CN112202201A - 一种考虑需求响应和电动汽车的联合微电网运行策略 - Google Patents

一种考虑需求响应和电动汽车的联合微电网运行策略 Download PDF

Info

Publication number
CN112202201A
CN112202201A CN202011014332.7A CN202011014332A CN112202201A CN 112202201 A CN112202201 A CN 112202201A CN 202011014332 A CN202011014332 A CN 202011014332A CN 112202201 A CN112202201 A CN 112202201A
Authority
CN
China
Prior art keywords
grid
time
microgrid
combined
cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011014332.7A
Other languages
English (en)
Other versions
CN112202201B (zh
Inventor
曹伟
曾宪文
高桂革
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN202011014332.7A priority Critical patent/CN112202201B/zh
Publication of CN112202201A publication Critical patent/CN112202201A/zh
Application granted granted Critical
Publication of CN112202201B publication Critical patent/CN112202201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种考虑需求响应和电动汽车的联合微电网运行策略,解决了目前主要研究的单个微电网,存在局限性经济性改善不明显的缺陷,其技术方案要点是包括有以下步骤:将全天均匀划分为24个时段,统计获得各个时段的用户负荷量和可再生能源发电量;基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整,获得调整后各个时段的负荷量;将电动汽车并入联合微电网,为联合微电网反馈电能;建立联合微电网模型,以联合微电网运营成本及电动汽车充电成本最小为目标函数,求解获得分布式电源的运行计划及电动汽车的充电计划,本发明的一种考虑需求响应和电动汽车的联合微电网运行策略,可提高再生能源利用率,降低联合微电网运行成本。

Description

一种考虑需求响应和电动汽车的联合微电网运行策略
技术领域
本发明涉及智能电网,特别涉及一种考虑需求响应和电动汽车的联合微电网运行策略。
背景技术
现有的技术对微电网进行研究时,目前的研究主要是对单个微电网的运行策略进行研究,具有很大的局限性,经济性改善效果不明显;且在目前研究过程中,微电网内电价多使用分时电价。但是,分时电价调整周期较长,不利于激励用户依据电价信息对负荷进行时序上的调整,还有待改进的空间。
发明内容
本发明的目的是提供一种考虑需求响应和电动汽车的联合微电网运行策略,可提高再生能源利用率,降低联合微电网运行成本。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种考虑需求响应和电动汽车的联合微电网运行策略,包括有以下步骤:
将全天均匀划分为24个时段,统计获得各个时段的用户负荷量和可再生能源发电量;
基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整,获得调整后各个时段的负荷量;
将电动汽车作为移动的分布式电源并入联合微电网,为联合微电网反馈电能;
建立联合微电网模型,以联合微电网运营成本及电动汽车充电成本最小为目标函数,求解获得分布式电源的运行计划及电动汽车的充电计划。
作为优选,联合微电网模型包括有住宅区微电网和工业园区微电网;所述分布式电源包括有风电机组、光伏阵列、储能单元及电动汽车,还包括有进行供输电的大电网。
作为优选,对分布式电源进行建模,具体为:
风电机组:
Figure BDA0002698554030000021
其中,PWT为风机的输出功率,v为实际的风速,vin为切入风速,vco为切出风速,vr为额定风速;
光伏阵列:
光伏阵列的输出功率取决于电池温度和太阳辐射的最大功率点(MPP)的情况,光伏阵列的温度具体为
Figure BDA0002698554030000022
其中,Tα为环境温度,GT为太阳辐射度,TNOC为正常运行时光伏阵列电池板温度;
得到光伏阵列的输出功率为:
Figure BDA0002698554030000023
式中,Pr为光伏阵列的最大输出功率,γ为功率-温度系数,Tr为光伏阵列板的参考温度。
作为优选,联合微电网运营成本包括有:
微电网运行成本的目标函数:
minC1=CFuel+COM+CGRID+CDC
Figure BDA0002698554030000031
其中,CFuel为分布式电燃料消耗成本,KFuel为燃料消耗系数;COM为分布式电源的运行管理成本,KOM为运行管理系数;CGRID为联合微电网从大电网的功率交互费用,正值代表从大电网购电,负值代表向大电网反向输电;Gprice、PGRID分别为从大电网购电的电价和从大电网吸收的功率;CDC为分布式电源的折旧成本,Cdev为分布式电源的安装成本,r为利率,取0.08,m为分布式电源的使用寿命;Pi为分布式电源i发出的电量;
还包括有污染物处理费用,污染物处理费用的目标函数如下:
Figure BDA0002698554030000032
式中,Ck为每千克k类污染物的处理费用,单位为元/kg;γk、γGRIDk分别为柴油发电机和大电网发电时第k类污染物的排放系数,单位g/kWh。
作为优选,基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整具体为:
仅对住宅区微电网进行价格需求响应控制;
建立负荷转移模型,某个时段的负荷转入或转出量同时受到本时段和其他时段电价的影响,定义电价波动引起的用户对电能需求变化的关系:
Figure BDA0002698554030000041
式中,ΔL为负荷的变化量;Δp为电价的波动量;E为弹性矩阵;
弹性矩阵如下:
Figure BDA0002698554030000042
需求响应后各个时段的负荷值如下:
Figure BDA0002698554030000043
式中,L0 t为t时刻的原始负荷,P0 t,P0 s分别为t时刻和s时刻的原始电价;Lt为t时刻的需求响应后的负荷,Pt,Ps分别为t时刻和s时刻需求响应后的实时电价;
计算实时电价时,以可再生能源利用率最高为目标函数,如下:
Figure BDA0002698554030000044
式中,Pres(t)为t时刻可再生能源发电功率的总和。
综上所述,本发明具有以下有益效果:
通过建立联合微电网模型,各个微电网之间可以起到相互支撑的作用,根据价格型需求响应,建立实时电价机制,取代常用的分时电价机制,可有效提高可再生能源利用率,减少联合微电网内分布式电源的工作时长和从大电网的购电量;
将电动汽车这种新型智慧能源并入联合微电网中,控制电动汽车向联合微电网放电,实现电能在联合微电网内部的流动。从而降低联合微电网的经运行的成本,减少电动汽车的充电成本。
附图说明
图1为联合微电网的结构示意图;
图2为实时电价制定流程图;
图3为联合微电网优化调度流程图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
根据一个或多个实施例,公开了一种考虑需求响应和电动汽车的联合微电网运行策略,包括有以下步骤:
将全天均匀划分为24个时段,每个时段为1小时,统计获得各个时段的用户负荷量和可再生能源发电量;
基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整,获得调整后各个时段的负荷量;
将电动汽车作为移动的分布式电源并入联合微电网,为联合微电网反馈电能;
建立联合微电网模型,以联合微电网运营成本及电动汽车充电成本最小为目标函数,求解获得分布式电源的运行计划及电动汽车的充电计划。
具体的,联合微电网模型包括有住宅区微电网和工业园区微电网;如图1所示,联合微电网的结构包括与分布式电源,分布式电源包括有风电机组、光伏阵列、储能单元及电动汽车,还包括有进行供输电的大电网。
建立联合微电网模型,首先对联合微电网内的分布式电源进行建模,具体为:
风电机组,风电机组的出力与风速的关系如下式所示:
Figure BDA0002698554030000061
其中,PWT为风机的输出功率,v为实际的风速,vin为切入风速,vco为切出风速,vr为额定风速;
光伏阵列,光伏阵列的输出功率取决于电池温度和太阳辐射的最大功率点(MPP)的情况,光伏阵列的温度具体为:
Figure BDA0002698554030000062
其中,Tα为环境温度,GT为太阳辐射度,TNOC为正常运行时光伏阵列电池板温度;
得到光伏阵列的输出功率为:
Figure BDA0002698554030000063
式中,Pr为光伏阵列的最大输出功率,γ为功率-温度系数,Tr为光伏阵列板的参考温度。
联合微电网运营成本包括有以下部分:
微电网运行成本,微电网运行成本的目标函数:
minC1=CFuel+COM+CGRID+CDC
Figure BDA0002698554030000064
其中,CFuel为分布式电燃料消耗成本,KFuel为燃料消耗系数;COM为分布式电源的运行管理成本,KOM为运行管理系数;CGRID为联合微电网从大电网的功率交互费用,正值代表从大电网购电,负值代表向大电网反向输电;Gprice、PGRID分别为从大电网购电的电价和从大电网吸收的功率;CDC为分布式电源的折旧成本,Cdev为分布式电源的安装成本,r为利率,取0.08,m为分布式电源的使用寿命;Pi为分布式电源i发出的电量;
还包括有污染物处理费用,污染物处理费用的目标函数如下:
Figure BDA0002698554030000071
式中,Ck为每千克k类污染物的处理费用,单位为元/kg;γk、γGRIDk分别为柴油发电机和大电网发电时第k类污染物的排放系数,单位g/kWh。
基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整具体为:
仅对住宅区微电网进行价格需求响应控制;
建立负荷转移模型,某个时段的负荷转入或转出量同时受到本时段和其他时段电价的影响,定义电价波动引起的用户对电能需求变化的关系:
Figure BDA0002698554030000072
式中,ΔL为负荷的变化量;Δp为电价的波动量;E为弹性矩阵;
弹性矩阵如下:
Figure BDA0002698554030000073
需求响应后各个时段的负荷值如下:
Figure BDA0002698554030000081
式中,L0 t为t时刻的原始负荷,P0 t,P0 s分别为t时刻和s时刻的原始电价;Lt为t时刻的需求响应后的负荷,Pt,Ps分别为t时刻和s时刻需求响应后的实时电价;
如图2所示,判断本时段用户负荷与可再生能源发电量差值P,若是用户负荷大于发电量,即差值P大于0,则依据建立的价格型需求响应模型,向其他时段转移,并且设置本时段的电价高于原始电价;反之,当差值P小于0时,依据建立的价格型需求响应模型,向该时段移入负荷,并且调整此时段电价低于原始电价。
计算实时电价时,以可再生能源利用率最高为目标函数,如下:
Figure BDA0002698554030000082
式中,Pres(t)为t时刻可再生能源发电功率的总和。
如图3所示,对于联合微电网优化调度具体流程包括有以下部分:
针对住宅区微电网,利用需求响应机制制动实时电价,根据实时电价以充电成本最低为目标函数制定电动汽车集群计划,并以运行成本最低为目标函数制定住宅区微电网的运行计划;
针对工业园区微电网,判断是否存在可再生嫩远发电量大于符合的时段,对于存在的这些时段,电动汽车向大电网输送电能;反之,不存在时,以运行成本最低为目标函数制定工业园区微电网的运行计划;
完成联合微电网运行成本的计算。
本发明建立了联合微电网模型,各个微电网之间可以起到相互支撑的作用。根据价格型需求响应,建立实时电价机制,取代常用的分时电价机制,提高可再生能源利用率,减少联合微电网内分布式电源的工作时长和从大电网的购电量。
将电动汽车这种新型智慧能源并入联合微电网中,控制电动汽车向联合微电网放电,实现电能在联合微电网内部的流动,从而降低联合微电网的经运行的成本,减少电动汽车的充电成本。电动汽车作为新型智慧能源,可以充分发挥作为可移动储能单元的优势。
对住宅区域微电网的优化分为两个阶段:第一个阶段采用价格型需求响应,以提高可再生能源的利用率为目标,制定出实时电价;第二阶段以微电网运营成本和电动汽车充电成本最小为目标函数,求解出分布式电源的运行计划以及电动汽车的充电计划。
对工业园区内不进行需求响应,在电动汽车并入电网期间为微电网反馈电能。以工业园区微电网运行成本最低为目标函数,求解出电动汽车以及其他分布式电源的运行计划。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (5)

1.一种考虑需求响应和电动汽车的联合微电网运行策略,其特征是,包括有以下步骤:
将全天均匀划分为24个时段,统计获得各个时段的用户负荷量和可再生能源发电量;
基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整,获得调整后各个时段的负荷量;
将电动汽车作为移动的分布式电源并入联合微电网,为联合微电网反馈电能;
建立联合微电网模型,以联合微电网运营成本及电动汽车充电成本最小为目标函数,求解获得分布式电源的运行计划及电动汽车的充电计划。
2.根据权利要求1所述的考虑需求响应和电动汽车的联合微电网运行策略,其特征是:联合微电网模型包括有住宅区微电网和工业园区微电网;所述分布式电源包括有风电机组、光伏阵列、储能单元及电动汽车,还包括有进行供输电的大电网。
3.根据权利要求2所述的考虑需求响应和电动汽车的联合微电网运行策略,其特征是,对分布式电源进行建模,具体为:
风电机组:
Figure FDA0002698554020000011
其中,PWT为风机的输出功率,v为实际的风速,vin为切入风速,vco为切出风速,vr为额定风速;
光伏阵列:
光伏阵列的输出功率取决于电池温度和太阳辐射的最大功率点(MPP)的情况,光伏阵列的温度具体为
Figure FDA0002698554020000021
其中,Tα为环境温度,GT为太阳辐射度,TNOC为正常运行时光伏阵列电池板温度;
得到光伏阵列的输出功率为:
Figure FDA0002698554020000022
式中,Pr为光伏阵列的最大输出功率,γ为功率-温度系数,Tr为光伏阵列板的参考温度。
4.根据权利要求3所述的考虑需求响应和电动汽车的联合微电网运行策略,其特征是,联合微电网运营成本包括有:
微电网运行成本的目标函数:
min C1=CFuel+COM+CGRID+CDC
Figure FDA0002698554020000023
其中,CFuel为分布式电燃料消耗成本,KFuel为燃料消耗系数;COM为分布式电源的运行管理成本,KOM为运行管理系数;CGRID为联合微电网从大电网的功率交互费用,正值代表从大电网购电,负值代表向大电网反向输电;Gprice、PGRID分别为从大电网购电的电价和从大电网吸收的功率;CDC为分布式电源的折旧成本,Cdev为分布式电源的安装成本,r为利率,取0.08,m为分布式电源的使用寿命;Pi为分布式电源i发出的电量;
还包括有污染物处理费用,污染物处理费用的目标函数如下:
Figure FDA0002698554020000031
式中,Ck为每千克k类污染物的处理费用,单位为元/kg;γk、γGRIDk分别为柴油发电机和大电网发电时第k类污染物的排放系数,单位g/kWh。
5.根据权利要求4所述的考虑需求响应和电动汽车的联合微电网运行策略,其特征是,基于设定的价格弹性系数采用实时电价机制对负荷进行时序上的调整具体为:
仅对住宅区微电网进行价格需求响应控制;
建立负荷转移模型,某个时段的负荷转入或转出量同时受到本时段和其他时段电价的影响,定义电价波动引起的用户对电能需求变化的关系:
Figure FDA0002698554020000032
式中,ΔL为负荷的变化量;Δp为电价的波动量;E为弹性矩阵;
弹性矩阵如下:
Figure FDA0002698554020000033
需求响应后各个时段的负荷值如下:
Figure FDA0002698554020000034
式中,L0 t为t时刻的原始负荷,P0 t,P0 s分别为t时刻和s时刻的原始电价;Lt为t时刻的需求响应后的负荷,Pt,Ps分别为t时刻和s时刻需求响应后的实时电价;
计算实时电价时,以可再生能源利用率最高为目标函数,如下:
Figure FDA0002698554020000041
式中,Pres(t)为t时刻可再生能源发电功率的总和。
CN202011014332.7A 2020-09-24 2020-09-24 一种考虑需求响应和电动汽车的联合微电网运行策略 Active CN112202201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011014332.7A CN112202201B (zh) 2020-09-24 2020-09-24 一种考虑需求响应和电动汽车的联合微电网运行策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011014332.7A CN112202201B (zh) 2020-09-24 2020-09-24 一种考虑需求响应和电动汽车的联合微电网运行策略

Publications (2)

Publication Number Publication Date
CN112202201A true CN112202201A (zh) 2021-01-08
CN112202201B CN112202201B (zh) 2024-05-14

Family

ID=74014635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011014332.7A Active CN112202201B (zh) 2020-09-24 2020-09-24 一种考虑需求响应和电动汽车的联合微电网运行策略

Country Status (1)

Country Link
CN (1) CN112202201B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113159832A (zh) * 2021-03-26 2021-07-23 清华大学 数据驱动的电动汽车充电需求的时空价格弹性估计方法
CN113799640A (zh) * 2021-08-17 2021-12-17 浙江大学 适用于含电动汽车充电桩微电网的能量管理方法
CN113988392A (zh) * 2021-10-19 2022-01-28 华北电力大学(保定) 一种考虑可靠性需求响应的微网优化规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931696A (zh) * 2012-10-15 2013-02-13 广东电网公司电力科学研究院 一种电动汽车换电站充电调度方法
JP2016025682A (ja) * 2014-07-16 2016-02-08 トヨタ自動車株式会社 電気転送抑制システム
CN106655243A (zh) * 2016-08-12 2017-05-10 浙江工业大学 以维持微电网供需平衡为目的的电动汽车自动需求响应方法
US20170345107A1 (en) * 2014-10-23 2017-11-30 Toyota Jidosha Kabushiki Kaisha Power supply management system
CN110739725A (zh) * 2019-09-27 2020-01-31 上海电力大学 一种配电网优化调度方法
CN111478334A (zh) * 2020-04-29 2020-07-31 浙江吉利汽车研究院有限公司 综合利用社会储能系统的智能电网
CN111641226A (zh) * 2020-05-19 2020-09-08 浙江工业大学 一种计及自动需求响应的建筑型微电网光伏利用率提高方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931696A (zh) * 2012-10-15 2013-02-13 广东电网公司电力科学研究院 一种电动汽车换电站充电调度方法
JP2016025682A (ja) * 2014-07-16 2016-02-08 トヨタ自動車株式会社 電気転送抑制システム
US20170345107A1 (en) * 2014-10-23 2017-11-30 Toyota Jidosha Kabushiki Kaisha Power supply management system
CN106655243A (zh) * 2016-08-12 2017-05-10 浙江工业大学 以维持微电网供需平衡为目的的电动汽车自动需求响应方法
CN110739725A (zh) * 2019-09-27 2020-01-31 上海电力大学 一种配电网优化调度方法
CN111478334A (zh) * 2020-04-29 2020-07-31 浙江吉利汽车研究院有限公司 综合利用社会储能系统的智能电网
CN111641226A (zh) * 2020-05-19 2020-09-08 浙江工业大学 一种计及自动需求响应的建筑型微电网光伏利用率提高方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113159832A (zh) * 2021-03-26 2021-07-23 清华大学 数据驱动的电动汽车充电需求的时空价格弹性估计方法
CN113799640A (zh) * 2021-08-17 2021-12-17 浙江大学 适用于含电动汽车充电桩微电网的能量管理方法
CN113799640B (zh) * 2021-08-17 2023-10-13 浙江大学 适用于含电动汽车充电桩微电网的能量管理方法
CN113988392A (zh) * 2021-10-19 2022-01-28 华北电力大学(保定) 一种考虑可靠性需求响应的微网优化规划方法
CN113988392B (zh) * 2021-10-19 2024-05-28 华北电力大学(保定) 一种考虑可靠性需求响应的微网优化规划方法

Also Published As

Publication number Publication date
CN112202201B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN109523052B (zh) 一种考虑需求响应和碳交易的虚拟电厂优化调度方法
CN109858759B (zh) 一种工业园区综合能源平衡调度方法
CN111400641B (zh) 一种含蓄热式电采暖的综合能源系统日前优化调度方法
CN111340274A (zh) 一种基于虚拟电厂参与的综合能源系统优化方法和系统
CN110807588B (zh) 一种多能源耦合综合能源系统的优化调度方法
CN110826815B (zh) 一种考虑综合需求响应的区域综合能源系统运行优化方法
CN112202201A (zh) 一种考虑需求响应和电动汽车的联合微电网运行策略
CN113792953B (zh) 一种虚拟电厂优化调度方法及系统
CN116061742B (zh) 一种分时电价光伏园区内电动汽车的充电控制方法和系统
CN110391655B (zh) 一种含多能源耦合的微能源网经济优化调度方法及装置
CN115170343A (zh) 一种区域综合能源系统分布式资源和储能协同规划方法
CN117578473A (zh) 基于负荷控制成本的虚拟电厂资源优化调度方法及系统
CN110391677B (zh) 一种基于电力市场环境的水光蓄混合系统运行优化方法
CN114204573B (zh) 一种自洽能源系统控制装置及方法
CN115293485A (zh) 考虑电动汽车和需求响应的综合能源系统低碳调度方法
CN113541195B (zh) 一种未来电力系统中高比例可再生能源的消纳方法
CN113988392A (zh) 一种考虑可靠性需求响应的微网优化规划方法
CN113128799A (zh) 能源管控方法、装置、电子设备及计算机存储介质
CN116362400A (zh) 一种基于光储系统配置的大工业用户电费优化方法
CN114282708B (zh) 考虑多尺度需求响应的跨区域综合能源系统优化运行方法及系统
CN109859072A (zh) 一种高校综合能源系统规划方法
CN212784787U (zh) 一种污水厂可再生能源综合利用系统
CN107528352A (zh) 一种基于可再生能源高渗透率的配电网有功优化方法
CN109004677B (zh) 一种基于光伏发电与电动车流量的充电桩数量配置方法
CN111817340A (zh) 一种污水厂可再生能源综合利用系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant