 rpm for 10 minutes at 10°C; transfer the supernatant to a new tube (about 850 μL), add 595 μL of anhydrous isopropanol, and mix at medium speed on a shaker for 20 minutes at 13,000 rpm and 10° C. Centrifuge for 10 minutes, discard the supernatant; add 500 μL of 75% ethanol, digest in a water bath at 55°C for 5 minutes, centrifuge at 13,000 rpm and 10°C for 20 minutes, and discard the supernatant; place the centrifuge tube on a clean bench to dry for 1 hours, add 50-100 μL of TE 8.0, dissolve the DNA at 4°C overnight, and store it in a -20°C refrigerator for later use.
(2)筛选多态性微卫星位点:根据实验室自行筛选分离的中华倒刺鲃微卫星序列,设计合成系列上下游引物,并分别对8个中华倒刺鲃个体(步骤(1)提取的基因组DNA)进行PCR扩增,筛选出扩增稳定、结果清晰,特异性强、杂合度高的引物。其PCR反应体系为:5.0uL2×Power Taq PCR预先混合液(主要成分为0.1U/μl Taq DNA聚合酶、2X PCR反应缓冲液、3mM MgCl2,以及0.4mM dNTPs)、1.0uL模板基因组DNA(浓度30-50ng/uL)、上下游扩增引物各0.4uL(浓度10uM),加3.2uL ddH2O至总体积10uL。PCR扩增程序为:95℃预变性5min;95℃变性30s,62℃→52℃梯度温度(touch down)退火30s,72℃延伸30s,进行10个循环;95℃变性30s,52℃退火30s,72℃延伸30s,进行22个循环;最后72℃再延伸20min。获得的PCR产物进行定量稀释后,取1ul PCR稀释产物,加入7ul甲酰胺(含4‰荧光内标LIZ500)变性后,在ABI 3730xl DNA测序仪上进行毛细管荧光电泳检测和基因分型。本发明共筛选出15对可用中华倒刺鲃微卫星引物:ZHDCB24、ZHDCB27、ZHDCB28、ZHDCB29、ZHDCB33、ZHDCB35、ZHDCB41、ZHDCB43、ZHDCB50、ZHDCB57、ZHDCB58、ZHDCB66、ZHDCB79、ZHDCB80、ZHDCB88。有关中华倒刺鲃微卫星引物序列、重复单元及退火变性信息,请见表1;(2) Screening of polymorphic microsatellite loci: According to the microsatellite sequences of Chinese barb isolated from the laboratory, a series of upstream and downstream primers were designed and synthesized, and 8 individuals of Chinese barb were extracted (step (1)) PCR amplification of genomic DNA) was performed, and primers with stable amplification, clear results, strong specificity and high heterozygosity were screened out. The PCR reaction system is: 5.0
表1 15个微卫星位点信息表Table 1 Information table of 15 microsatellite loci
本发明对每个引物进行了具体验证,结果表明各引物均符合孟德尔分离定律,其中:以引物ZHDCB027,ZHDCB043,ZHDCB080为例进行具体分析如下:图1为引物ZHDCB027测序图(依次为亲本F1(基因型为203/207)、亲本M1(基因型为199/203)、子一代Z1-1(基因型为199/207)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律;图2为引物ZHDCB043测序图(依次为亲本F1(基因型为228/232)、亲本M1(基因型为228/232)、子一代Z1-1(基因型为228/228)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律;图3为引物ZHDCB080测序图(依次为亲本F1(基因型为274/274)、亲本M1(基因型为274/278)、子一代Z1-1(基因型为274/278)),子一代两个等位基因分别来自父本和母本,符合孟德尔分离定律。The present invention has carried out specific verification on each primer, and the results show that each primer conforms to Mendel's law of separation, wherein: taking primers ZHDCB027, ZHDCB043 and ZHDCB080 as examples, the specific analysis is as follows: (genotype is 203/207), parent M1 (genotype is 199/203), child generation Z1-1 (genotype is 199/207)), the two alleles of child generation come from the father and mother respectively, In line with Mendel's law of segregation; Figure 2 is the sequencing map of primer ZHDCB043 (the parent F1 (genotype is 228/232), the parent M1 (genotype is 228/232), and the offspring Z1-1 (genotype is 228/228) )), the two alleles of the offspring come from the male parent and the female parent, respectively, in line with Mendel’s law of segregation; Figure 3 shows the sequencing map of the primer ZHDCB080 (the parental F1 (genotype is 274/274), the parental M1 (genotype is 274/274) 274/278), the offspring Z1-1 (
(3)荧光标记的微卫星引物进行PCR扩增:将步骤(2)中的15对微卫星引物中的每对引物的正向引物的5’端标记上FAM荧光物质,利用标记荧光引物对步骤(1)获得的DNA基因组进行梯度PCR扩增,其PCR反应体系为:5.0uL 2×Power Taq PCR预先混合液(主要成分为0.1U/μl Taq DNA聚合酶、2X PCR反应缓冲液、3mM MgCl2,以及0.4mM dNTPs)、1.0uL模板基因组DNA(浓度30-50ng/uL)、上下游扩增引物各0.4uL(浓度10uM),加3.1uL ddH2O至总体积10uL。PCR扩增程序为:95℃预变性5min;95℃变性30s,62℃→52℃梯度温度(touchdown)退火30s,72℃延伸30s,进行10个循环;95℃变性30s,52℃退火30s,72℃延伸30s,进行22个循环;最后72℃再延伸20min。获得的PCR产物进行定量稀释后,取1ul PCR稀释产物,加入7ul甲酰胺(含4‰荧光内标LIZ500)变性后,在ABI 3730xl DNA测序仪上进行毛细管荧光电泳检测,采用软件读取每个个体的等位基因大小,获取基因分型的原始数据。依据测序仪获得的分型结果,利用软件GeneMarker v 2.2.0(Holland and Parson,2011)读取个体等位基因大小,并依据微卫星的重复单元组成进行人工校正。(3) PCR amplification with fluorescently labeled microsatellite primers: The 5' end of the forward primer of each pair of primers in the 15 pairs of microsatellite primers in step (2) is labeled with FAM fluorescent substance, and the labeled fluorescent primer pair is used to label the 5' end of the forward primer. The DNA genome obtained in step (1) is amplified by gradient PCR, and the PCR reaction system is: 5.0
(4)中华倒刺鲃家系的亲子鉴定分析:对步骤(3)获取的人工校对后的基因型数据,利用软件Cervus 3.0.7(Kalinowski et al.,2010)对亲本和子代数据进行等位基因频率计算、模拟分析和亲子关系分析,通过待测子代与亲本间的基因型似然率(logLikelihood ratio,LOD)值来分析其相关性,并在95%置信水平下,确定待测子代与亲本间的关系。结果显示,对双亲未知时单亲本而言,15个位点的非亲权累积排除概率(NE-1P)为0.9682947;对已知单亲基因型时的另一亲本而言,15个位点的非亲权累积排除概率(NE-2P)为0.99839823;当双亲未知时的父母本组合而言,15个位点的非亲权累积排除概率(NE-PP)为0.99997443。中华倒刺鲃15个微卫星位点遗传多样性和排除概率信息,详见表2。为确保鉴定结果准确,依据LOD值大于0,且与家系记录数据相一致,才能确认为亲子关系。结果显示,96尾子代中有92尾子代个体确认了亲子关系,鉴定准确率为95.83%。以上结果表明,利用本发明的基于微卫星标记的中华倒刺鲃亲子鉴定试剂盒及其方法能高效快捷实现中华倒刺鲃家系的亲子鉴定分析、种质管理和增殖放流效果评估的要求。(4) Paternity test analysis of the Chinese barb family: For the genotype data obtained in step (3) after manual proofreading, the software Cervus 3.0.7 (Kalinowski et al., 2010) was used to perform allelic analysis on the parental and offspring data Gene frequency calculation, simulation analysis and parent-child relationship analysis, the correlation between the genotype likelihood ratio (logLikelihood ratio, LOD) value between the offspring to be tested and the parent is analyzed, and the test offspring is determined at the 95% confidence level The relationship between generation and parent. The results showed that for a single parent with unknown parents, the non-parental cumulative exclusion probability (NE-1P) of 15 loci was 0.9682947; for the other parent with known uniparental genotype, the 15 loci The non-parental cumulative exclusion probability (NE-2P) was 0.99839823; when the parents were unknown, the non-parental cumulative exclusion probability (NE-PP) for the 15 loci was 0.99997443. The genetic diversity and exclusion probability of the 15 microsatellite loci in Chinese barb are shown in Table 2. In order to ensure the accuracy of the identification results, the parent-child relationship can be confirmed only when the LOD value is greater than 0 and is consistent with the family record data. The results showed that 92 of the 96 offspring individuals confirmed the parent-child relationship, and the identification accuracy rate was 95.83%. The above results show that the use of the microsatellite marker-based paternity test kit and the method for Chinese barbs of the present invention can efficiently and quickly fulfill the requirements of paternity analysis, germplasm management and proliferation and release effect evaluation of Chinese barb families.
表2.中华倒刺鲃15个微卫星位点遗传多样性和非亲权排除概率信息Table 2. Genetic diversity and non-parental exclusion probability information of 15 microsatellite loci in Chinese barb.
注:NS表示不显著偏离(P>0.05),*表示显著偏离(P<0.05)Note: NS means no significant deviation (P>0.05), * means significant deviation (P<0.05)
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
说明书核苷酸和氨基酸序列表Specification Nucleotide and Amino Acid Sequence Listing
<110> 水利部中国科学院水工程生态研究所<110> Institute of Water Engineering Ecology, Chinese Academy of Sciences, Ministry of Water Resources
<120> 一种基于微卫星标记的中华倒刺鲃亲子鉴定试剂盒及其方法<120> A microsatellite marker-based paternity test kit and method for Chinese barb carp
<160> 30<160> 30
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB24 F<223> ZHDCB24 F
<400> 1<400> 1
CTTGTCTCCT CGTTCCCTTGCTTGTCTCCTCGTTCCCTTG
<210> 2<210> 2
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB24 R<223> ZHDCB24 R
<400> 2<400> 2
TTGATGCTTA TCAATGGCTC CTTGATGCTTATCAATGGCTCC
<210> 3<210> 3
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB27 F<223> ZHDCB27F
<400> 3<400> 3
CAGTGTTCTA TCTCATGGAC GGCAGTGTTCTA TCTCATGGAC GG
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB27 R<223> ZHDCB27 R
<400> 4<400> 4
TTCATGTTTG GGGGAGAGAGTTCATGTTTGGGGGAGAGAG
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB28 F<223> ZHDCB28F
<400> 5<400> 5
CCAGCTAAAG CCAAATGAGGCCAGCTAAAG CCAAATGAGG
<210> 6<210> 6
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB28 R<223> ZHDCB28 R
<400> 6<400> 6
GCTGCATCCT GATCTGCACGCTGCATCCT GATCTGCAC
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB29 F<223> ZHDCB29F
<400> 7<400> 7
ATTCTATGTC GACCCGAACGATTCTATGTC GACCCGAACG
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB29 R<223> ZHDCB29 R
<400> 8<400> 8
ACATCATCAG ACTAGCCCCGACATCATCAG ACTAGCCCCG
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB33 F<223> ZHDCB33F
<400> 9<400> 9
TCGAAAAATC GTGTCGTCAATCGAAAAATC GTGTCGTCAA
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB33 R<223> ZHDCB33 R
<400> 10<400> 10
TCGGCCTGGA TTTTGAATTATCGGCCTGGATTTTGAATTA
<210> 11<210> 11
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB35 F<223> ZHDCB35F
<400> 11<400> 11
GCAGGATTAG TTTCGCTGTT GGCAGGATTAG TTTCGCTGTT G
<210> 12<210> 12
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB35 R<223> ZHDCB35 R
<400> 12<400> 12
AACCGTAATC CAATAAGCTT GGAACCGTAATC CAATAAGCTT GG
<210> 13<210> 13
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB41 F<223> ZHDCB41 F
<400> 13<400> 13
TGGGCTGATC TCAGTCTCTGTGGGCTGATCTCAGTCTCTG
<210> 14<210> 14
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB41 R<223> ZHDCB41 R
<400> 14<400> 14
TGGACAAAAA CAAGGAGCTGTGGACAAAAA CAAGGAGCTG
<210> 15<210> 15
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB43 F<223> ZHDCB43 F
<400> 15<400> 15
CCCGGAGCTA ATTGTGGTAACCCGGAGCTA ATTGTGGTAA
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB43 R<223> ZHDCB43 R
<400> 16<400> 16
AACACTCGAA GGTGATTGGGAACACTCGAAGGTGATTGGG
<210> 17<210> 17
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB50 F<223> ZHDCB50F
<400> 17<400> 17
CTGCTTTGGC TCTTCATTCCCTGCTTTGGC TCTTCATTCC
<210> 18<210> 18
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB50 R<223> ZHDCB50 R
<400> 18<400> 18
CGTGCACTTC CAACATCATCCGTGCACTTC CAACATCATC
<210> 19<210> 19
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB57 F<223> ZHDCB57F
<400> 19<400> 19
TGCATGCAAT CATTCAGTAT CTCTGCATGCAAT CATTCAGTAT CTC
<210> 20<210> 20
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB57 R<223> ZHDCB57 R
<400> 20<400> 20
TCTAGCAATC CAAAATCACC ATCTAGCAATC CAAAATCACC A
<210> 21<210> 21
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB58 F<223> ZHDCB58F
<400> 21<400> 21
CTCATTCCTT GATGTCCCGTCTCATTCCTT GATGTCCCGT
<210> 22<210> 22
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB58 R<223> ZHDCB58 R
<400> 22<400> 22
GGTTAACCCA TTTAACCCAG CGGTTAACCCA TTTAACCCAG C
<210> 23<210> 23
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB66 F<223> ZHDCB66 F
<400> 23<400> 23
TTCAGACAAG AATCAGACCA ACATTCAGACAAG AATCAGACCA ACA
<210> 24<210> 24
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB66 R<223> ZHDCB66 R
<400> 24<400> 24
GCAAACCTTT TGGGAAGGATGCAAAACCTTTTGGGAAGGAT
<210> 25<210> 25
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB79 F<223> ZHDCB79F
<400> 25<400> 25
TAGTCACTGC AGCGTCCTGTAGTCACTGC AGCGTCCTG
<210> 26<210> 26
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB79 R<223> ZHDCB79 R
<400> 26<400> 26
TTGAGCAGAA ATGTTGAGCGTTGAGCAGAA ATGTTGAGCG
<210> 27<210> 27
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB80 F<223> ZHDCB80F
<400> 27<400> 27
CCATATGTGA ATTATGTGGA TGTGCCATATGTGA ATTATGTGGA TGTG
<210> 28<210> 28
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB80 R<223> ZHDCB80 R
<400> 28<400> 28
GTGACCGAGT GCAGAAGTGAGTGACCGAGT GCAGAAGTGA
<210> 29<210> 29
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB88 F<223> ZHDCB88 F
<400> 29<400> 29
TGTTCCTCAC TGTTTGGCAGTGTTCCTCAC TGTTTGGCAG
<210> 30<210> 30
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<223> ZHDCB88 R<223> ZHDCB88 R
<400> 30<400> 30
TCACTAACCA GGCATGCAAATCACTAACCAGGCATGCAAA
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011079611.1A CN112226519B (en) | 2020-10-10 | 2020-10-10 | A microsatellite marker-based paternity test kit and method for Chinese barb carp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011079611.1A CN112226519B (en) | 2020-10-10 | 2020-10-10 | A microsatellite marker-based paternity test kit and method for Chinese barb carp |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112226519A CN112226519A (en) | 2021-01-15 |
CN112226519B true CN112226519B (en) | 2022-07-05 |
Family
ID=74111953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011079611.1A Active CN112226519B (en) | 2020-10-10 | 2020-10-10 | A microsatellite marker-based paternity test kit and method for Chinese barb carp |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112226519B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106282365A (en) * | 2016-09-09 | 2017-01-04 | 广州大学 | A kind of test kit quickly light agnail different groups classified |
CN106399530A (en) * | 2016-10-17 | 2017-02-15 | 华南师范大学 | Spinibarbus dneticulatus microsatellite family identification method |
-
2020
- 2020-10-10 CN CN202011079611.1A patent/CN112226519B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106282365A (en) * | 2016-09-09 | 2017-01-04 | 广州大学 | A kind of test kit quickly light agnail different groups classified |
CN106399530A (en) * | 2016-10-17 | 2017-02-15 | 华南师范大学 | Spinibarbus dneticulatus microsatellite family identification method |
Non-Patent Citations (4)
Title |
---|
Development of seventeen polymorphic microsatellite loci in Spinibarbus sinensis (Bleeker);Xiong, MH等;《CONSERVATION GENETICS RESOURCES》;20121231;第4卷(第4期);第1041-1043页 * |
Microsatellites development for rock carp (Procypris rabaudi) and cross-species testing in Onychostoma sima and Spinibarbus sinensis;Shi, Fang等;《CONSERVATION GENETICS RESOURCES》;20120930;第4卷(第3期);第657–660页 * |
中华倒刺鲤微卫星标记筛选及特征分析;熊美华等;《水生态学杂志》;20111231;第32卷(第1期);第40-44页 * |
长江两种土著鱼类同工酶组织特异性研究及中华倒刺鲃基因组微卫星的筛选;张娟;《中国优秀硕士学位论文全文数据库》;20121015(第10期);D052-29 * |
Also Published As
Publication number | Publication date |
---|---|
CN112226519A (en) | 2021-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112126693B (en) | Iwahara carp paternity test kit and microsatellite PCR test method | |
CN109055571B (en) | Specific primer of yellow fin spine porgy microsatellite marker and application | |
CN103757113B (en) | Microsatellite fluorescent multiple PCR (Polymerase Chain Reaction) method used in paternity testing of grass carps | |
CN107502663B (en) | Channel catfish microsatellite family identification method | |
CN108998547B (en) | Microsatellite marking method for paternity test of cupfish | |
CN104419706B (en) | SNP markers and their applications | |
CN105177143B (en) | A kind of method of strain line hippocampus microsatellite Parentage determination | |
CN114891894A (en) | SSR molecular marker primer group for identifying Guangxi \/28064;, Zhongdao leopard gill and acantho salmoides protospecies and application thereof | |
CN112266967B (en) | An immune-related SNP locus of sea bass and its application in breeding | |
CN102146460A (en) | Detecting method for Litopenaeus vannamei Boone LvE165 microsatellite DNA marker | |
CN114540509A (en) | A kind of SNP marker related to the infection resistance of Vibrio parahaemolyticus in Penaeus vannamei and its application | |
CN114592070B (en) | A method and application of microsatellite family identification of yellowfin seabream | |
CN109182546B (en) | SSR fluorescence labeling primer for paternity test of pangolin scales and application thereof | |
KR101686446B1 (en) | SNP markers for discriminating Yeonsan Ogye breed of chicken and use thereof | |
CN108611405B (en) | A method of microsatellite fluorescence multiplex PCR for paternity identification of pufferfish | |
CN112226519B (en) | A microsatellite marker-based paternity test kit and method for Chinese barb carp | |
CN112375827B (en) | A SNP marker related to the growth of Macrobrachium rosenbergii and its typing method and application | |
CN106167825B (en) | A kind of relevant microsatellite marker of yellow catfish growing characteristic and its detection and application | |
CN113684280A (en) | A low-density 12K SNP chip for high temperature resistance breeding of Apostichopus japonicus and its application | |
CN105177142B (en) | A kind of strain line hippocampus microsatellite marker and its screening technique | |
CN115948577B (en) | A kind of breeding method of high temperature resistant sea cucumber | |
CN103966316B (en) | A kind of diploid loach micro-satellite Parentage determination method and application thereof | |
CN117965787A (en) | A SNP marker, primer set and application thereof for identifying the authenticity of hybrids of Josapine and MD2 | |
CN107354234B (en) | Method for screening parent oysters with high glycogen content and related primer pair thereof | |
CN105950729A (en) | SNP (single nucleotide polymorphism) marker related to hevea brasiliensis stem girth and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Que Yanfu Inventor after: Li Weitao Inventor after: Xiong Meihua Inventor after: Xu Nian Inventor after: Wang Ezhou Inventor after: Hu Xingkun Inventor after: Tian Hua Inventor after: Zhu Bin Inventor before: Que Yanfu Inventor before: Li Weitao Inventor before: Xiong Meihua Inventor before: Xu Nian Inventor before: Wang E Inventor before: Hu Xingkun Inventor before: Tian Hua Inventor before: Zhu Bin |