CN112215865A - 一种荧光显微图像下的微液滴自动检测方法 - Google Patents

一种荧光显微图像下的微液滴自动检测方法 Download PDF

Info

Publication number
CN112215865A
CN112215865A CN201910625527.6A CN201910625527A CN112215865A CN 112215865 A CN112215865 A CN 112215865A CN 201910625527 A CN201910625527 A CN 201910625527A CN 112215865 A CN112215865 A CN 112215865A
Authority
CN
China
Prior art keywords
micro
image
droplet
detection
noise reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910625527.6A
Other languages
English (en)
Inventor
秦斌杰
李如锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201910625527.6A priority Critical patent/CN112215865A/zh
Publication of CN112215865A publication Critical patent/CN112215865A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种荧光显微图像下的微液滴自动检测方法,其特征在于,包括以下步骤:对带噪声的FMIM灰度图进行高斯噪声变换;对获得的图像降噪后进行高斯噪声逆变换,获得降噪后的微液滴图像;对降噪后的微液滴图像进行自适应对比度增强,获得微液滴增强结果图;提取微液滴增强结果图的类Radon特征,获得边缘特征图;分别对降噪后的微液滴图像及边缘特征图进行微液滴目标检测;合并两类图像的微液滴目标检测结果,将两类结果中圆心坐标差的绝对值和小于判别阈值的微液滴目标视为一个微液滴进行计数,得到最终的微液滴检测数目。与现有技术相比,本发明具有检测准确性高,可行性高等优点。

Description

一种荧光显微图像下的微液滴自动检测方法
技术领域
本发明涉及一种基于微液滴的微流控系统,尤其是涉及一种荧光显微图像下的微液滴自动检测方法。
背景技术
基于微液滴的微流控系统是一个极具发展前景的超小体积、高通量的化学和生物实验平台,在单细胞分析、数字PCR和高通量筛选等领域都取得了巨大的进展。在基于液滴的微流体系统的开发和应用中,微液滴的定性和定量分析能力起着至关重要的作用。通过液滴微流控技术的应用,可以将对待检测样本溶度等定量生物特性的检测分析转化到对微液滴的定量分析之中。微液滴的定量分析往往需要借助荧光显微成像技术的辅助以及对微液滴荧光图像的分析处理。但是,由于针对微液滴的图像检测方法的缺乏,荧光微液滴图像的计数、检测、分析等操作,大都依赖于生物科研工作对荧光图像的解读,所需时间长,工作负担大。为了提高诊断效率,降低生物科研工作者的工作负担,自动化的荧光斑点检测方法受到了广泛的研究和关注。微液滴荧光显微图像(Fluorescence microscopic images ofmicro-droplets,FMIM)是指微液滴目标经过荧光显微镜后得到的荧光显微图像。该类图像不含有自由酶引发的背景荧光,仅包含两部分检测目标:能够发出亮光的荧光微液滴和不发光的空微液滴。空微液滴由于在图像中的亮度等特征信息过于微弱,是这类图像中最难检测的目标。
目前没有专门针对微液滴检测分析的研究和方法提出,但很多学者对荧光斑点检测的方法进行了研究,荧光斑点与微液滴结构特征类似,因此,荧光斑点检测方法的发展现状可以反映微液滴检测方法的技术发展现状。该领域下的研究方法主要包括以下几种,Zhang,B,提出了基于多尺度方差稳定性变换(MSVST)的方法,该方法根据图像不同结构特征间的小波特性,滤除图像中噪声,检测出荧光斑点的数量,该方法能够很好的区分目标信息和背景信息,但这种方法无法有效区分待检测斑点与其它的非斑点检测目标,常会出现误检测和漏检测的问题;Rezatofighi提出一种基于最大概率高度圆顶的目标检测算法(MPHD),该方法根据图像的局部特性自适应的提取图像中的圆顶区域来检测荧光斑点,该方法对亮度显著的或分散的斑点目标具有非常好的检测,但当斑点粘连,或是没有显著的圆顶特征时,该方法表现较差;Jaiwal等提出了一种基于多尺度圆点增强滤波算法(MSSEF)来检测荧光斑点,该方法通过选取不同尺度的拉普拉斯高斯滤波核来对目标图像进行滤波,从而获取不同尺度检测下的荧光斑点数量,该方法能够明显改进多斑点粘连区域的检测效果,然而,该方法选择的参数依赖于图像整体的均值和方差,面对种类多变的复杂荧光图像,其检测效果变化较大,难以保证检测准确性;Basset等提出了选择最优高斯拉普拉斯(LoG)尺度或针对不同斑点大小的多尺度LoG检测算法,该方法在传统的LoG方法上进行了改进,与MSSEF类似,多尺度信息提供了更高的检测准确度,降低了漏检率。但实践中最优的尺度信息难以获得,检测目标特征微弱时,面临和MSSEF一样的问题。
如上所述,这些主流的方法在某些荧光斑点图像中会取得较好的检测效果,但对于微液滴荧光显微图像(FMIM),仍然存在以下缺陷:
第一,FMIM中空微液滴的亮度特征十分微弱,图像中噪声强度与空微液滴的亮度强度近似,因而对空微液滴的检测造成极大影响。利用上文所述方法难以有效的滤除图像噪声,同时保留图像中的微液滴亮度特征;其次,现有方法大都根据图像中检测目标与背景显著的亮度差异来区分和识别,在亮度特征十分微弱的情况下,难以有效识别图像中的空微液滴。
第二,FMIM中空微液滴大量粘连聚集,同时图像中还有一些非微液滴目标的其他结构干扰检测结果,上述提到的方法检测结果会出现较多的错误检测和漏检测问题。
发明内容
本发明的目的在于克服上述现有技术存在的缺陷而提供一种荧光显微图像下的微液滴自动检测方法。
本发明的目的可以通过以下技术方案来实现:
一种荧光显微图像下的微液滴自动检测方法,包括以下步骤:
S101,对带噪声的FMIM灰度图进行高斯噪声变换;
S102,对步骤S101获得的图像降噪后进行高斯噪声逆变换,获得降噪后的微液滴图像;
S103,对降噪后的微液滴图像进行自适应对比度增强,获得微液滴增强结果图;
S104,提取微液滴增强结果图的类Radon特征,获得边缘特征图;
S105,分别对步骤S102获得的降噪后的微液滴图像及步骤S104获得的边缘特征图进行微液滴目标检测;
S106,合并步骤S105中两类图像的微液滴目标检测结果,将两类结果中圆心坐标差的绝对值和小于判别阈值的微液滴目标视为一个微液滴进行计数,得到最终的微液滴检测数目。
进一步地,所述步骤S102中,基于自适应聚类和渐进PCA近似的图像降噪算法进行图像降噪,具体过程包括:
S201,将整个图像划分为重叠的若干图像块,估计全局噪声水平;
S202,基于估计的全局噪声水平,使用“过聚类-迭代合并”的方式进行图像块的自适应聚类,获得多个类矩阵;
S203,基于Marchenko-Pastur定律将所述类矩阵转化为低秩类矩阵;
S204,使用LMMSE降噪方法,对所述低秩类矩阵在PCA变换域上的每个变换带上进行局部估计的降噪处理;
S205,将降噪处理后的矩阵变换为空间域,得到降噪后的微液滴图像。
进一步地,所述自适应聚类中,采用K-means方法进行聚类。
进一步地,所述LMMSE降噪方法中,LMMSE估计子参数通过局部平均的方式获得。
进一步地,所述步骤S103中,采用基于亮度图的低亮度图像增强算法进行自适应对比度增强,具体过程包括:
S301,以降噪后的微液滴图像作为初始化亮度图
Figure BDA0002126973200000031
S302,求解目标函数优化问题获得精确的亮度图T,所述目标函数优化问题的表达式为:
Figure BDA0002126973200000032
其中,α为调节系数,
Figure BDA0002126973200000033
表示基于像素的点乘操作。||·||F和||·||1分别表示Frobenious范数和l1范数,W为加权矩阵,▽T为T的一阶导数滤波器,包括沿水平方向计算的▽hT和沿垂直方向计算的▽vT,
Figure BDA00021269732000000410
表示基于像素的点乘操作;
S303,对亮度图T进行Gamma校正后,获得增强后的结果图
Figure BDA0002126973200000049
S304,对增强后的图像运用BM3D算法进行局部自适应降噪重组,得到最终的微液滴增强结果图Rf
进一步地,所述加权矩阵采用以下三种方式中的任一获得:
1)Wh(x)←1;Wv(x)←1;
2)
Figure BDA0002126973200000041
3)
Figure BDA0002126973200000042
其中,Wh(x)为沿水平方向计算的像素x位置的权重值,Wv(x)为沿垂直方向计算的像素x位置的权重值,
Figure BDA0002126973200000043
分别
Figure BDA0002126973200000044
为沿水平方向和沿垂直方向计算人一阶导数滤波器,∈为非零常数,Ω(x)为中心位于像素x位置的图像区域,Gσ(x,y)表示标准差为σ的高斯核函数。
进一步地,所述类Radon特征的提取过程包括:
S401,对微液滴增强结果图J(x,y)进行变换:
Figure BDA0002126973200000045
式中,σ和φ表示基于二阶高斯微分的边界增强滤波器ΔG(σ,φ)的尺度大小和方向角,
Figure BDA0002126973200000046
表示卷积操作;
S402,运用下式对图像求取类Radon特征:
Ψ(p,l,ti,ti+1)[K(x,y)]=T(K,l(t)),t∈[ti,ti+1]
Figure BDA0002126973200000047
其中,T(·)为类Radon特征提取函数,l表示获取特征所用的有方向的射线,其角度变化范围为(0,2π),(t1,…,tn)为沿直线l的结点集,p表示在结点ti和ti+1之间线段上的任意一点。
进一步地,所述方向角φ取值范围为
Figure BDA0002126973200000048
尺度σ选取范围为
Figure BDA0002126973200000051
进一步地,所述步骤S105中的微液滴目标检测具体包括:
S501,对图像采用形态学顶帽变换和Otsu阈值化算法相结合的自适应阈值分割法,获取相应的二值分割图;
S502,使用改进的Hough圆变换算法检测微液滴目标,并计数。
进一步地,所述步骤S502具体包括:
S521,基于所述二值分割图获得边缘图像L,将L的边缘像素指定为候选像素,采用投票获得累计矩阵A(a),A(a)表示半径和圆心固定的圆的权重;
S522,对于每一个像素x,将所有满足圆的解析表达式f(x,a)=0的A(a)的单元累加,然后检测累计矩阵中的局部峰值,将其设置为圆心;
S523,根据每个圆心周围的半径直方图确定半径;
S524,设置待检测的微液滴目标的检测半径范围(r1,r2),然后将检测到圆的数目作为FMIM中的微液滴检测数量。
与现有技术相比,本发明具有如下有益效果:
第一,本发明提出了一种特别的用于荧光显微图像中目标检测的检测思路,即通过检测待检测目标的边缘特征,充分利用微液滴的几何结构特征,根据边缘特征的检测结果来获取检测目标的精确计数结果。该方法为荧光显微检测应用提供了新的解决思路。
第二,本发明首先对带噪声的FMIM灰度图进行高斯噪声变换,将泊松高斯混合噪声变换为高斯噪声,有利于后续处理,提高效率。
第三,本发明对图像依次进行降噪、增强、边缘提取等操作后进行微液滴目标检测,检测结果更加准确可靠。
第四,本发明首次提出将自适应聚类和渐进PCA近似的图像降噪算法和基于亮度图估计的低亮度图像增强方法用于自动化微液滴检测框架之中,这两种先进的图像处理算法确保了微液滴自动检测的可行性和准确性。
第五,本发明采用形态学顶帽变换和Otsu阈值化算法进行自适应阈值分割,并采用改进的Hough圆变换算法检测微液滴目标,检测精度高。
第六,本发明的识别准确率优于MSVST、MPHD等现有主流算法。
附图说明
图1为本发明的流程图;
图2为微液滴荧光显微图像下不同算法的检测结果图,其中,(2a)FMIM原图,(2b)为MSVST检测结果图,(2c)为MPHD检测结果图,(2d)为本发明提出方法的处理结果图;
图3为几种微液滴图像检测算法的TPR、FPR*指标对比结果图,其中,(3a)为TPR对比结果图,(3b)为FPR*对比结果图;
图4为局部替换后的算法对比结果图,其中,(4a)为FMIM原图,(4b)为降噪环节替换为BM3D的结果图,(4c)为增强环节替换为CLAHE的检测结果图,(4d)为本发明提出方法的检测结果图;
图5为局部替换方法后的TPR和FPR*对比结果图,其中,(5a)为TPR对比结果图,(5b)为FPR*对比结果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本发明提供一种荧光显微图像下的微液滴自动检测方法,该方法运行在Matlab中,通过图像变换、降噪获得降噪后的微液滴图像,并进一步对降噪后的微液滴图像进行增强、边缘特征提取等处理,分别对获得的两类图像进行微液滴目标检测,结合后获得最终的微液滴检测数目。
该方法具体包括:
步骤S101,对带噪声的FMIM灰度图进行高斯噪声变换,具体是泊松高斯混合噪声变换为高斯噪声。
本实施例中,采用基于像素的Anscombe变换进行高斯噪声变换。给定的带噪声的FMIM灰度图的图像大小为a×b,按像素进行Anscombe变换操作,变换公式为:
Figure BDA0002126973200000061
其中,I(x,y)表示给定坐标(x,y)下的灰度值。
需要说明的是,Anscombe变换不只包含这一种变换形式,也可使用其他变换形式实现相同的高斯噪声变换功能。
步骤S102,对步骤S101获得的图像降噪后进行高斯噪声逆变换,获得降噪后的微液滴图像。本实施例中高斯噪声逆变换为Anscombe变换。
该步骤中,基于自适应聚类和渐进PCA近似的图像降噪算法(AC-PT)进行图像降噪,具体过程包括:
S201,将整个图像划分为重叠的若干图像块,估计全局噪声水平。
将整个图像划分为重叠的dφ×dφ的图像块,并且将所有重叠的图像块堆叠在一起构建一个
Figure BDA0002126973200000071
且Lφ=(a-dφ+1)(b-dφ+1)的大矩阵
Figure BDA0002126973200000072
对Xφ矩阵进行PCA处理求得特征值
Figure BDA0002126973200000073
然后利用以下两个等式估计噪声水平σ。
Figure BDA0002126973200000074
Figure BDA0002126973200000075
其中,1(·)表示一个指示函数,
Figure BDA0002126973200000076
直接令
Figure BDA0002126973200000077
对每个特征值
Figure BDA0002126973200000078
分别计算上述两个等式分别获得
Figure BDA0002126973200000079
Figure BDA00021269732000000710
然后计算差值
Figure BDA00021269732000000711
在求得所有差值后,找寻最小值Δk,最后令
Figure BDA00021269732000000712
代入上面第二个等式,则求得了最终估计的噪声水平
Figure BDA00021269732000000713
S202,基于估计的全局噪声水平,使用“过聚类-迭代合并”的方式进行图像块的自适应聚类,获得多个类矩阵。
在过聚类过程中,使用K-means方法加速和改善聚类效果:第一阶段,将聚类数量设置为
Figure BDA00021269732000000714
第二阶段,对每个类再次聚类得到
Figure BDA00021269732000000715
其中floor(·)表示向下取整,Lj0表示第j0个聚类矩阵中图像块的数目。过聚类完成后,运用以下判断式判断是否出现太小或太分散的聚类:
Figure BDA00021269732000000716
其中||·||2表示l2范数,向量
Figure BDA00021269732000000717
Figure BDA00021269732000000718
表示两个类的均值向量,σ2是影响类中心的噪声的方差。直到聚类的数量不再改变时停止迭代,完成自适应聚类。
S203,基于Marchenko-Pastur(MP)定律将所述类矩阵转化为低秩类矩阵,来移除每个类矩阵中绝大多数的噪声。
令X表示任一带噪声的类矩阵Xj,那么通过对X的奇异值的硬阈值处理来逼近低秩矩阵:
Figure BDA00021269732000000719
其中阈值
Figure BDA0002126973200000081
μ是一个调整系数,默认设置1.1,大于ξ的特征值即为低秩矩阵
Figure BDA0002126973200000082
的秩。
S204,使用LMMSE降噪方法,对所述低秩类矩阵在PCA变换域上的每个变换带上进行局部估计的降噪处理。
本发明微液滴自动检测方法采用细节保留降噪算法进行降噪处理,上述降噪算法是本发明的一种选择,也可采用其他类型的细节保留降噪算法。
去除绝大多数噪声之后,得到了秩为rj(1≤j≤K)的信号主导的低秩类矩阵
Figure BDA0002126973200000083
该矩阵在PCA变换域共有rj个变换带。AC-PT通过使用LMMSE降噪的方法在每个变换带上进行局部估计的降噪处理。LMMSE估计子参数通过局部平均的方式获得。设sj(i,k)是矩阵
Figure BDA0002126973200000084
的元素(也是第j个类的第i个变换带的第k个系数),其中1≤i≤rj且1≤k≤Lj,则
Figure BDA0002126973200000085
则软阈值操作符wj,(i,k)可以定义为:
Figure BDA0002126973200000086
对于参数
Figure BDA0002126973200000087
AC-PT使用相邻系数的“局部”平均来估计,如下式所示:
Figure BDA0002126973200000088
其中ζ控制用于平均的相邻系数的数目,本发明默认将其设为1来获得令人满意的效果。
S205,将降噪处理后的矩阵变换为空间域,得到AC-PT降噪后的微液滴图像。
步骤S103,采用基于亮度图的低亮度图像增强算法(LIME)对降噪后的微液滴图像进行自适应对比度增强,获得微液滴增强结果图。给定初始亮度图
Figure BDA0002126973200000089
LIME算法的核心即是通过以下目标函数优化问题求解精确的亮度图T,然后根据
Figure BDA00021269732000000810
公式得到增强后的结果图
Figure BDA00021269732000000811
其中L和R分别表示捕获的原始图像和理想的增强结果图。
Figure BDA00021269732000000812
其中,α为调节系数,
Figure BDA00021269732000000813
表示基于像素的点乘操作。||·||F和||·||1分别表示Frobenious范数和l1范数,W为加权矩阵,▽T为T的一阶导数滤波器。在这一算法中,其仅包含▽hT(水平方向)和▽vT(垂直方向)。上式第一项负责初始亮度图
Figure BDA0002126973200000091
和精炼提取的亮度图T之间的保真度,第二项考虑(结构感知)平滑性。
基于亮度图的低亮度图像增强算法的具体步骤包括:
S301,以降噪后的微液滴图像作为初始化亮度图
Figure BDA0002126973200000092
然后根据以下三种策略中的任意一种策略构建权重矩阵W。
策略1:
Wh(x)←1;Wv(x)←1;
策略2:
Figure BDA0002126973200000093
策略3:
Figure BDA0002126973200000094
Figure BDA0002126973200000095
其中,其中,Wh(x)为沿水平方向计算的像素x位置的权重值,Wv(x)为沿垂直方向计算的像素x位置的权重值,∈为一个极小的非零常数,Ω(x)为中心位于像素x位置的图像区域,Gσ(x,y)由带有标准差σ的高斯核函数得到,其表达式如下:
Figure BDA0002126973200000096
函数dist(x,y)表示测量位置x和y之间的欧几里得距离。
S302,利用增广拉格朗日乘法器(Augmented Lagrangian Multiplier,ALM)的精确求解算法求解目标函数优化问题获得精确的亮度图。
S303,通过T←Tγ进行Gamma校正,根据R=L/T获得增强后的结果图
Figure BDA0002126973200000097
S304,对增强后的图像运用BM3D算法进行局部自适应降噪重组,得到最终的微液滴增强结果图Rf
Figure BDA0002126973200000098
其中Rd和Rf分别表示降噪后的结果图和重组后的结果图。
上述基于亮度图的低亮度图像增强算法(LIME)是本发明进行自适应对比度增强的一种选择,也可以采用其他微弱发光对比度增强算法进行对比度增强。
步骤S104,采用类Radon提取算法对微液滴增强结果图进行边缘特征提取与增强,获得边缘特征图,具体包含以下几个步骤:
S401,对微液滴增强结果图J(x,y)进行变换:
Figure BDA0002126973200000101
式中,σ和φ表示基于二阶高斯微分(Gaussian Second Derivative,GSD)的边界增强滤波器ΔG(σ,φ)的尺度大小和方向角,
Figure BDA0002126973200000102
表示卷积操作。本实施例选取12个方向、3个尺度下的GSD滤波器来获取最优的GSD边缘增强响应,方向角φ取值范围为
Figure BDA0002126973200000103
尺度σ选取范围为
Figure BDA0002126973200000104
S402,运用下式对图像求取类Radon特征:
Ψ(p,l,ti,ti+1)[K(x,y)]=T(K,l(t)),t∈[ti,ti+1]
其中,T(·)为类Radon特征提取函数,l表示获取特征所用的有方向的射线,其角度变化范围为(0,2π),改变不同的角度,则可得到不同的类Radon特征值。(t1,…,tn)为沿直线l的结点集,p表示在结点ti和ti+1之间线段上的任意一点。
对K(x,y)运用Canny边缘提取算法,得到初步的边缘特征图,类Radon特征的结点则可以由这一边缘图确定。类Radon特征提取函数则如下所示:
Figure BDA0002126973200000105
这一提取函数简单地将结点ti和ti+1之间所有像素的均值作为该线段上每个点的函数值。
步骤S105,分别对步骤S102获得的降噪后的微液滴图像及步骤S104获得的边缘特征图进行微液滴目标检测。
微液滴目标检测具体包括:
S501,对图像采用形态学顶帽变换(MTH)和Otsu阈值化算法相结合的自适应阈值分割法,获取相应的二值分割图。
MTH算法通过以下公式实现:
Figure BDA0002126973200000106
其中,f和B分别表示灰度图像和结构元素,
Figure BDA0002126973200000107
表示可使用结构元素B(u,v)对f(x,y)进行形态学开操作。
对MTH处理后得到的结果图像应用Otsu阈值提取算法,求解分割待检测微液滴边缘特征的最佳分割阈值,变换MTH灰度结果图为二值图。
S502,使用改进的Hough圆变换算法检测微液滴目标,并计数。
改进的Hough圆变换算法的具体步骤如下:
S521,累计矩阵计算。在二进制图上执行Sobel边缘检测算法以获得边缘图像(L)。L的边缘像素被指定为候选像素,并且允许在累计矩阵A(a)中进行“投票”,A(a)表示半径和圆心固定的圆的权重。其中,a={i,j,r}。开始时,A(a)的所有元素都设置为0。
S522决定圆的中心坐标。对于荧光图像的每一个像素x,其空间坐标为(x1,x2),将所有满足函数f(x,a)=0的A(a)的单元累加。f(x,a)为圆的解析表达式,如下所示:
f(x,a)=(x1-i)2+(x2-j)2-r2
然后,检测累计矩阵中的局部峰值,并将其作为圆心。
S523,根据每个圆心周围的半径直方图确定半径。
S524,设置待检测的微液滴目标的检测半径范围(r1,r2),然后将检测到圆的数目作为FMIM中的微液滴检测数量。
步骤S106,合并步骤S105中两类图像的微液滴目标检测结果,将两类结果中圆心坐标差的绝对值和小于判别阈值的微液滴目标视为一个微液滴进行计数,得到最终的微液滴检测数目,从而确保了对图像中所有微液滴检测计数的准确性。在某些实施例中,阈值t可设置为8。
为了验证本发明的性能,本实施例在来自上海交通大学纳米生物医学中心(NanoBiomedical Research Center,NBRC)的FMIM上进行了实验,所获取的微液滴图像都是在荧光完全显影后,用IX73倒置显微镜在100倍放大后拍摄得到的,图像中微液滴的直径大小近似为30μm。用于测试的图像样本有15幅,其分辨率为1920×1080,像素位深为16。在一台处理器为英特尔Core i7-8550U的四核1.8GHz的CPU和16GB内存的笔记本电脑中运行。本发明使用的改进Hough圆算法检测的半径范围参数设置为(16,32)。MTH变换结构元素B设置的大小为5,呈圆盘状。
本发明将本发明提出的方法那与前文提到的MSVST、MPHD两种算法进行了对比实验分析,此外还将步骤S102、S103使用的降噪、增强算法分别替换为广泛使用的BM3D降噪算法和有背景下FMIM图像中表现良好的CLAHE算法,然后进行了分析比较。下文给出了定性和定量的对比分析结果。首先直接的视觉结果图呈现了不同算法的微液滴检测结果,定性衡量检测算法的优劣。其次,本发明通过人工检测的方式对微液滴进行手动计数,获取真实微液滴检测结果,然后通过真阳性率(TPR)、修正的假阳性率(FPR*)和F-测度(F-measure)综合测量三个指标对算法性能进行了定量衡量。三个指标的计算公式如下:
Figure BDA0002126973200000121
Figure BDA0002126973200000122
Figure BDA0002126973200000123
其中NTP表示检测到的微液滴目标被计数为真正的微液滴,否则检测到的微液滴是一个假的微液滴NFP。没有检测到的真的微液滴的数量NFN定义为N0-NTP,其中N0表示GT中检测到微液滴的总数量。TPR反映了算法对微液滴的检测能力,TPR值越高,算法对微液滴的检测能力越强,而FPR*则反应了算法正确检测微液滴的能力,FPR*值越低,表示算法具有更强的抗干扰能力,更不易检测到错误的微液滴。F-测度用于衡量检测算法的综合性能,F-测度值越高,该检测算法的综合检测性能越强,检测的准确性越高。从图2、图3、表1和表2的对比中可以看出,本发明提出的微液滴自动检测算法能够取得比MSVST、MPHD更高的检测准确率和更低的误检率,同时,三种算法下的F-测度平均值及标准差结果分别为:0.7937±0.0966、0.2195±0.0782和0.9824±0.0171。本发明提出算法的F-测度均值在三种算法中取得了最高的平均值和最小的波动误差,这充分证明了本发明提出的算法优于目前的主流算法,具有最佳的微液滴检测性能。
表1多种微液滴检测算法的TPR、FPR*指标对比结果表
Figure BDA0002126973200000124
Figure BDA0002126973200000131
表2多种微液滴检测算法的F-测度指标对比结果表
Figure BDA0002126973200000132
图4、图5、表3和表4给出了局部算法替换后的对比分析结果。其中BM3D+表示用BM3D替换AC-PT后的微液滴自动检测算法,CLAHE+表示用CLAHE替换LIME后的微液滴自动检测算法,三种对比算法下的F-测度的平均值和标准差分别为0.5701±0.3236、0.9489±0.0461、0.9824±0.0171。综合指标分析表明,本发明采用的AC-PT算法和LIME算法能够使得本发明提出的微液滴自动检测方法取得最好的检测结果。
表3局部替换方法后的TPR和FPR*对比结果表
Figure BDA0002126973200000133
Figure BDA0002126973200000141
表4局部替换方法后的F-测度对比结果表
Figure BDA0002126973200000142
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种荧光显微图像下的微液滴自动检测方法,其特征在于,包括以下步骤:
S101,对带噪声的FMIM灰度图进行高斯噪声变换;
S102,对步骤S101获得的图像降噪后进行高斯噪声逆变换,获得降噪后的微液滴图像;
S103,对降噪后的微液滴图像进行自适应对比度增强,获得微液滴增强结果图;
S104,提取微液滴增强结果图的类Radon特征,获得边缘特征图;
S105,分别对步骤S102获得的降噪后的微液滴图像及步骤S104获得的边缘特征图进行微液滴目标检测;
S106,合并步骤S105中两类图像的微液滴目标检测结果,将两类结果中圆心坐标差的绝对值和小于判别阈值的微液滴目标视为一个微液滴进行计数,得到最终的微液滴检测数目。
2.根据权利要求1所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述步骤S102中,基于自适应聚类和渐进PCA近似的图像降噪算法进行图像降噪,具体过程包括:
S201,将整个图像划分为重叠的若干图像块,估计全局噪声水平;
S202,基于估计的全局噪声水平,使用“过聚类-迭代合并”的方式进行图像块的自适应聚类,获得多个类矩阵;
S203,基于Marchenko-Pastur定律将所述类矩阵转化为低秩类矩阵;
S204,使用LMMSE降噪方法,对所述低秩类矩阵在PCA变换域上的每个变换带上进行局部估计的降噪处理;
S205,将降噪处理后的矩阵变换为空间域,得到降噪后的微液滴图像。
3.根据权利要求2所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述自适应聚类中,采用K-means方法进行聚类。
4.根据权利要求2所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述LMMSE降噪方法中,LMMSE估计子参数通过局部平均的方式获得。
5.根据权利要求1所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述步骤S103中,采用基于亮度图的低亮度图像增强算法进行自适应对比度增强,具体过程包括:
S301,以降噪后的微液滴图像作为初始化亮度图
Figure FDA00021269731900000213
S302,求解目标函数优化问题获得精确的亮度图T,所述目标函数优化问题的表达式为:
Figure FDA0002126973190000021
其中,α为调节系数,
Figure FDA0002126973190000022
表示基于像素的点乘操作。||·||F和||·||1分别表示Frobenious范数和l1范数,W为加权矩阵,
Figure FDA0002126973190000023
为T的一阶导数滤波器,包括沿水平方向计算的
Figure FDA0002126973190000024
和沿垂直方向计算的
Figure FDA0002126973190000025
Figure FDA0002126973190000026
表示基于像素的点乘操作;
S303,对亮度图T进行Gamma校正后,获得增强后的结果图
Figure FDA0002126973190000027
S304,对增强后的图像运用BM3D算法进行局部自适应降噪重组,得到最终的微液滴增强结果图Rf
6.根据权利要求5所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述加权矩阵采用以下三种方式中的任一获得:
1)Wh(x)←1;Wv(x)←1;
2)
Figure FDA0002126973190000028
3)
Figure FDA0002126973190000029
其中,Wh(x)为沿水平方向计算的像素x位置的权重值,Wv(x)为沿垂直方向计算的像素x位置的权重值,
Figure FDA00021269731900000210
分别
Figure FDA00021269731900000211
为沿水平方向和沿垂直方向计算人一阶导数滤波器,∈为非零常数,Ω(x)为中心位于像素x位置的图像区域,Gσ(x,y)表示标准差为σ的高斯核函数。
7.根据权利要求1所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述类Radon特征的提取过程包括:
S401,对微液滴增强结果图J(x,y)进行变换:
Figure FDA00021269731900000212
式中,σ和φ表示基于二阶高斯微分的边界增强滤波器ΔG(σ,φ)的尺度大小和方向角,
Figure FDA0002126973190000031
表示卷积操作;
S402,运用下式对图像求取类Radon特征:
Ψ(p,l,ti,ti+1)[K(x,y)]=T(K,l(t)),t∈[ti,ti+1]
Figure FDA0002126973190000032
其中,T(·)为类Radon特征提取函数,l表示获取特征所用的有方向的射线,其角度变化范围为(0,2π),(t1,…,tn)为沿直线l的结点集,p表示在结点ti和ti+1之间线段上的任意一点。
8.根据权利要求7所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述方向角φ取值范围为
Figure FDA0002126973190000033
尺度σ选取范围为
Figure FDA0002126973190000034
9.根据权利要求1所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述步骤S105中的微液滴目标检测具体包括:
S501,对图像采用形态学顶帽变换和Otsu阈值化算法相结合的自适应阈值分割法,获取相应的二值分割图;
S502,使用改进的Hough圆变换算法检测微液滴目标,并计数。
10.根据权利要求9所述的荧光显微图像下的微液滴自动检测方法,其特征在于,所述步骤S502具体包括:
S521,基于所述二值分割图获得边缘图像L,将L的边缘像素指定为候选像素,采用投票获得累计矩阵A(a),A(a)表示半径和圆心固定的圆的权重;
S522,对于每一个像素x,将所有满足圆的解析表达式f(x,a)=0的A(a)的单元累加,然后检测累计矩阵中的局部峰值,将其设置为圆心;
S523,根据每个圆心周围的半径直方图确定半径;
S524,设置待检测的微液滴目标的检测半径范围(r1,r2),然后将检测到圆的数目作为FMIM中的微液滴检测数量。
CN201910625527.6A 2019-07-11 2019-07-11 一种荧光显微图像下的微液滴自动检测方法 Pending CN112215865A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910625527.6A CN112215865A (zh) 2019-07-11 2019-07-11 一种荧光显微图像下的微液滴自动检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910625527.6A CN112215865A (zh) 2019-07-11 2019-07-11 一种荧光显微图像下的微液滴自动检测方法

Publications (1)

Publication Number Publication Date
CN112215865A true CN112215865A (zh) 2021-01-12

Family

ID=74048123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910625527.6A Pending CN112215865A (zh) 2019-07-11 2019-07-11 一种荧光显微图像下的微液滴自动检测方法

Country Status (1)

Country Link
CN (1) CN112215865A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028993A (zh) * 2021-03-29 2021-06-25 深圳市博瑞生物科技有限公司 一种用于描述微滴式数字pcr液滴相对位置的方法
CN114262733A (zh) * 2022-01-10 2022-04-01 深圳麦科田生物医疗技术股份有限公司 一种微滴式数字pcr荧光信号处理方法
CN114549528A (zh) * 2022-04-26 2022-05-27 浙江大学 一种微液滴数字pcr液滴检测方法及系统
CN116934776A (zh) * 2023-07-25 2023-10-24 广州市明美光电技术有限公司 一种fish显微图像信号点区域提取方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651462A (zh) * 2015-01-29 2015-05-27 华南农业大学 基于显微图像分析的稻瘟病菌孢子检测方法
CN107169932A (zh) * 2017-03-21 2017-09-15 南昌大学 一种适用于中子成像系统图像的基于高斯‑泊松混合噪声模型的图像复原方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651462A (zh) * 2015-01-29 2015-05-27 华南农业大学 基于显微图像分析的稻瘟病菌孢子检测方法
CN107169932A (zh) * 2017-03-21 2017-09-15 南昌大学 一种适用于中子成像系统图像的基于高斯‑泊松混合噪声模型的图像复原方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028993A (zh) * 2021-03-29 2021-06-25 深圳市博瑞生物科技有限公司 一种用于描述微滴式数字pcr液滴相对位置的方法
CN114262733A (zh) * 2022-01-10 2022-04-01 深圳麦科田生物医疗技术股份有限公司 一种微滴式数字pcr荧光信号处理方法
CN114549528A (zh) * 2022-04-26 2022-05-27 浙江大学 一种微液滴数字pcr液滴检测方法及系统
CN114549528B (zh) * 2022-04-26 2022-08-05 浙江大学 一种微液滴数字pcr液滴检测方法及系统
CN116934776A (zh) * 2023-07-25 2023-10-24 广州市明美光电技术有限公司 一种fish显微图像信号点区域提取方法、装置、设备及介质
CN116934776B (zh) * 2023-07-25 2024-04-30 广州市明美光电技术有限公司 一种fish显微图像信号点区域提取方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
CN112215865A (zh) 一种荧光显微图像下的微液滴自动检测方法
CN109272489B (zh) 基于背景抑制与多尺度局部熵的红外弱小目标检测方法
CN115829883B (zh) 一种异性金属结构件表面图像去噪方法
CN107610114B (zh) 基于支持向量机的光学卫星遥感影像云雪雾检测方法
CN107507173B (zh) 一种全切片图像的无参考清晰度评估方法及系统
CN104794502A (zh) 一种基于图像处理和模式识别技术的稻瘟病孢子显微图像识别方法
CN113963042B (zh) 基于图像处理的金属零件缺陷程度评估方法
JP2017521779A (ja) 画像解析を用いた核のエッジの検出
CN108376403B (zh) 基于霍夫圆变换的网格菌落图像分割方法
CN109975196B (zh) 一种网织红细胞检测方法及其系统
CN109584253B (zh) 油液磨粒图像分割方法
CN111382658B (zh) 一种基于图像灰度梯度一致性的自然环境下道路交通标志检测方法
CN111507932A (zh) 高特异性的糖尿病性视网膜病变特征检测方法及存储设备
CN114331986A (zh) 一种基于无人机视觉的坝体裂纹识别与测量方法
CN111611907A (zh) 一种图像增强的红外目标检测方法
CN114511770A (zh) 道路标识标牌识别方法
CN114648511A (zh) 一种大肠杆菌轮廓的精确提取及识别方法
CN105678737A (zh) 一种基于Radon变换的数字图像角点检测方法
CN107516315B (zh) 一种基于机器视觉的掘进机出渣监测方法
CN117788472B (zh) 一种基于dbscan算法的飞机蒙皮表面铆钉腐蚀程度判断的方法
CN109948544B (zh) 一种目标菌落自动定位与识别方法
CN117557565B (zh) 一种锂电池极片的检测方法及其装置
CN113313678A (zh) 一种基于多尺度特征融合的精子形态学自动分析方法
CN116823756A (zh) 一种桩腿焊缝缺陷检测方法
CN116524269A (zh) 一种视觉识别检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination