CN112207823B - 一种康复机器人等速运动控制方法及系统 - Google Patents

一种康复机器人等速运动控制方法及系统 Download PDF

Info

Publication number
CN112207823B
CN112207823B CN202011000246.0A CN202011000246A CN112207823B CN 112207823 B CN112207823 B CN 112207823B CN 202011000246 A CN202011000246 A CN 202011000246A CN 112207823 B CN112207823 B CN 112207823B
Authority
CN
China
Prior art keywords
moment
parameters
joint
robot joint
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011000246.0A
Other languages
English (en)
Other versions
CN112207823A (zh
Inventor
曹莹瑜
薛龙
郭乐意
孙东升
张鑫
云欣怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shenglong Borui Technology Co ltd
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Shenglong Borui Technology Co ltd
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shenglong Borui Technology Co ltd, Beijing Institute of Petrochemical Technology filed Critical Beijing Shenglong Borui Technology Co ltd
Priority to CN202011000246.0A priority Critical patent/CN112207823B/zh
Publication of CN112207823A publication Critical patent/CN112207823A/zh
Application granted granted Critical
Publication of CN112207823B publication Critical patent/CN112207823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Tools (AREA)

Abstract

本发明涉及一种康复机器人等速运动控制方法及系统,该方法通过获取患者施加到机器人关节上的实际力矩,对所述实际力矩进行有效截断,将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线,通过所述等速位置曲线对机器人关节进行位置控制,本发明提供的技术方案,由于会对实际力矩进行有效截断,从而保证了患者的实际力矩大于有效力矩时训练过程速度恒定,即等速运动,提高了运动控制的跟踪精度,改善了系统的柔顺性,使治疗精准度提高。

Description

一种康复机器人等速运动控制方法及系统
技术领域
本发明涉及康复机器人运动控制技术领域,具体涉及一种康复机器人等速运动控制方法及系统。
背景技术
随着全民运动的兴起,运动损伤的发生比例越来越高。康复机器人作为医疗机器人的一个重要分支,它的研究贯穿了康复医学、生物力学、机械学、机械力学、电子学、材料学、计算机科学以及机器人学等诸多领域,已经成为了国际机器人领域的一个研究热点。目前,康复机器人已经广泛地应用到康复护理、假肢和康复治疗等方面,这不仅促进了康复医学的发展,也带动了相关领域的新技术和新理论的发展。
目前康复机器人,对于主动康复训练大多进行阻抗控制的研究,阻抗控制的基本思路是将力的偏差信号反馈到位置伺服环,而力的偏差信号和位置之间的关系称为目标阻抗,通过调节目标阻抗可以实现系统的柔顺控制。但阻抗控制的跟踪精度不高,系统的柔顺性不好,给患者的康复训练带来困难。
发明内容
有鉴于此,本发明的目的在于克服现有技术的不足,提供一种康复机器人等速运动控制方法及系统,以解决现有技术中康复机器人阻抗控制中跟踪精度不高、柔顺性不好的问题。
为实现以上目的,本发明采用如下技术方案:
一种康复机器人等速运动控制方法,包括:
获取患者施加到机器人关节上的实际力矩;
对所述实际力矩进行有效截断;
将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
通过所述等速位置曲线对机器人关节进行位置控制。
优选地,所述方法,还包括:
通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动。
优选地,所述获取患者施加到机器人关节上的实际力矩,包括:
通过关节电机码盘,获取机器人关节的运动状态;
通过关节力矩传感器,获取机器人关节实际受到的和力矩;
根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩;
从所述和力矩中减去关节电机的驱动力矩,分离出患者施加到机器人关节上的实际力矩;
其中,所述关节力矩传感器,安装在关节电机和机器人关节之间。
优选地,所述对所述实际力矩进行有效截断,包括:
设置有效截断力矩;
当患者施加到机器人关节上的实际力矩的绝对值大于或等于有效截断力矩时,截断后的力矩等于有效力矩;
当患者施加到机器人关节上的实际力矩的绝对值小于有效截断力矩时,不发生截断。
优选地,有效力矩的大小根据患者的肌力情况确定。
优选地,所述导纳参数至少包括:
惯性参数、阻尼参数、刚度参数。
优选地,通过以下步骤优化所述导纳参数,包括:
初始化惯性参数和阻尼参数,通过观察不同刚度参数下,机器人关节的运动速度时间变化图,选择系统柔顺性最好时所对应的刚度参数;
将系统柔顺性最好时的刚度参数,及初始化的惯性参数输入到导纳模型,通过设置不同的阻尼参数,获取不同的运动速度时间变化曲线;
选择理想的运动速度时间变化曲线所对应的阻尼参数,及系统柔顺性最好时的刚度参数输入到导纳模型,通过设置不同的惯性参数,获取不同的运动速度时间变化曲线;
通过观察所述运动速度时间变化曲线,选择理解的系统速度响应时间和系统柔顺性时所对应的惯性参数。
另外,本发明还提出了一种康复机器人等速运动控制系统,包括:
获取模块,用于获取患者施加到机器人关节上的实际力矩;
截断模块,用于对所述实际力矩进行有效截断;
输入模块,用于将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
控制模块,用于通过所述等速位置曲线对机器人关节进行位置控制。
优选地,所述系统,还包括:
调节模块,用于通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动。
另外,本发明还提出了一种康复机器人等速运动控制系统,包括:
处理器,
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取患者施加到机器人关节上的实际力矩;
对所述实际力矩进行有效截断;
将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
通过所述等速位置曲线对机器人关节进行位置控制。
本发明采用以上技术方案,至少具备以下有益效果:
通过获取患者施加到机器人关节上的实际力矩,对所述实际力矩进行有效截断,将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线,通过所述等速位置曲线对机器人关节进行位置控制,本发明提供的技术方案,由于会对实际力矩进行有效截断,从而保证了患者的实际力矩大于有效力矩时训练过程速度恒定,即等速运动,提高了运动控制的跟踪精度,改善了系统的柔顺性,使治疗精准度提高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的一种康复机器人等速运动控制方法的流程图;
图2为本发明一实施例提供的康复机器人基本导纳控制模型的示意图;
图3为本发明一实施例提供的基于导纳控制的等速运动控制模型的示意图;
图4A~4B为本发明一实施例提供的康复机器人等速运动控制的仿真模型;
图5为本发明一实施例提供的不同刚度参数下机器人关节的速度时间变化曲线图;
图6为本发明一实施例提供的不同阻尼参数下机器人关节的速度时间变化曲线图;
图7为本发明一实施例提供的不同惯性参数下机器人关节的速度时间变化曲线图;
图8为本发明一实施例提供的M=0.1,B=1,K=0时机器人关节的速度时间变化曲线图;
图9为本发明另一实施例提供的假定的患者实际力矩曲线图;
图10A~10B为本发明另一实施例提供的康复机器人等速运动控制的仿真模型;
图11为本发明另一实施例提供的截断后的力矩曲线图;
图12为本发明另一实施例提供的等速运动时机器人关节角度变化曲线图;
图13为本发明另一实施例提供的等速运动时机器人关节速度变化曲线图;
图14为本发明一实施例提供的一种康复机器人等速运动控制系统的示意框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
参见图1,本发明一实施例提出的一种康复机器人等速运动控制方法,包括:
步骤S1、获取患者施加到机器人关节上的实际力矩;
步骤S2、对所述实际力矩进行有效截断;
步骤S3、将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
步骤S4、通过所述等速位置曲线对机器人关节进行位置控制。
可以理解的是,本实施例提供的技术方案,通过获取患者施加到机器人关节上的实际力矩,对所述实际力矩进行有效截断,将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线,通过所述等速位置曲线对机器人关节进行位置控制,本实施例提供的技术方案,由于会对实际力矩进行有效截断,从而保证了患者的实际力矩大于有效力矩时训练过程速度恒定,即等速运动,提高了运动控制的跟踪精度,改善了系统的柔顺性,使治疗精准度提高。
优选地,所述获取患者施加到机器人关节上的实际力矩,包括:
通过关节电机码盘,获取机器人关节的运动状态;
通过关节力矩传感器,获取机器人关节实际受到的和力矩;
根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩;
从所述和力矩中减去关节电机的驱动力矩,分离出患者施加到机器人关节上的实际力矩;
其中,所述关节力矩传感器,安装在关节电机和机器人关节之间。
可以理解的是,本实施例提供的技术方案,通过获取机器人关节的运动状态及机器人关节实际受到的和力矩,根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩,从所述和力矩中减去关节电机的驱动力矩,从而分离出患者施加到机器人关节上的实际力矩,操作简单、数据精准、用户体验度好、满意度高。
优选地,所述关节力矩传感器为单轴的力矩传感器。
优选地,所述机器人关节的运动状态,至少包括:
肩关节的运动状态、肘关节的运动状态、髋关节的运动状态、膝关节的运动状态。
需要说明的是,所述各关节的运动状态至少包括:屈曲伸展、内收外展、内旋外旋等。
可以理解的是,在不考虑关节力矩传感器微小形变量的情况下,机器人关节的运动状态和其所受的电机驱动力之间存在动力学关系。机器人关节的运动状态可以通过关节电机码盘获得,再通过机器人动力学模型即可以求解机器人关节所受的电机驱动力矩,从关节力矩传感器的示数中减去电机驱动力矩部分即可分离出患者施加到机器人关节上的实际力矩。
优选地,所述对所述实际力矩进行有效截断,包括:
设置有效截断力矩;
当患者施加到机器人关节上的实际力矩的绝对值大于或等于有效截断力矩时,截断后的力矩等于有效力矩;
当患者施加到机器人关节上的实际力矩的绝对值小于有效截断力矩时,不发生截断。
优选地,有效力矩的大小根据患者的肌力情况确定。
需要说明的是,在使用等速康复设备前,需要对患者的肌力情况进行测试,得到患者具体的肌力大小后,建立肌力大小与有效力矩对应表,按照肌力大小与有效力矩对应表,对有效力矩进行设置,该对应表通过实验数据得到。
图2为康复机器人基本导纳控制模型的示意图,参见图2,基本导纳控制模型中各个变量的含义如下:
F表示患者施加到机器人关节上的实际作用力;
τ表示患者施加到机器人关节上的实际力矩;
τ表示关节力矩传感器的示数,即机器人关节实际受到的和力矩;
τ表示机器人关节所受的关节电机的驱动力矩;
τe表示分离出的患者施加到机器人关节上的实际力矩;
Xd表示机器人期望位置;
X表示机器人的实际位置;
Xe表示机器人期望位置与实际位置之差:Xe=Xd-X。
由上述康复机器人患者实际力矩计算方法可知:τe=τ=τ。在图4A~图4B的导纳控制模型中,患者施加到机器人上的作用力F通过机器人关节,间接作用到关节力矩传感器上。关节力矩传感器τ表示患者施加到机器人关节上的力矩τ和电机的驱动力矩τ的和,通过关节力矩传感器τ和电机的驱动力矩τ求差,即可分离出患者施加的实际力矩τe
图3为基于导纳控制的等速运动控制模型的示意图,图3为在图2的基础上变形得到。参见图3,等速运动控制模型增加了对实际力矩τe的有效截断,截断后的力矩τv输入到图3所示的导纳模型中,导纳模型计算后输出等速位置曲线,直接对机器人关节进行位置控制,通过调节导纳模型中的导纳参数即可实现不同运动速度的等速康复运动。
图3所示的基于导纳控制的等速运动控制模型的原理如下:在等速康复训练的开始阶段,患者对机器人关节施加的实际力矩τe,由于此阶段τe的绝对值小于有效力矩τ有效,所以τv=τe,该力矩通过导纳模型输出加速曲线控制机器人关节运动;训练的中间阶段,当患者施加的力矩τe的绝对值大于等于有效力矩τ有效时,对力矩进行截断处理τv=τ有效,由于输入到导纳模型中τv恒为有效力矩τv,所以导纳模型输出等速曲线控制机器人关节运动;训练的结束阶段,患者对机器人关节施加力矩逐渐变小为零,机器人关节的运动速度也逐渐变小为零。τv、τe、τ有效三者之间的关系如下:
优选地,所述方法,还包括:
通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动。
优选地,所述导纳参数至少包括:
惯性参数、阻尼参数、刚度参数。
优选地,通过以下步骤优化所述导纳参数,包括:
初始化惯性参数和阻尼参数,通过观察不同刚度参数下,机器人关节的运动速度时间变化图,选择系统柔顺性最好时所对应的刚度参数;
将系统柔顺性最好时的刚度参数,及初始化的惯性参数输入到导纳模型,通过设置不同的阻尼参数,获取不同的运动速度时间变化曲线;
选择理想的运动速度时间变化曲线所对应的阻尼参数,及系统柔顺性最好时的刚度参数输入到导纳模型,通过设置不同的惯性参数,获取不同的运动速度时间变化曲线;
通过观察所述运动速度时间变化曲线,选择理解的系统速度响应时间和系统柔顺性时所对应的惯性参数。
参见图4A~图4B,以康复机器人的上肢的肘关节的运动控制为例,在Matlab中对本实施例提供的这种等速运动控制方法进行了仿真模拟和导纳参数优化,仿真模型如图4A~图4B所示。假设患者给机器人肘关节施加斜率为2的斜坡信号,有效截断力矩设置为5Nm,下面将通过控制变量法优化控制模块的导纳参数。
对于等速运动,初选惯性参数M=0.1,阻尼参数B=2,分别设刚度参数K=0,0.01,0.1,1,10,观察机器人关节运动速度随时间的变化情况如图5所示。参见图5可知,当刚度参数K逐渐变大时,患者的运动速度会逐渐变小为零。在等速运动控制中,设置刚度系数会使系统变“硬”,柔顺性变差,所以为了提高系统的柔顺性,此模型取K=0。
设置刚度参数K=0,初选惯性参数M=0.1,分别设阻尼参数B=0.1,0.2,0.5,1,5,观察机器人关节运动速度随时间的变化情况如图6所示。参见图6可知,当阻尼参数逐渐变大时,系统的阻尼系数变大,机器人关节的运动速度会被拖慢并逐渐变小,当阻尼系数趋近无限大时,机器人关节的运动速度趋近于零。在等速运动控制中,可以通过合理设置阻尼参数,达到不同的康复训练速度,在此暂取B=1。
设置刚度参数K=0,阻尼参数B=1,分别设惯性参数M=0,0.1,0.5,1,2观察机器人关节运动速度随时间的变化情况如图7所示,由图7可知,当质惯性参数逐渐变大时,系统的质量变大,机器人关节的运动速度响应会逐渐变慢,但速度不会发生突变,柔顺性更好。在等速运动控制中,需要综合考虑速度响应时间和系统的柔顺性后合理取值,在此暂取M=0.1。
由此,通过控制变量法,得到了当前机器人平台和等速运动控制模型优化后的导纳参数:M=0.1,B=1,K=0。
当患者在机器人肘关节施加斜率为2的斜坡作用力时,仿真可得患者肘关节运动速度时间变化曲线如图8所示。从图中可以看出,在2.5s之前,患者施加到肘关节的实际力矩小于有效力矩5Nm,机器人关节运动速度逐渐变大;2.5s之后,患者施加到肘关节的实际力矩大于等于有效力矩5Nm,力矩被截断后,机器人关节运动速度维持在了5rad/s。同时从图中可以看出,由于惯性参数的设置,速度曲线并无尖点,机器人关节约在3s时速度达到5rad/s。
在得到等速运动控制模型的优化导纳参数后,假设患者的实际力矩曲线如图9所示。参见图9,0-1S患者关节向正方向均匀施加作用力,1-2.75S患者力矩到达并维持在20Nm,2.75-3S患者力矩均匀降低到15Nm,3-4.25S患者力矩维持在15Nm,4.25-5S患者力矩均匀降低到0。5-10S患者的作用力大小与1-5S相同,方向相反。
同样以上肢肘关节为例,将患者力矩曲线加载到Matlab模型中进行仿真,设置截断力矩为15Nm,仿真模型如图10A~图10B所示。
控制系统仿真后,得到截断后的患者力矩如图11所示,机器人关节角度变化如图12所示,机器人关节速度变化如图13所示。
通过截断后的力矩曲线图11可以看出,控制系统在0.75-3S和5.75-8S对患者力矩进行了截断,分别截断在15Nm和-15Nm;从机器人关节角度曲线图12可以看出,机器人关节在0-1.909rad之间运动,运动区间在肘关节的关节活动度内,且运动曲线光滑,0S和10S的角度误差为0.0084rad;从机器人关节速度曲线图13可以看出,机器人关节最大运动速度为0.45rad/s,大小合理(医学康复理论中对等速运动的速度有合理的目标要求),曲线光滑,运行平稳。
通过仿真可得,在1.2S-4.24S,6.2S-9.24S两个时间段内,机器人关节的速度值稳定在0.45rad/s和-0.45rad/s,通过该模型,患者可以平稳地进行等速运动训练。
另外,参见图14,本发明另一实施例提出的一种康复机器人等速运动控制系统100,包括:
获取模块101,用于获取患者施加到机器人关节上的实际力矩;
截断模块102,用于对所述实际力矩进行有效截断;
输入模块103,用于将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
控制模块104,用于通过所述等速位置曲线对机器人关节进行位置控制。
可以理解的是,本实施例提供的技术方案,通过获取患者施加到机器人关节上的实际力矩,对所述实际力矩进行有效截断,将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线,通过所述等速位置曲线对机器人关节进行位置控制,本实施例提供的技术方案,由于会对实际力矩进行有效截断,从而保证了患者的实际力矩大于有效力矩时训练过程速度恒定,即等速运动,提高了运动控制的跟踪精度,改善了系统的柔顺性,使治疗精准度提高。
优选地,所述系统,还包括:
调节模块,用于通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动。
另外,本发明另一实施例提出的一种康复机器人等速运动控制系统,包括:
处理器,
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取患者施加到机器人关节上的实际力矩;
对所述实际力矩进行有效截断;
将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
通过所述等速位置曲线对机器人关节进行位置控制。
可以理解的是,本实施例提供的技术方案,通过获取患者施加到机器人关节上的实际力矩,对所述实际力矩进行有效截断,将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线,通过所述等速位置曲线对机器人关节进行位置控制,本实施例提供的技术方案,由于会对实际力矩进行有效截断,从而保证了患者的实际力矩大于有效力矩时训练过程速度恒定,即等速运动,提高了运动控制的跟踪精度,改善了系统的柔顺性,使治疗精准度提高。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。

Claims (3)

1.一种康复机器人等速运动控制方法,其特征在于,包括:
获取患者施加到机器人关节上的实际力矩;其中,所述获取患者施加到机器人关节上的实际力矩,具体为:
通过关节电机码盘,获取机器人关节的运动状态;
通过关节力矩传感器,获取机器人关节实际受到的和力矩;
根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩;
从所述和力矩中减去关节电机的驱动力矩,分离出患者施加到机器人关节上的实际力矩;其中,所述关节力矩传感器,安装在关节电机和机器人关节之间;
对所述实际力矩进行有效截断;其中,所述对所述实际力矩进行有效截断,
具体为:
设置有效截断力矩;
当患者施加到机器人关节上的实际力矩的绝对值大于或等于有效截断力矩时,截断后的力矩等于有效力矩;
当患者施加到机器人关节上的实际力矩的绝对值小于有效截断力矩时,不发生截断;其中,有效力矩的大小根据患者的肌力情况确定;
将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
通过所述等速位置曲线对机器人关节进行位置控制;
通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动,其中,所述导纳参数至少包括:惯性参数、阻尼参数、刚度参数,优化所述导纳参数的步骤,具体为:
初始化惯性参数和阻尼参数,通过观察不同刚度参数下,机器人关节的运动速度时间变化图,选择系统柔顺性最好时所对应的刚度参数;
将系统柔顺性最好时的刚度参数,及初始化的惯性参数输入到导纳模型,通过设置不同的阻尼参数,获取不同的运动速度时间变化曲线;
选择理想的运动速度时间变化曲线所对应的阻尼参数,及系统柔顺性最好时的刚度参数输入到导纳模型,通过设置不同的惯性参数,获取不同的运动速度时间变化曲线;
通过观察所述运动速度时间变化曲线,选择理解的系统速度响应时间和系统柔顺性时所对应的惯性参数。
2.一种康复机器人等速运动控制系统,其特征在于,包括:
获取模块,用于获取患者施加到机器人关节上的实际力矩;其中,所述获取患者施加到机器人关节上的实际力矩,具体为:
通过关节电机码盘,获取机器人关节的运动状态;
通过关节力矩传感器,获取机器人关节实际受到的和力矩;
根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩;
从所述和力矩中减去关节电机的驱动力矩,分离出患者施加到机器人关节上的实际力矩;其中,所述关节力矩传感器,安装在关节电机和机器人关节之间;
截断模块,用于对所述实际力矩进行有效截断;其中,所述对所述实际力矩进行有效截断,具体为:
设置有效截断力矩;
当患者施加到机器人关节上的实际力矩的绝对值大于或等于有效截断力矩时,截断后的力矩等于有效力矩;
当患者施加到机器人关节上的实际力矩的绝对值小于有效截断力矩时,不发生截断;其中,有效力矩的大小根据患者的肌力情况确定;
输入模块,用于将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
控制模块,用于通过所述等速位置曲线对机器人关节进行位置控制;
调节模块,用于通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动,其中,所述导纳参数至少包括:惯性参数、阻尼参数、刚度参数,优化所述导纳参数的步骤,具体为:
初始化惯性参数和阻尼参数,通过观察不同刚度参数下,机器人关节的运动速度时间变化图,选择系统柔顺性最好时所对应的刚度参数;
将系统柔顺性最好时的刚度参数,及初始化的惯性参数输入到导纳模型,通过设置不同的阻尼参数,获取不同的运动速度时间变化曲线;
选择理想的运动速度时间变化曲线所对应的阻尼参数,及系统柔顺性最好时的刚度参数输入到导纳模型,通过设置不同的惯性参数,获取不同的运动速度时间变化曲线;
通过观察所述运动速度时间变化曲线,选择理解的系统速度响应时间和系统柔顺性时所对应的惯性参数。
3.一种康复机器人等速运动控制系统,其特征在于,包括:
处理器,
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取患者施加到机器人关节上的实际力矩;其中,所述获取患者施加到机器人关节上的实际力矩,具体为:
通过关节电机码盘,获取机器人关节的运动状态;
通过关节力矩传感器,获取机器人关节实际受到的和力矩;
根据机器人关节的运动状态,基于机器人动力学模型,求解出机器人关节所受的关节电机的驱动力矩;
从所述和力矩中减去关节电机的驱动力矩,分离出患者施加到机器人关节上的实际力矩;其中,所述关节力矩传感器,安装在关节电机和机器人关节之对所述实际力矩进行有效截断;其中,所述对所述实际力矩进行有效截断,
具体为:
设置有效截断力矩;
当患者施加到机器人关节上的实际力矩的绝对值大于或等于有效截断力矩时,截断后的力矩等于有效力矩;
当患者施加到机器人关节上的实际力矩的绝对值小于有效截断力矩时,不发生截断;其中,有效力矩的大小根据患者的肌力情况确定;
将截断后的力矩输入到导纳模型中,导纳模型计算后输出等速位置曲线;
通过所述等速位置曲线对机器人关节进行位置控制;
通过调节导纳模型中的导纳参数实现不同运动速度的等速康复运动,其中,所述导纳参数至少包括:惯性参数、阻尼参数、刚度参数,优化所述导纳参数的步骤,具体为:
初始化惯性参数和阻尼参数,通过观察不同刚度参数下,机器人关节的运动速度时间变化图,选择系统柔顺性最好时所对应的刚度参数;
将系统柔顺性最好时的刚度参数,及初始化的惯性参数输入到导纳模型,通过设置不同的阻尼参数,获取不同的运动速度时间变化曲线;
选择理想的运动速度时间变化曲线所对应的阻尼参数,及系统柔顺性最好时的刚度参数输入到导纳模型,通过设置不同的惯性参数,获取不同的运动速度时间变化曲线;
通过观察所述运动速度时间变化曲线,选择理解的系统速度响应时间和系统柔顺性时所对应的惯性参数。
CN202011000246.0A 2020-09-22 2020-09-22 一种康复机器人等速运动控制方法及系统 Active CN112207823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011000246.0A CN112207823B (zh) 2020-09-22 2020-09-22 一种康复机器人等速运动控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011000246.0A CN112207823B (zh) 2020-09-22 2020-09-22 一种康复机器人等速运动控制方法及系统

Publications (2)

Publication Number Publication Date
CN112207823A CN112207823A (zh) 2021-01-12
CN112207823B true CN112207823B (zh) 2023-07-25

Family

ID=74049679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011000246.0A Active CN112207823B (zh) 2020-09-22 2020-09-22 一种康复机器人等速运动控制方法及系统

Country Status (1)

Country Link
CN (1) CN112207823B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089757B (zh) * 2021-11-17 2024-02-02 北京石油化工学院 一种上下肢协调主动康复机器人控制方法及装置
CN114569410B (zh) * 2022-05-06 2022-09-13 卓道医疗科技(浙江)有限公司 康复机器人训练模式的控制方法、装置及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088219A (ja) * 2009-10-20 2011-05-06 Hitachi High-Tech Control Systems Corp ロボットの動作診断方法、ロボットの制御装置、ミニエンバイロメントシステムの制御装置、ロボット、及びミニエンバイロメントシステム
CN105640740A (zh) * 2016-03-24 2016-06-08 常州市建本医疗康复器材有限公司 一种智能康复方法及系统
CN207694172U (zh) * 2017-12-22 2018-08-07 吉林师范大学 一种等速上肢肌肉内收外展康复训练装置
CN108905048A (zh) * 2018-08-27 2018-11-30 夏擎华 一种阻力输出装置及运动康复训练设备
CN109683478A (zh) * 2018-12-21 2019-04-26 南京埃斯顿机器人工程有限公司 柔性关节机械臂分数阶滑模优化控制方法
CN209377595U (zh) * 2018-10-25 2019-09-13 成都恩漫科技有限公司 一种关节测力计
CN110405755A (zh) * 2018-04-26 2019-11-05 精工爱普生株式会社 控制装置、机器人以及机器人系统
CN110974630A (zh) * 2020-01-17 2020-04-10 浙江福祉医疗器械有限公司 一种康复训练装置
CN111345971A (zh) * 2020-03-14 2020-06-30 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486380B2 (ja) * 2014-03-17 2019-03-20 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術用セットアップ構造の劣駆動ジョイントの運動を制御する方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088219A (ja) * 2009-10-20 2011-05-06 Hitachi High-Tech Control Systems Corp ロボットの動作診断方法、ロボットの制御装置、ミニエンバイロメントシステムの制御装置、ロボット、及びミニエンバイロメントシステム
CN105640740A (zh) * 2016-03-24 2016-06-08 常州市建本医疗康复器材有限公司 一种智能康复方法及系统
CN207694172U (zh) * 2017-12-22 2018-08-07 吉林师范大学 一种等速上肢肌肉内收外展康复训练装置
CN110405755A (zh) * 2018-04-26 2019-11-05 精工爱普生株式会社 控制装置、机器人以及机器人系统
CN108905048A (zh) * 2018-08-27 2018-11-30 夏擎华 一种阻力输出装置及运动康复训练设备
CN209377595U (zh) * 2018-10-25 2019-09-13 成都恩漫科技有限公司 一种关节测力计
CN109683478A (zh) * 2018-12-21 2019-04-26 南京埃斯顿机器人工程有限公司 柔性关节机械臂分数阶滑模优化控制方法
CN110974630A (zh) * 2020-01-17 2020-04-10 浙江福祉医疗器械有限公司 一种康复训练装置
CN111345971A (zh) * 2020-03-14 2020-06-30 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? experimental evidence and a computational model;David J;2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society;全文 *
下肢外骨骼康复机器人人机交互力自适应导纳控制;屠尧;西安交通大学学报;全文 *
基于STM32的施力器专用驱动器的设计与实现;吴浩松;中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑);全文 *
等速设备刚度参数的研究;吴浩松;机床与液压;全文 *
肌电信号分析在下肢残肢训练系统中的应用研究;王强;中国优秀硕士学位论文全文数据库 (信息科技辑);全文 *
运动性损伤康复机器人多功能床体设计;曹莹瑜;北京石油化工学院学报;全文 *
针对运动损伤的上下肢康复机器人运动控制研究;王国帅;中国优秀硕士学位论文全文数据库 (信息科技辑);全文 *

Also Published As

Publication number Publication date
CN112207823A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN112207823B (zh) 一种康复机器人等速运动控制方法及系统
Quintero et al. Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds
Lawson et al. A robotic leg prosthesis: Design, control, and implementation
Chen et al. Active disturbance rejection with fast terminal sliding mode control for a lower limb exoskeleton in swing phase
CN109806106A (zh) 一种基于鲁棒控制与导纳控制结合的下肢康复机器人的控制方法
CN113001540B (zh) 负载机动型外骨骼的人机交互智能控制方法及外骨骼系统
Jamwal et al. Adaptive impedance control of parallel ankle rehabilitation robot
Sun et al. Powered transtibial prosthetic device control system design, implementation, and bench testing
Cheng et al. Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals
CN112171670B (zh) 一种康复机器人等张运动控制方法及系统
Knyazev et al. Control of a Device for Mechanotherapy of the Ankle Joint
Wu et al. Effects of velocity on human force control
Nguyen et al. Force control of upper limb exoskeleton to support user movement
EP3406407A1 (en) Robot system with adaptive motion performance
Faraj et al. Modeling and robust computed torque control for lower limb exoskeleton contacting with ground
Manurung et al. Speed adaptation control of a small-sized treadmill with state feedback controller
Ege et al. Design and dynamic model of a novel powered above knee prosthesis
Sado et al. Adaptive hybrid impedance control for a 3DOF upper limb rehabilitation robot using hybrid automata
Liu et al. Servo-assisted control of a 7-DOF exoskeleton for upper limb rehabilitation
Kovács et al. Teaching-in force control of industrial robots used in medical applications
Marvian et al. Physiotherapy Algorithms on FUM-Physio Robot
Zeng et al. Design and slip prevention control of a multi-sensory anthropomorphic prosthetic hand
Cheng et al. Compliance Control of a Lower Limb Rehabilitation Robot in Mirror Therapy
Yang et al. Gait Simulation Research of 2-DOF Lower Limb Rehabilitation Robot Based on ADAMS and MATLAB
Ozkul et al. Admittance filter parameter adjustment of a robot-assisted rehabilitation system (RehabRoby)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant