CN112199843A - 基于颗粒结构的岩石破裂演化细观模型、方法及电子设备 - Google Patents

基于颗粒结构的岩石破裂演化细观模型、方法及电子设备 Download PDF

Info

Publication number
CN112199843A
CN112199843A CN202011093308.7A CN202011093308A CN112199843A CN 112199843 A CN112199843 A CN 112199843A CN 202011093308 A CN202011093308 A CN 202011093308A CN 112199843 A CN112199843 A CN 112199843A
Authority
CN
China
Prior art keywords
rock
model
particle
mesoscopic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011093308.7A
Other languages
English (en)
Other versions
CN112199843B (zh
Inventor
由爽
张乘菡
纪洪广
王洪涛
李飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202011093308.7A priority Critical patent/CN112199843B/zh
Publication of CN112199843A publication Critical patent/CN112199843A/zh
Application granted granted Critical
Publication of CN112199843B publication Critical patent/CN112199843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及离散元模型技术领域,具体涉及一种基于颗粒结构的岩石破裂演化细观模型、方法及电子设备,所述方法基于Neper多晶体网格生成程序所建立的多边形网格,采用自编Python程序编写Neper与UDEC的接口程序,建立了一种用于模拟岩石材料力学性质的离散元模型,并通过建立单个颗粒内部接触的方法实现颗粒的可破碎特性,并采用自编Python程序对颗粒块体及接触进行精准赋值;本发明准确的反映了岩石受载破坏的细观特征,并直观的展示了岩石内部的破裂损伤过程,能够准确的模拟岩石的宏观力学特性,直观的再现岩石内部复杂的裂纹扩展过程,适用于深部岩石的细观研究。

Description

基于颗粒结构的岩石破裂演化细观模型、方法及电子设备
技术领域
本发明涉及离散元模型技术领域,具体涉及一种基于颗粒结构的岩石破裂演化细观模型、方法及电子设备。
背景技术
岩石是由多种矿物颗粒胶结而成的复杂地质材料,与金属类材料相比,岩石通常不具有连续性和各向同性等特征。另外,考虑到岩石中天然存在的孔隙和裂隙,以及构成岩石矿物颗粒类别的差异,岩石通常也不能被简单的视为均质性材料。因此,岩石在荷载作用下的力学响应十分复杂,具有明显的非线性特征,导致采用传统的弹性或弹塑性理论均不能很好的拟合其应力-应变关系。另一方面,岩石在宏观层面的力学特性究其根本是细微观因素的宏观反映。根据以往的研究,岩石矿物颗粒的构成、颗粒粒径大小、孔隙率、裂隙密度等细观因素是影响宏观力学特性的几个主要因素。
目前,考虑到理论模型构建以及获得解析解方面的困难,学术界通常采用数值模拟的方法进行岩石类材料的应力-应变关系研究,且主要分为有限单元法和离散单元法。由于离散单元法可以反映岩石在受载变形过程中的大变形、断裂等主要特征,成为了主流的模拟方法。同时考虑到岩石的细微观特征,建立能够同时反映上述细观特征的离散元模型是进行精细化模拟的前提。
在离散元理论中,岩石的宏观力学性质由离散单元和单元间接触面的力学参数直接控制。在计算迭代过程中,块体的位移、速度及加速度通过牛顿第二定律计算,接触面的应力-应变关系则通过库伦摩擦定律计算。
单个块体的运动由不平衡力矩的大小和方向以及作用在其上的力决定,牛顿第二定律可以表示为如下形式:
Figure BDA0002722879460000021
其中
Figure BDA0002722879460000022
表示速度,t为时间,m为块体质量。上式也可写为中心差分的形式,即:
Figure BDA0002722879460000023
由于力取决于位移,因此力-位移关系可以由上式计算得到。而对于由多个方向的力以及重力作用的二维情况,则可由式(3)计算:
Figure BDA0002722879460000024
其中
Figure BDA0002722879460000025
以及I分别是块体围绕质心的角速度和惯性矩。在每步计算后,块体会产生新的位移和接触力。合力与合力矩用于计算每个块体的加速度及角加速度,块体的速度和位移则通过在时间增量区间内的积分值来确定。
相邻块体之间的受力关系由接触面力学参数决定,并由库伦摩擦定律控制。在垂直于颗粒边界的方向,接触面上单位面积的力-位移关系是线性的,由法向刚度kn控制,如式(4)所示:
Δσn=knΔun (4)
式中Δσn为接触面法向应力的增量,Δun为法向位移的增量。另外,在法向方向设有拉应力上限值tmax,当颗粒间拉力达到或超过上限值时,接触面抗拉强度降低为0,表征接触面发生了拉伸断裂。在相反的方向上,颗粒间相互挤压可能会导致过度重叠而无法继续计算,颗粒重叠量由程序控制,并设有重叠上限值,通常为颗粒圆角半径的0.5倍。
在剪切方向上,由剪切刚度ks控制颗粒间的剪切位移。剪应力τs由粘聚力c及内摩擦角
Figure BDA0002722879460000031
共同决定,如式(5)所示:
如果颗粒间剪应力小于上限值:
Figure BDA0002722879460000032
则有:
Δτs=ksΔus (6)
当剪应力大于上限值时:
Figure BDA0002722879460000033
采用残余粘聚力和残余摩擦角进行抗剪强度计算:
Figure BDA0002722879460000034
式中Δus为剪切位移增量,cres及
Figure BDA0002722879460000035
分别为接触的残余粘聚力和残余摩擦角。
上述各类强度参数,如法向刚度、剪切刚度、粘聚力(初始、残余)、内摩擦角(初始、残余)及抗拉强度(初始、残余)可以通过对接触赋值的方式分配给各个离散块体。这些参数均称为细观或微观特性,且这些参数的组合控制着所模拟材料的宏观力学行为。
根据目前的研究成果,较为先进离散元模型应能够反映岩石的如下特征:1.考虑到岩石在损伤过程中矿物颗粒的破碎是一种典型特征,因此单个矿物颗粒应能够发生破碎和断裂;2.考虑到花岗岩是由多种矿物颗粒组成的集合体,由于不同类型的矿物颗粒具有不同的力学性能,因此模型应能够反映成分的异质性;3.考虑到颗粒层面的结构性,模型中的颗粒粒径分布应与真实岩石具有较好的一致性。
发明内容
针对现有技术的不足,本发明公开了一种基于颗粒结构的岩石破裂演化细观模型、方法及电子设备,为了探究岩石细观层面特征对宏观力学性质的影响规律。
本发明通过以下技术方案予以实现:
本发明公开了一种基于颗粒结构的岩石破裂演化细观模型,包括用于在指定区域内生成模拟晶体颗粒的密排多边形或多面体的T模块;用于进行单个颗粒的网格划分的M模块;用于进行模型的图像输出的V模块。还包括用于进行模型数据转换的Neper-UDEC接口程序;用于多边形网格精细化处理并构建反映岩石细观结构特征的python程序。所述模型为通过自编Python程序,结合Neper插件所生成的初步多边形网格建立可用于UDEC离散元计算且可体现单个矿物颗粒可破碎特性、矿物颗粒粒径分布特征以及岩石多组分特征的一种模型。
一种基于颗粒结构的岩石破裂演化细观方法,所述方法所述基于颗粒结构的岩石破裂演化细观模型实现,所述模型基于岩石细观组构特征建立,根据细观观测试验数据,采用Neper生成初步的多边形网格,该过程包含以下步骤:
S1利用模块T进入网格生成模式,通过-dim命令指定区域的维度,并通过-domain命令指定颗粒生成区域的具体范围;
S2根据岩石矿物颗粒的观测结果,通过-morpho命令进行颗粒几何特征的控制,通过diameq及sphericity参数并通过对数正态分布函数(lognormal)进行控制。
S3输出分别记录了每个颗粒的编号、中心坐标、边数及边的编号、顶点及顶点编号信息的.tess类型文件。
模型的建立以初步网格文件为基础,采用Python语言编写接口程序,建立Neper所生成.tess文件与UDEC程序的联系。
进一步的,单个所述多边形网格对应单个矿物颗粒,通过建立单个颗粒内部接触,实现颗粒可破碎特性。
进一步的,所述网格文件结合Python程序进行岩石不同矿物成分的赋值,具体为:
T1建立不同种类矿物块体属性、晶内接触属性;
T2在进行单个颗粒参数赋予前,建立(0,1)区间内的随机数,根据矿物含量将该区间分为多个子区间,随机数落在某区间内,则对该颗粒赋予相应的参数;
T3单个颗粒赋值完毕后,更新第T2步中的随机数,并对下一个颗粒重复上述操作,直到所有颗粒都被赋值后,结束循环。
一种电子设备,包括处理器以及存储有执行指令的存储器,当所述处理器执行所述存储器存储的所述执行指令时,所述处理器执行上述方法。
本发明的有益效果为:
本发明的模型可以用于模拟岩石类材料的受载破坏特征,可以联系材料的细观结构和宏观力学特征,并直观的展示了岩石内部的破裂损伤过程。根据模拟试验的结果,模型可以准确的再现岩石低拉压比特征,同时模型的破裂模式与实测结果吻合;验证了在0-50MPa围压作用下的单轴及三轴强度并采用摩尔-库伦准则进行了拟合,模拟结果和实测结果具有良好的一致性。能够准确的反映岩石的宏观力学特性,直观的再现岩石内部复杂的裂纹发展过程,适用于深部岩石的细观研究。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是颗粒可破碎特性设置方法示意图;
图2是颗粒参数赋值方法示意图;
图3是Neper-UDEC初步模型构建流程图;
图4是初步多边形模型粒径分布与实测数据对比图;
图5是基于颗粒结构的岩石破裂演化细观模型示意图;
图6是不同接触面抗拉强度模型的应力-应变曲线图;
图7是模型接触面抗拉强度与宏观抗拉强度关系图;
图8是模型ks/kn对杨氏模量和泊松比的影响示意图;
图9是模型接触刚度值变化对杨氏模量和泊松比的影响示意图;
图10是接触面粘聚力与抗压强度关系图;
图11是接触面摩擦角与抗压强度关系图;
图12是单轴压缩模拟试验应力-应变曲线图;
图13是三轴压缩试验实测与模拟数据对比图;
图14是不同围压下裂纹形态差异示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例公开如图3所示的一种基于颗粒结构的岩石破裂演化细观初步模型的建立流程,所述方法包括以下步骤:
S1基于岩石细观试验数据,进入Neper程序,通过-dim命令指定区域的维度,并通过-domain命令指定颗粒生成区域的具体范围;
S2根据岩石矿物颗粒的观测结果,通过-morpho命令进行颗粒几何特征的控制,通过diameq及sphericity参数并通过对数正态分布函数进行控制;
S3输出分别记录了每个颗粒的编号、中心坐标、边数及边的编号、顶点及顶点编号信息的.tess网格文件。
由于Neper程序对本文使用的UDEC6.0没有相应的接口文件,因此无法直接生成UDEC可导入的数据文件。但上述.tess文件中记录了建立UDEC模型所需的各类数据,在了解.tess文件数据结构的情况下,可以采用编程的方式生成UDEC可读取的数据文件,将Neper生成的数据转换到UDEC中。
采用上述方法进行初步的模型建立,模型中颗粒粒径与统计值的对比如图4所示,可见两者具有较好的一致性。由于本方法在二维条件下研究,因此可以调节模型颗粒分布的自由度较低,三维情况下可以更精确的模拟真实的粒径分布。
实施例2
本实施例针根据文献的研究,穿晶断裂是岩石材料受载破坏过程中的一个重要特征,单个矿物颗粒的破坏特性能否再现,以及模型能否合理的反映沿晶破坏和穿晶破坏的差异对模拟结果有着显著的影响。公开一种颗粒离散元模型中实现单个颗粒可破碎特性的设置方法,如图1所示,根据Neper程序生成的多边形块体,由于已知多边形各顶点的坐标位置,则可以根据式(10)计算得到块体的几何中心:
Figure BDA0002722879460000071
其中px及py分别表示多边形几何中心的x和y坐标,n表示多边形顶点个数。得到几何中心坐标后,依次将各顶点与中心点通过UDEC的crack命令连接。这样,一个完整的多边形颗粒被分为n-1个三角形颗粒,同时新生成了n个接触面,这些接触面被视为颗粒内部的接触,为颗粒的破碎提供了路径。同时,由于颗粒自身的破碎通常更难以发生,因此颗粒内部的接触强度大于颗粒间接触的强度。另外,可以通过连接各顶点生成更多的内部接触,为颗粒破碎提供更多的潜在破碎路径。由于本文中每个颗粒最少在四个方向存在潜在破碎路径,并考虑到计算效率问题,因此只进行一次分割。同时,考虑到不同的矿物颗粒的力学特性差异,如黑云母颗粒通常为片状构造,因此可以通过在晶体内设置一组平行接触的方式进行模拟。
为了区分岩石中的不同矿物成分,需要对由同一个多边形分割而成的多个三角形赋予相同的块体属性,并且需要区分颗粒间接触以及颗粒内部接触,对不同类型接触赋予不同的强度参数。UDEC中的changereg命令可以指定一个由四个坐标点组成的凸四边形,当块体中心点位于四边形内时,该块体的材料参数将会改变。同理,当接触的中心位于指定的四边形内部时,其材料参数也会随之改变。如图2所示,通过Python程序循环提取.tess文件中某颗粒的顶点坐标,并计算该颗粒的几何中心。以几何中心以及相邻的三个顶点坐标建立四边形区域,如图中OABC。根据A、B、C三点以及中心点的坐标,可以计算得到OA、OB、OC三个向量。以OA向量为例,设向量的长度为L,计算得到与向量OA方向相同,同样以O为原点的向量Oa,Oa的长度L0为OA的0.99倍,即L0=0.99L。同理计算向量Ob以及Oc。以几何中心O点以及a、b、c建立四边形区域,在此区域内,包含了两个三角形块体以及块体间的晶内接触面,则change reg命令可以准确的改变这个区域内的块体和接触的参数。重复上述过程,根据子块体个数进行循环,可以依次对该颗粒内的所有实体进行参数赋予。由于设置了0.99这个系数,该方法并不影响AB、BC两条代表晶间接触的边,因此可以首先对所有接触面赋予晶间接触的参数,再通过上述方法逐个改变每个颗粒的参数,直到对所有颗粒进行了赋值。
对于岩石的矿物成分组成,可以根据观测结果,结合Python程序容易的实现:
1.首先建立不同种类矿物块体属性、晶内接触属性;
2.在进行单个颗粒参数赋予前,建立(0,1)区间内的随机数,根据矿物含量将该区间分为多个子区间,随机数落在某区间内,则对该颗粒赋予相应的参数;
3.单个颗粒赋值完毕后,更新第2步中的随机数,并对下一个颗粒重复上述操作,直到所有颗粒都被赋值后,结束循环。
本实施例模型构建方面,首先结合Neper插件生成初步的多边形网格,通过建立单个颗粒内部接触的方法实现了颗粒的可破碎特性,并编写Python程序对颗粒块体及接触进行了精准赋值。所提出的颗粒参数赋值方法可以准确的对晶内接触及晶间接触进行区分,再现岩石破裂过程中的穿晶和沿晶破坏,并可以根据矿岩成分分析结果建立具有成分异质性的复杂模型,体现多类矿物颗粒强度差异对整体力学性质的影响,最终效果如图5所示。
实施例3
在离散元模型中,模型的宏观抗拉强度受到接触面抗拉强度的影响。本实施例采用巴西劈裂实验模型进行模拟,研究接触面的抗拉强度与模型整体抗拉强度的相关性。模拟结果如图6所示,当接触面的抗拉强度增加时,模型的宏观抗拉强度相应增长,且两者呈现线性关系(图7,R2=0.999)。其中校准模型抗拉强度为8.35MPa,将接触的抗拉强度分别设置为校准模型的70%至130%后,材料宏观抗拉强度变化范围为5.99MPa至10.89Mpa。另外,宏观抗拉强度与接触面的平均抗拉强度之比基本保持恒定,平均值为0.668。
在本实施例模型中,接触面的法向刚度kn以及切向刚度ks是两项非常重要的细观参数,当接触的抗剪和抗拉强度一定时,接触面刚度的大小决定了达到接触破坏时所需的位移量。两个刚度的比值还会影响颗粒发生拉、剪破坏的比例,从而间接影响模型的宏观破坏特征。材料的杨氏模量E与刚性多边形块体接触面的法向刚度和切向刚度高度相关。对于本模型来说,虽然颗粒本身具有可变形的特性,但由于同时设置了颗粒内部接触,且颗粒内部接触的强度高于颗粒间接触。因此单个块体的变形对材料整体的破坏影响有限,接触面的参数依然是影响杨氏模量的主要因素。
采用所提出的模型,通过调整两个刚度值探究其对材料泊松比和杨氏模量的影响。如图8所示,各个模型采用相同的法向刚度,晶间、长石、石英及黑云母法向接触刚度分别设为为2.3×105GPa/m、2.8×105GPa/m、3.2×105GPa/m及2.6×105GPa/m。切向刚度分别设置为法向刚度的0.15至0.9倍。从图中可以看出,杨氏模量随着该比值的增加而增加,两者呈现正相关关系。而随着该比值的增加材料泊松比逐渐降低。图9展示了当法向刚度kn与切向刚度ks同比例增加或减小时E和υ的变化情况,其中ks恒定为kn的0.45倍。四种接触的初值值为:2.8×105Gpa/m(长石)、3.2×105Gpa/m(石英)、2.6×105Gpa/m(黑云母)、2.3×105Gpa/m(粒间接触),将两个刚度参数在初始值的0.1至10倍区间内进行等比例的缩放。可以看到随着刚度的增大,材料的整体弹性模量随之增长,接触刚度在基准值的0.1-2倍之间时,弹性模量快速增长,随后增长趋于平稳。另一方面,可见接触面刚度的增加对泊松比的影响较小,因此可以认为泊松比仅受ks与kn比值的影响。在调参过程中,即可通过对泊松比的校正首先确定ks与kn的比例关系。
实施例4
本实施例中对模型的接触面抗剪强度参数分析,接触面抗剪强度由库伦摩擦公式计算,其中接触面的粘聚力c和摩擦角
Figure BDA0002722879460000101
共同影响抗剪强度。因此,不同的c、
Figure BDA0002722879460000102
值组合可以得出相同的抗剪强度。可以通过一组实测三轴试验数据对接触面c、
Figure BDA0002722879460000103
值关系进行确定。通过调整接触面摩擦角,使得模型在变围压作用下的宏观强度与实测值相符。进而保持内摩擦角不变,通过调整接触面粘聚力校准模型的单轴抗压强度,从而最终确定两个与剪切强度相关参数的关系。
从图10及图11可以看出,接触面摩擦角及粘聚力均对三轴强度产生了显著的影响。与上述分析相同,当保持摩擦角恒定而增加接触面平均粘聚力时,材料的宏观强度所有增加。同时,随着围压的增加,三组模型的抗压强度增加幅度近乎一致,三组强度包络线呈现近乎平行的关系。另一方面,当保持接触面粘聚力相同但采用不同的摩擦角时,三组模型的包络线呈现差异性的斜率。分别将摩擦角的正切值增加和减小20%后,材料在50MPa围压下分别达到了365MPa、460MPa以及521MPa。随着内摩擦角的增加,颗粒间相对滑动时所需的剪切应力随之增加,因此更难以发生剪切破坏。而在高围压下岩石的断裂主要由剪切破坏控制,因此提高平均内摩擦角使得材料的三轴抗压强度快速增加。
通过调参过程,可以总结出细观参数对岩石宏观力学特性及破坏特征的影响规律,如表1所示。
表1细观参数对宏观力学性能的影响规律
Figure BDA0002722879460000111
1.当单独降低接触的抗拉强度时,材料的整体强度降低。由于接触的法向刚度kn保持恒定,即拉伸方向的力-位移曲线斜率保持一定,而触发拉伸破坏的抗拉强度降低。此时在荷载作用下,颗粒间达到拉伸破坏所需的位移量相应减小。因而在相同的应变下,颗粒间更容易发生拉伸破坏,张裂隙数量明显增加。
2.当同比例降低接触的法向刚度kn以及抗拉强度tmax时,在拉伸方向上力-位移曲线的斜率和抗拉强度等比例降低,接触面达到拉伸破坏所需的位移相同。材料整体强度降低的同时,张拉裂隙总体数量保持不变。但由于kn同时控制着压缩方向的力-位移关系,颗粒间更容易发生相互嵌入(overlap)。
3.当同比例降低接触面法向刚度kn以及切向刚度ks时,在拉伸、压缩、剪切方向上的力-位移曲线斜率均发生降低。而由于抗拉强度及抗剪强度不变,接触面达到拉伸、剪切破坏所需的位移均增加。材料在荷载作用下的整体变形能力增强,因而弹性模量相应降低。反之,当kn及ks同比例增加时,由上述分析可知,材料弹性模量增加,变形能力降低。
4.同时增加接触面粘聚力c以及接触面内摩擦角
Figure BDA0002722879460000122
时,模型的整体抗剪强度增加,更难以发生剪切破坏,剪裂隙数量明显降低。
5.降低接触面粘聚力c的同时增加接触面内摩擦角
Figure BDA0002722879460000121
并保持总抗剪强度相同时,岩石材料的单轴抗压强度略微降低,而围压对三轴强度的作用更加明显。这主要是由于接触面内摩擦角的增加使得正应力对抗剪强度的贡献相应提高。
实施例6
本实施例阐述基于试验数据的验证算例,岩石模型采用1∶1比例建模,模型高100mm,直径50mm。模型上下设置加载板,下方加载板固定所有自由度,并在加载板内部设置轴向应力监测点。在模型两侧设置了5组10个横向位移监测点,用于监测模型的横向变形。为了消除端部效应引起加载板附近的复杂应力分布,岩石块体与加载板间的切向刚度、与抗剪强度相关的参数、与抗拉强度相关的参数均设置为极小值,用以模拟岩石与加载板间的光滑接触特性。通过对上方加载板施加恒定速度进行轴向加载,并在上方加载板底部设置位移监测点。本次实验中对试样轴向施加0.15m/s的恒定速度。
通过对模型在加载过程中应力及应变的监测,可以绘制出如图12所示的应力-应变曲线。图中黑色为轴向应变-应力曲线,红色为环向应变-应力曲线,蓝色为体应变-应力曲线。可以看出,模型可以较好的再现岩石单轴压缩实验中的各向特征:
1.加载初期呈现典型的线弹性特征。另外,离散元模型的一个主要优势是可以再现加载过程中的裂纹积累,以往研究表明岩石的启裂应力可以根据裂纹数量达到峰值处裂纹总数的1%进行判断。本文中计算得到的启裂应力为65.2MPa,约为峰值应力的39%,与实际较为相符。
2.随着加载的继续进行,岩石逐渐被压缩,体积应变持续增加。在达到峰值应力的85%处,曲线发生了明显的非线性增长,此时对应岩石的加速破裂阶段,随应变增加轴向应力增长缓慢。实测得到的损伤应力在峰值应力的80%左右,可见该模型能够较准确的反应岩石的破裂损伤情况。
3.达到峰值应力后,曲线发生迅速的跌落,呈现出典型的脆性破坏特征。此时,横向应变急剧增加,从0.2%快速增长至1%左右。此时岩石内部已经含有贯通的裂隙,岩石体积膨胀主要由裂隙开度的持续增加提供。因此对于体应力-应变曲线,其在峰值应力前为正值,代表岩石整体处于压缩状态。接近峰值应力时,体应力-应变曲线开始向负值方向发展,代表了岩石从压缩状态向扩容状态的转变。超过峰值应力后随环向应变的增加快速向负值方向发展,岩石发生体积的迅速增加。
实施例7
本实施例通过模拟巴西劈裂试验,验证模型的抗拉性能。模拟结果表明,当荷载达到峰值抗拉强度的85%时,模型开始发生接触面的断裂,最初出现的裂隙主要是晶粒间的拉伸破坏,分布在轴线附近且孤立存在。接近峰值强度时,轴线附近的张拉裂隙持续增加且相互连通。圆盘中心处首先出现与加载方向近似平行的贯通张拉裂纹。通过监测加载过程中拉伸裂纹和剪切裂纹,张拉裂隙在临近峰值阶段迅速积累,而剪切裂纹数量远低于张拉裂纹,且在峰值处才开始出现。同时轴线处形成了贯通的宏观张拉裂隙带,与实验结果高度吻合。计算得到的抗拉强度为8.35MPa,为单轴抗压强度的4.99%,可见模型很好的反映了花岗岩低拉压比的特征。
实施例8
本实施例进行三轴压缩试验模拟,采用一组三轴压缩试验验证模型模拟侧限条件下的性能。并采用摩尔-库伦进行强度包络线的拟合。从图13中可以看出,模型的包络线与测试曲线高度吻合。模拟得到的三轴强度与实测值相符,实测值与模拟值计算得到的粘聚力分别为39.28MPa以及36.44MPa,内摩擦角分别为44.86°及44.77°。如图14,在相对较小的20MPa围压作用下,主裂隙与加载方向夹角较小,同时局部出现了倾斜的剪切裂隙。整体上,破坏呈现出脆性特征,岩石裂纹数量较少且相对平直,没有出现明显的塑性破坏区,除两条主裂隙外,岩石其他部位颗粒基本无破碎。而在相对较大的50MPa围压作用下,显示出了明显的塑性特征。主裂隙与加载方向的角度增大,裂隙不再保持平直的形态,并且出现了明显的分叉。裂隙面两侧存在明显的晶体碎屑,且主裂面处发生了块体的剥落。从模型计算结果来看,两组围压下的模型较好的反映了上述特征。20MPa围压作用下模型的断裂由三条明显的剪裂隙和若干张拉裂隙组成。其中主剪裂隙从模型底部延伸至模型右上部,由张拉微裂纹和剪切微裂隙共同组成。50MPa围压作用的模型主要受一组共轭剪裂隙控制,剪裂隙相比20MPa模型更加倾斜,且剪切滑移裂隙的数量明显增多。在模型左下部出现了大量裂隙的集中,呈现出局部塑性破裂的特征。
本发明实施例结合三个验证算例说明了该模型在模拟花岗岩破裂演化过程的适用性。单轴压缩实验模拟中,该模型准确的反映了岩石的启裂应力及损伤应力,并直观的展示了岩石内部的破裂损伤过程;通过巴西劈裂实验模拟,再现了花岗岩低拉压比的特征,同时模型的破裂模式与实测结果吻合;验证了在10-50MPa围压作用下的三轴强度并采用摩尔-库伦准则进行了拟合,模拟结果和实测结果具有良好的一致性。综上,该模型能够准确的反映岩石的宏观力学特性,直观的再现岩石内部复杂的裂纹发展过程,适用于深部岩石的细观研究。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种基于颗粒结构的岩石破裂演化细观模型,包括用于在指定区域内生成模拟晶体颗粒的密排多边形或多面体的T模块;用于进行单个颗粒的网格划分的M模块;用于进行模型的图像输出的V模块。其特征在于,还包括用于进行模型数据转换的Neper-UDEC接口程序,用于多边形网格精细化处理并构建反映岩石细观结构特征的python程序。所述模型为通过自编Python程序,结合Neper插件所生成的初步多边形网格建立可用于UDEC离散元计算且可体现单个矿物颗粒可破碎特性、矿物颗粒粒径分布特征以及岩石多组分特征的一种模型。
2.一种基于颗粒结构的岩石破裂演化细观方法,所述方法通过权利要求1所述的基于颗粒结构的岩石破裂演化细观模型实现,其特征在于,所述模型基于岩石细观组构特征建立,根据细观观测试验数据,采用Neper生成初步的多边形网格,该过程包含以下步骤:
S1利用模块T进入网格生成模式,通过-dim命令指定区域的维度,并通过-domain命令指定颗粒生成区域的具体范围;
S2根据岩石矿物颗粒的观测结果,通过-morpho命令进行颗粒几何特征的控制,通过diameq及sphericity参数并通过对数正态分布函数(Iognormal)进行控制。
S3输出分别记录了每个颗粒的编号、中心坐标、边数及边的编号、顶点及顶点编号信息的.tess类型文件。
模型的建立以初步网格文件为基础,采用Python语言编写接口程序,建立Neper所生成.tess文件与UDEC程序的联系。
3.根据权利要求2所述的基于颗粒结构的岩石破裂演化细观方法,其特征在于,单个所述多边形网格对应单个矿物颗粒,通过建立单个颗粒内部接触,实现颗粒可破碎特性。
4.根据权利要求2所述的基于颗粒结构的岩石破裂演化细观方法,其特征在于,所述网格文件结合Python程序进行岩石不同矿物成分的赋值,具体为:
T1建立不同种类矿物块体属性、晶内接触属性;
T2在进行单个颗粒参数赋予前,建立(0,1)区间内的随机数,根据矿物含量将该区间分为多个子区间,随机数落在某区间内,则对该颗粒赋予相应的参数;
T3单个颗粒赋值完毕后,更新第T2步中的随机数,并对下一个颗粒重复上述操作,直到所有颗粒都被赋值后,结束循环。
5.一种电子设备,包括处理器以及存储有执行指令的存储器,当所述处理器执行所述存储器存储的所述执行指令时,所述处理器执行如权利要求2至5中任一所述的方法。
CN202011093308.7A 2020-10-14 2020-10-14 基于颗粒结构的岩石破裂演化细观模型构建方法 Active CN112199843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011093308.7A CN112199843B (zh) 2020-10-14 2020-10-14 基于颗粒结构的岩石破裂演化细观模型构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011093308.7A CN112199843B (zh) 2020-10-14 2020-10-14 基于颗粒结构的岩石破裂演化细观模型构建方法

Publications (2)

Publication Number Publication Date
CN112199843A true CN112199843A (zh) 2021-01-08
CN112199843B CN112199843B (zh) 2024-02-09

Family

ID=74009032

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011093308.7A Active CN112199843B (zh) 2020-10-14 2020-10-14 基于颗粒结构的岩石破裂演化细观模型构建方法

Country Status (1)

Country Link
CN (1) CN112199843B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177302A (zh) * 2021-04-14 2021-07-27 北京科技大学 一种裂隙岩石颗粒流模型构建及新生裂纹产状分析方法
CN113515878A (zh) * 2021-07-07 2021-10-19 重庆交通大学 一种基于块石形状和破碎的堆积体离散元三维建模方法
CN113866389A (zh) * 2021-09-27 2021-12-31 中国电建集团成都勘测设计研究院有限公司 生成含层理岩石的矿物晶体模型的方法
CN114169180A (zh) * 2021-12-15 2022-03-11 东北大学 一种基于沿晶和穿晶接触面的脆性岩石的数值试验方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936008A (zh) * 2010-09-30 2011-01-05 东北大学 岩体边坡三维模型及块体滑落分析方法
CN103940666A (zh) * 2014-03-18 2014-07-23 中国矿业大学 一种模拟断续裂隙岩石力学特性的细观参数确定方法
WO2014166302A1 (zh) * 2013-04-12 2014-10-16 Liu Suhua 防损坏驱动部件装置
CN111695283A (zh) * 2020-06-15 2020-09-22 成都理工大学 一种获得英安岩在冻融循环过程中的细观劣化机理的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936008A (zh) * 2010-09-30 2011-01-05 东北大学 岩体边坡三维模型及块体滑落分析方法
WO2014166302A1 (zh) * 2013-04-12 2014-10-16 Liu Suhua 防损坏驱动部件装置
CN103940666A (zh) * 2014-03-18 2014-07-23 中国矿业大学 一种模拟断续裂隙岩石力学特性的细观参数确定方法
CN111695283A (zh) * 2020-06-15 2020-09-22 成都理工大学 一种获得英安岩在冻融循环过程中的细观劣化机理的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YANHUI CHENG 等: "Relationship of rock microscopic parameters with the elastic modulus and strength", 《JOURNAL OF VIBROENGINEERING》, vol. 21, no. 4, pages 901 - 910 *
刘黎旺 等: "基于矿物晶体模型非均质岩石单轴压缩力学特性研究", 《岩土工程学报》, vol. 42, no. 03, pages 542 - 550 *
苗胜军 等: "混合花岗岩加载细观力学特性及破裂演化规律", 《江苏大学学报(自然科学版)》, vol. 33, no. 04, pages 469 - 470 *
谢业统: "大理岩力学与裂隙渗流特性研究", 《中国优秀硕士学位论文全文数据库 (基础科学辑)》, no. 8, pages 011 - 163 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177302A (zh) * 2021-04-14 2021-07-27 北京科技大学 一种裂隙岩石颗粒流模型构建及新生裂纹产状分析方法
CN113177302B (zh) * 2021-04-14 2023-07-14 北京科技大学 一种裂隙岩石颗粒流模型构建及新生裂纹产状分析方法
CN113515878A (zh) * 2021-07-07 2021-10-19 重庆交通大学 一种基于块石形状和破碎的堆积体离散元三维建模方法
CN113515878B (zh) * 2021-07-07 2023-06-20 重庆交通大学 一种基于块石形状和破碎的堆积体离散元三维建模方法
CN113866389A (zh) * 2021-09-27 2021-12-31 中国电建集团成都勘测设计研究院有限公司 生成含层理岩石的矿物晶体模型的方法
CN114169180A (zh) * 2021-12-15 2022-03-11 东北大学 一种基于沿晶和穿晶接触面的脆性岩石的数值试验方法

Also Published As

Publication number Publication date
CN112199843B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN112199843A (zh) 基于颗粒结构的岩石破裂演化细观模型、方法及电子设备
Bai et al. DEM investigation of the fracture mechanism of rock disc containing hole (s) and its influence on tensile strength
Potyondy et al. Modelling rock using bonded assemblies of circular particles
Ding et al. A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models
Zhu et al. Modeling continuous grain crushing in granular media: a hybrid peridynamics and physics engine approach
Guddati et al. Toward a micromechanics-based procedure to characterize fatigue performance of asphalt concrete
Wang et al. A comprehensive parametric study of grain-based models for rock failure process simulation
Rong et al. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model
Huang et al. Experimental and numerical investigation of Weibullian behavior of grain crushing strength
Zheng et al. Numerical simulation of the impact-breakage behavior of non-spherical agglomerates
Wang et al. A 3D Voronoi clump based model for simulating failure behavior of brittle rock
Jha et al. Peridynamics-based discrete element method (PeriDEM) model of granular systems involving breakage of arbitrarily shaped particles
Das et al. A mesh-free approach for fracture modelling of gravity dams under earthquake
Xu et al. DEM study on the macro-and micro-responses of granular materials subjected to creep and stress relaxation
Gao et al. On the role of pre-existing discontinuities on the micromechanical behavior of confined rock samples: a numerical study
Zhao et al. A grain texture model to investigate effects of grain shape and orientation on macro-mechanical behavior of crystalline rock
Kodicherla et al. Investigations of the effects of particle morphology on granular material behaviors using a multi-sphere approach
Xia et al. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models
Lilja et al. Finite-discrete element modelling of sea ice sheet fracture
Benmebarek et al. DEM modeling of crushable grain material under different loading conditions
Dong et al. Three-dimensional grain-based model study on triaxial mechanical behavior and fracturing mechanism of granite containing a single fissure
Lemos The basis for masonry analysis with UDEC and 3DEC
Yu et al. Numerical simulation study on particle breakage behavior of granular materials in confined compression tests
Zhou et al. Micromechanics damage modeling of brittle rock failure processes under compression
Xu et al. Influence of spatial distribution of fine sand layers on the mechanical behavior of coral reef sand

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant