CN112197975B - Experimental device for fuel combustion and soot generation characteristics under microwave radiation - Google Patents
Experimental device for fuel combustion and soot generation characteristics under microwave radiation Download PDFInfo
- Publication number
- CN112197975B CN112197975B CN202011026931.0A CN202011026931A CN112197975B CN 112197975 B CN112197975 B CN 112197975B CN 202011026931 A CN202011026931 A CN 202011026931A CN 112197975 B CN112197975 B CN 112197975B
- Authority
- CN
- China
- Prior art keywords
- combustion
- flame
- magnetron
- axial flow
- capillary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 92
- 239000004071 soot Substances 0.000 title claims abstract description 33
- 239000000446 fuel Substances 0.000 title claims abstract description 31
- 230000005855 radiation Effects 0.000 title claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 39
- 239000000126 substance Substances 0.000 claims abstract description 16
- 238000004458 analytical method Methods 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 230000009471 action Effects 0.000 claims abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011162 core material Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims 3
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000004134 energy conservation Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005288 electromagnetic effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 1
- 238000009838 combustion analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/10—Testing internal-combustion engines by monitoring exhaust gases or combustion flame
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/12—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于发动机相关技术领域,更具体地,涉及一种微波辅助燃烧的燃烧和碳烟生成特性的实验装置。The invention belongs to the technical field of engines, and more particularly relates to an experimental device for the combustion and soot generation characteristics of microwave-assisted combustion.
背景技术Background technique
随着发动机保有量的增多,发动机已经成为最主要的化石能源消耗产品之一,并且发动机尾气中的颗粒物其最主要的成分是碳烟颗粒等,给人类环境带来了严重危害。因此,如何使发动机燃烧效率提升的同时降低有害物排放,对发动机的进一步发展尤为重要。With the increase of engine ownership, engine has become one of the most important fossil energy consumption products, and the most important component of particulate matter in engine exhaust is soot particles, which has brought serious harm to the human environment. Therefore, how to improve the combustion efficiency of the engine while reducing the emission of harmful substances is particularly important for the further development of the engine.
一方面,常见的发动机节能减排的策略包括稀薄燃烧以及废气再循环技术,两种策略本质上都是对燃料与空气的混合物进行稀释。然而,当稀释比例过大时,会降低发动机中燃料燃烧的速度,不利于其功率输出。因此,解决极限条件下燃料燃烧速度过慢的问题是此类节能减排策略应用的关键。另一方面,发动机燃烧所生成的碳烟颗粒有着分形的积聚结构,每个积聚结构的颗粒又由相当数量的球形初级颗粒组成,这些颗粒由汽车尾气排出后形成了PM,其中PM2.5由于能无阻碍的进入人体的呼吸道而危害性极大;为了减少发动机工作过程中的碳烟生成,研究人员往往采用降低燃空当量比的做法。特别在柴油机中,由于柴油机是将燃油喷入气缸后压缩着火燃烧,燃料由液相吸热蒸发到气相均匀混合需要较长的时间,导致实际燃烧过程中混合物存在燃料浓区,从而使局部燃料燃烧不充分,进而生成碳烟。On the one hand, common engine energy saving and emission reduction strategies include lean burn and exhaust gas recirculation technology, both of which essentially dilute the fuel-air mixture. However, when the dilution ratio is too large, it reduces the rate at which fuel is burned in the engine, detrimental to its power output. Therefore, solving the problem of too slow fuel combustion under extreme conditions is the key to the application of such energy-saving and emission-reduction strategies. On the other hand, the soot particles generated by engine combustion have a fractal accumulation structure, and the particles of each accumulation structure are composed of a considerable number of spherical primary particles. These particles form PM after being discharged from automobile exhaust, of which PM2.5 is due to It can enter the respiratory tract of the human body unobstructed and is extremely harmful; in order to reduce the generation of soot during the working process of the engine, researchers often use the method of reducing the fuel-air equivalence ratio. Especially in diesel engines, because the diesel engine injects fuel into the cylinder and then compresses and ignites, it takes a long time for the fuel to absorb heat from the liquid phase and evaporate to the gas phase to mix uniformly, resulting in a fuel-rich area in the mixture during the actual combustion process. Insufficient combustion, resulting in soot formation.
近年来,研究人员尝试利用外加电场的方式,改善燃油燃烧过程,加速燃料氧化,提高燃烧效率并减少碳烟生成。由于火焰实质上是大量带电粒子的集合,在外加电场的作用下,部分粒子会被加速从而碰撞激发产生更多活性粒子,加速燃烧反应的进行。这种方式在一定程度上提高了燃烧效率并减少了碳烟生成,由于直接在发动机中设置电场存在困难,施加电场以提高燃烧效率并减少碳烟生成的方法是否能够实用,还有待进一步的研究。In recent years, researchers have tried to use an external electric field to improve the fuel combustion process, accelerate fuel oxidation, improve combustion efficiency and reduce soot generation. Since the flame is essentially a collection of a large number of charged particles, under the action of an external electric field, some of the particles will be accelerated to collide and stimulate to generate more active particles, which accelerates the combustion reaction. This method improves combustion efficiency and reduces soot generation to a certain extent. Since it is difficult to directly set an electric field in the engine, whether the method of applying an electric field to improve combustion efficiency and reduce soot generation is practical remains to be further studied. .
由于发动机气缸是一个密闭的金属壁面空间,采用微波辐射在气缸中形成强电场是一种有潜力的减少发动机碳烟排放的方法。专利CN106762330B公开了一种可视化研究微波等离子体辅助点火的实验装置,利用火花塞点火形成初始等离子体,再向其中辐射微波能量,使其扩大,从而达到增强点火的效果,该文献通过微波增强稀薄混合气的点火过程从而可以使可燃混合气更稀薄,进而提高了发动机热效率,达到节能减排的作用,但其主要应用背景在于汽油机,针对的是点火过程,与扩散燃烧为主要燃烧模式的柴油机场景有所不同。此外,由于专利CN 106762330 B针对的是点火瞬态过程的可视化,不利于燃料燃烧和碳烟生成过程的诊断;以往工程师们通常采用稳态的轴流火焰的形式来进行燃料燃烧碳烟生成过程的基础研究工作,利用探针,深入到轴流火焰中使部分碳烟凝结在探针上,通过改变探针的高度从而得到不同位置的碳烟生成情况。这种方式的优点是方便快捷,且价格便宜,但由于探针采样的过程中,燃烧反应并没有停止,难以采集到碳烟生成过程中的中间物质,所以会给后续的分析带来一定的困难,随着激光诊断技术的发展,研究人员采用激光诱导荧光技术,激光诱导炽光技术等对轴流火焰进行诊断,这种方式的诊断能够较为精准的探测到碳烟生成过程中的中间物质及其分布,因此受到广泛关注,但是激光诊断装置的价格比较高昂,且在研究电磁场对碳烟生成过程的影响时,激光能量会给电磁场带来额外的影响,从而会对电磁场下的燃烧分析带来干扰,因此目前也只是用于常规轴流火焰的基础研究。Since the engine cylinder is a closed metal wall space, the use of microwave radiation to create a strong electric field in the cylinder is a potential method to reduce engine soot emissions. Patent CN106762330B discloses an experimental device for visual research on microwave plasma-assisted ignition, which uses spark plugs to ignite to form initial plasma, and then radiates microwave energy into it to expand it, so as to achieve the effect of enhancing ignition. This document uses microwaves to enhance lean mixing. The ignition process of the gas can make the combustible mixture thinner, thereby improving the thermal efficiency of the engine, and achieving the effect of energy saving and emission reduction, but its main application background is gasoline engines, which are aimed at the ignition process and diesel engine scenarios where diffusion combustion is the main combustion mode. different. In addition, since the patent CN 106762330 B is aimed at the visualization of the ignition transient process, it is not conducive to the diagnosis of the fuel combustion and soot generation process; in the past, engineers usually used the form of a steady-state axial flow flame to carry out the fuel combustion soot generation process. The basic research work of this paper uses the probe to penetrate deep into the axial flow flame to make part of the soot condense on the probe. By changing the height of the probe, the soot generation at different positions can be obtained. The advantages of this method are that it is convenient, fast, and cheap. However, because the combustion reaction does not stop during the sampling process of the probe, it is difficult to collect the intermediate substances in the soot generation process, so it will bring certain problems to the subsequent analysis. With the development of laser diagnosis technology, researchers use laser-induced fluorescence technology, laser-induced incandescent light technology, etc. to diagnose axial flow flames. This method of diagnosis can more accurately detect intermediate substances in the process of soot formation. and its distribution, so it has received extensive attention, but the price of laser diagnostic devices is relatively high, and when studying the influence of electromagnetic fields on the soot generation process, the laser energy will bring additional effects to the electromagnetic field, which will affect the combustion analysis under the electromagnetic field. It brings interference, so it is currently only used for basic research on conventional axial flames.
综上所述,发明一种利于探究电磁场辅助燃烧下燃料燃烧特性和碳烟生成特性的实验装置及方法显得尤为重要。To sum up, it is particularly important to invent an experimental device and method that is conducive to exploring the fuel combustion characteristics and soot generation characteristics under electromagnetic field-assisted combustion.
发明内容SUMMARY OF THE INVENTION
针对现有技术的以上缺陷或改进需求,本发明提供了一种微波辐射下燃料燃烧和碳烟生成特性的实验装置,通过采用微波与轴流火焰耦合以及侵入式的毛细管采集方法,一方面通过微波辅助燃烧,促进燃料的燃烧和减少碳烟的生成,另一方面方便快捷的采集不同火焰处的燃烧产物,提供一种简单便捷的实验检测装置,节能环保,安全可靠。In view of the above defects or improvement needs of the prior art, the present invention provides an experimental device for fuel combustion and soot generation characteristics under microwave radiation. Microwave-assisted combustion promotes the combustion of fuel and reduces the generation of soot. On the other hand, it is convenient and quick to collect combustion products at different flames, providing a simple and convenient experimental detection device, which is energy-saving, environmentally friendly, safe and reliable.
为实现上述目的,按照本发明提供了一种微波辐射下燃料燃烧和碳烟生成特性的实验装置,该研究装置包括高压电源、信号发生器、磁控管、调谐器、燃烧室、轴流燃烧器和毛细管,其中:In order to achieve the above purpose, an experimental device for fuel combustion and soot generation characteristics under microwave radiation is provided according to the present invention. The research device includes a high-voltage power supply, a signal generator, a magnetron, a tuner, a combustion chamber, an axial flow combustion devices and capillaries, including:
所述高压电源与所述磁控管连接,为所述磁控管提供高压电源,所述磁控管用于产生微波,该磁控管和高压电源之间还设置有信号发生器,该信号发生器用于发出波形信号,以此调控所述磁控管产生微波的脉冲时间和频率;所述调谐器和所述磁控管连接,用于调节所述磁控管至所述燃烧室之间线路中的阻抗,进而使得传输至所述燃烧室中的微波传输效率最大;The high-voltage power supply is connected to the magnetron, and provides a high-voltage power supply for the magnetron. The magnetron is used to generate microwaves. A signal generator is also arranged between the magnetron and the high-voltage power supply. The generator is used to send out a waveform signal, so as to regulate the pulse time and frequency of the microwave generated by the magnetron; the tuner is connected to the magnetron to adjust the distance between the magnetron and the combustion chamber impedance in the line, thereby maximizing the transmission efficiency of microwaves into the combustion chamber;
所述燃烧室包括金属外壳和金属网,所述金属网设置在所述金属外壳的上下两端,以此形成封闭的金属腔体;所述轴流燃烧器设置在所述燃烧室的下方,用于在微波辐射下的所述燃烧器室中产生轴向的火焰;The combustion chamber includes a metal casing and a metal mesh, and the metal mesh is arranged at the upper and lower ends of the metal casing to form a closed metal cavity; the axial flow burner is arranged below the combustion chamber, for generating an axial flame in the burner chamber under microwave radiation;
所述毛细管设置在所述火焰中,其上开设有小孔,该毛细管所在位置处火焰中的物质在该毛细管中负压的作用下吸入所述小孔,然后进入与所述毛细管连接的气体分析仪中,在该分析仪的分析下获得所述火焰中物质的成分,即实现燃烧产物的分析,通过调节所述毛细管在火焰中的位置,实现不同位置处燃烧产物的分析,以此实现燃烧产物的全面检测。The capillary is arranged in the flame, and a small hole is opened on it. The material in the flame at the position of the capillary is sucked into the small hole under the action of negative pressure in the capillary, and then enters the gas connected with the capillary. In the analyzer, the composition of the substance in the flame is obtained under the analysis of the analyzer, that is, the analysis of the combustion product is realized, and the analysis of the combustion product at different positions is realized by adjusting the position of the capillary in the flame. Comprehensive detection of combustion products.
进一步优选地,所述实验装置中还设置有环形器,该环形器设置在所述磁控管与调谐器连接,该环形器的一端还连接有水负载,该环形器用于将从所述燃烧室反射回的微波导入所述水负载中被吸收,避免反射回的微波进入所述磁控管。Further preferably, a circulator is also provided in the experimental device, and the circulator is arranged on the magnetron to be connected with the tuner, and one end of the circulator is also connected with a water load, and the circulator is used to convert the combustion chamber from the combustion chamber. Microwaves reflected back from the chamber are directed into the water load to be absorbed, preventing the reflected microwaves from entering the magnetron.
进一步优选地,所述毛细管的一端连接有第二滑轨,用于调节所述毛细管在火焰中的高度和位置。Further preferably, one end of the capillary is connected with a second slide rail for adjusting the height and position of the capillary in the flame.
进一步优选地,所述燃烧室上端的金属网的一端设置有第一滑轨,用于调节该金属网的高度,进而调节燃烧室的大小。Further preferably, one end of the metal mesh on the upper end of the combustion chamber is provided with a first sliding rail, which is used to adjust the height of the metal mesh, thereby adjusting the size of the combustion chamber.
进一步优选地,所述毛细管的一端与高压氮气瓶连接,一方面利用氮气流经所述毛细管形成负压,以吸收燃烧产物;另一方面利用氮气的低温以及化学惰性,使局部燃烧反应瞬间终止,从而较好的获取燃烧过程中的中间物质。Further preferably, one end of the capillary is connected with a high-pressure nitrogen cylinder, and on the one hand, nitrogen is used to flow through the capillary to form a negative pressure to absorb combustion products; , so as to better obtain the intermediate substances in the combustion process.
进一步优选地,所述轴流燃烧器中设置有交错分布的玻璃纤维,用于充分混合进入所述轴流燃烧器中的气体。Further preferably, the axial flow burner is provided with staggered glass fibers for fully mixing the gas entering the axial flow burner.
进一步优选地,所述轴流燃烧器中还设置有蜂窝芯材,该蜂窝芯材上设置有多个均匀分布的气孔,使得经过所述轴流燃烧器输出的气流均匀且稳定。Further preferably, the axial flow burner is further provided with a honeycomb core material, and the honeycomb core material is provided with a plurality of evenly distributed air holes, so that the airflow outputted through the axial flow burner is uniform and stable.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具备下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention have the following beneficial effects:
1.本发明中在燃烧室中充分利用了微波谐振的原理,通过调整金属网位置,使微波在火焰区产生谐振,从而加强火焰与微波的相互作用,利用微波的电磁效应,加速火焰区的带电粒子,产生更多的活性粒子从而加快反应进行同时减少碳烟生成;1. In the present invention, the principle of microwave resonance is fully utilized in the combustion chamber. By adjusting the position of the metal mesh, the microwave is resonated in the flame zone, thereby strengthening the interaction between the flame and the microwave, and using the electromagnetic effect of the microwave to accelerate the flame zone. Charged particles, generating more active particles to speed up the reaction and reduce soot generation;
2.本发明的燃烧室采用金属外壳和金属网形成封闭的金属腔体,由于本发明利用的微波的固有频率是2.45GHz,其对应的波长基本介于厘米这个量级,而只需要金属网的网格尺寸小于四分之一微波波长,即可实现燃烧室对微波的电磁屏蔽,防止微波泄漏造成对外部操作人员的辐射危害以及因泄漏带来的微波能量损失,再加以调节上端金属网的位置,改变整个燃烧室的空间结构尺寸,微波在燃烧室的各壁面经过反射与其它入射波在空间进行叠加,就有利于微波谐振产生强电场;2. The combustion chamber of the present invention adopts a metal shell and a metal mesh to form a closed metal cavity. Since the natural frequency of the microwave used in the present invention is 2.45 GHz, the corresponding wavelength is basically in the order of centimeters, and only the metal mesh is required. The size of the grid is less than a quarter of the wavelength of the microwave, which can realize the electromagnetic shielding of the microwave in the combustion chamber, prevent the radiation damage to external operators caused by microwave leakage and the microwave energy loss caused by leakage, and adjust the upper metal mesh. The position of the whole combustion chamber is changed, and the spatial structure size of the entire combustion chamber is changed. The microwave is reflected on the walls of the combustion chamber and superimposed with other incident waves in space, which is conducive to the microwave resonance to generate a strong electric field;
3.本发明中通过采用毛细管侵入式的采集方法,其中采用利用低温惰性氮气一方面制止反应进行,从而保留中间产物,另一方面保证毛细管内的负压状态,有利于采集过程;3. In the present invention, a capillary invasive collection method is adopted, wherein the use of low-temperature inert nitrogen is used to stop the reaction on the one hand, thereby retaining the intermediate product, and on the other hand, the negative pressure state in the capillary is guaranteed, which is beneficial to the collection process;
4.本发明提供的微波辐射下燃料燃烧产物的检测装置,将微波与燃料燃烧的火焰进行耦合,实现采集燃烧过程中间物质的目的,且操作简单,节能环保,安全可靠。4. The detection device for fuel combustion products under microwave radiation provided by the present invention couples microwaves to the flame of fuel combustion to achieve the purpose of collecting intermediate substances in the combustion process, with simple operation, energy saving, environmental protection, safety and reliability.
附图说明Description of drawings
图1是本发明较佳实施方式提供的微波辐射下燃料燃烧产物的检测装置结构示意图;1 is a schematic structural diagram of a detection device for fuel combustion products under microwave radiation provided by a preferred embodiment of the present invention;
图2是图1中毛细管前后连接段的局部示意图。FIG. 2 is a partial schematic view of the front and rear connecting sections of the capillary in FIG. 1 .
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:Throughout the drawings, the same reference numbers are used to refer to the same elements or structures, wherein:
1-高压电源,2-信号发生器,3-磁控管,4-环形器,5-调谐器,6-金属外壳,7-金属网,8-第一滑轨,9-第二滑轨,10-火焰,11-毛细管,12-高压氮气瓶,13-蜂窝芯材,14-玻璃纤维,15-轴流燃烧器,16-气体分析仪,17-水负载,18-绝缘栅双极型晶体管,19-小孔,20-橡胶软管。1- high voltage power supply, 2- signal generator, 3- magnetron, 4- circulator, 5- tuner, 6- metal casing, 7- metal mesh, 8- first slide rail, 9- second slide rail , 10-flame, 11-capillary, 12-high pressure nitrogen cylinder, 13-honeycomb core material, 14-glass fiber, 15-axial flow burner, 16-gas analyzer, 17-water load, 18-insulated grid bipolar Type transistor, 19-small hole, 20-rubber hose.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
如图1所示,本发明较佳实施方式提供的一种微波辐射下燃料燃烧和碳烟生成特性的实验装置,充分利用了微波谐振的原理,通过调整细密金属网位置,使微波在火焰区产生谐振,从而加强火焰与微波的相互作用;利用微波的电磁效应,加速火焰区的带电粒子,产生更多的活性粒子从而加快反应进行同时减少碳烟生成;利用氮气流经毛细管形成管内负压,将反应某过程中的粒子抽吸入毛细管,再利用氮气的低温以及化学惰性,使局部燃烧反应瞬间终止,从而较好的获取燃烧过程中的中间物质,实现基础研究的目的。此外,磁控管产生微波的功率实质上可以由信号发生器发出目标波形与IGBT联用而共同决定。As shown in FIG. 1 , an experimental device for fuel combustion and soot generation characteristics under microwave radiation provided by a preferred embodiment of the present invention fully utilizes the principle of microwave resonance. Generate resonance to strengthen the interaction between flame and microwave; use the electromagnetic effect of microwave to accelerate charged particles in the flame area, generate more active particles to speed up the reaction and reduce soot generation; use nitrogen to flow through the capillary to form a negative pressure in the tube , the particles in a certain process of the reaction are sucked into the capillary tube, and then the low temperature and chemical inertness of nitrogen are used to make the local combustion reaction stop instantly, so as to better obtain the intermediate substances in the combustion process and achieve the purpose of basic research. In addition, the power of the microwave generated by the magnetron can be determined by the target waveform emitted by the signal generator in combination with the IGBT.
检测装置包括高压电源1,信号发生器2,磁控管3,环形器4,调谐器5,金属外壳6,金属网7,第一滑轨8,第二滑轨9,毛细管11,高压氮气瓶12,蜂窝芯材13,玻璃纤维14,轴流燃烧器15,气体分析仪16,水负载17,绝缘栅双极型晶体管(IGBT)18,小孔19和橡胶软管20。The detection device includes a high-
高压电源1连接磁控管3,高压电源1与磁控管3中间由绝缘栅双极型晶体管(IGBT)18连接,IGBT另一端与信号发生器2连接,磁控管3依次与环形器4,调谐器5以及金属外壳6连接,水负载17与环形器4另一端连接,轴流燃烧器15位于金属外壳6下方,金属外壳6上方与下方均有金属网7,其共同组成一个电磁屏蔽的封闭空腔,此处的封闭是广义上的封闭,是指在电磁层面上的封闭,使得微波无法从燃烧室辐射出去,由于燃烧室中燃烧过后的尾气能要及时排出,因此上下层需要采用金属网的设置,轴流燃烧器15的火焰10收容于空腔之中,毛细管11两端分别接橡胶软管20,再分别与高压气瓶12以及气体分析仪16相连。The high-
高压电源1给磁控管3供电,信号发生器2发出特定波形信号,经IGBT18控制通断,从而控制磁控管3的输出模式,环形器4将反射微波导入水负载17吸收,避免微波反射入磁控管造成损毁,调谐器5调整传输阻抗,使微波能量损失最小而传输进入金属外壳6的能量最大,调整金属外壳6的上部金属网7,使微波达到最好的谐振效果,微波与火焰10相互作用,最终减少碳烟生成,第二滑轨9可调节毛细管11与火焰10的相对位置,毛细管11上有小孔19,高压氮气瓶12带有节流阀,将低温氮气导入毛细管11,在毛细管11中形成负压,将火焰10局部的物质经小孔19吸入毛细管11,最终随氮气流入气体分析仪16,低温氮气能将燃烧反应迅速停止,达到采集燃烧过程中间物质的目的,毛细管11由橡胶软管20分别于高压气瓶12以及气体分析仪16相连接,使毛细管11能自由上下移动,轴流燃烧器15底部有多个进气口,方便研究诸如预混燃烧、扩散燃烧等多种模式的燃料燃烧,且内置有玻璃纤维14段和蜂窝芯材13段,使气体混合更加均匀,金属外壳6壁面开有石英窗,且涂布ITO薄膜,既屏蔽微波,又能方便从外部进行光学观测,得到诸如羟基分布,火焰速度等燃烧特性参数,以对燃料燃烧特性进行分析。金属网7能拆卸能移动,既能屏蔽微波,又能使火焰10燃烧生成地废气及时排除。此外,在进行扩散燃烧模式的实验时,金属网7还能允许外部空气进入,使燃烧得以进行。The high-
一种微波辐射下燃料燃烧和碳烟生成特性的实验装置的使用方法,该使用方法包括以下步骤:A method of using an experimental device for fuel combustion and soot generation characteristics under microwave radiation, the using method comprising the following steps:
S1将预研燃料从不同的进气口按要求充入轴流燃烧器;拆下金属外壳下方的金属网,在轴流燃烧器出口处利用点火装置点燃燃料,调整细密金属网的位置,使之与轴流燃烧器出口齐平或者略低于该出口,调整上部细密金属网使其与火焰尖端保持合理距离;S1 fills the pre-ground fuel into the axial flow burner from different air inlets as required; remove the metal mesh under the metal casing, use the ignition device to ignite the fuel at the outlet of the axial flow burner, and adjust the position of the fine metal mesh so that the It is flush with the outlet of the axial flow burner or slightly lower than the outlet, and the upper fine metal mesh is adjusted to keep a reasonable distance from the flame tip;
S2调整信号发生器的输出波形,以达到实验目的。调整调谐器以使微波传输效率最大;S2 adjusts the output waveform of the signal generator to achieve the experimental purpose. Adjust the tuner to maximize microwave transmission efficiency;
S3待火焰稳定后,调整毛细管与火焰的相对位置,打开高压氮气瓶,调整其氮气流速,以满足实验要求;S3 After the flame is stable, adjust the relative position of the capillary and the flame, open the high-pressure nitrogen bottle, and adjust the nitrogen flow rate to meet the experimental requirements;
S4通过金属外壳壁面的石英视窗进行光学观察;收集轴流火焰不同高度处的燃烧物质,由气体分析仪进行诊断。S4 conducts optical observation through the quartz window on the wall of the metal casing; collects combustion substances at different heights of the axial flow flame, and diagnoses it by a gas analyzer.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011026931.0A CN112197975B (en) | 2020-09-25 | 2020-09-25 | Experimental device for fuel combustion and soot generation characteristics under microwave radiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011026931.0A CN112197975B (en) | 2020-09-25 | 2020-09-25 | Experimental device for fuel combustion and soot generation characteristics under microwave radiation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112197975A CN112197975A (en) | 2021-01-08 |
CN112197975B true CN112197975B (en) | 2022-04-22 |
Family
ID=74007565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011026931.0A Active CN112197975B (en) | 2020-09-25 | 2020-09-25 | Experimental device for fuel combustion and soot generation characteristics under microwave radiation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112197975B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113483334A (en) * | 2021-07-08 | 2021-10-08 | 陕西青朗万城环保科技有限公司 | Method and device for enhancing combustion of solid particles by microwaves |
CN113587084B (en) * | 2021-08-04 | 2022-05-13 | 大连理工大学 | A device for enhancing combustion by using a microwave plasma torch |
CN113916540B (en) * | 2021-09-16 | 2022-12-02 | 华中科技大学 | Integrated microwave-enhanced laser plasma ignition experimental system |
CN115750144B (en) * | 2022-11-22 | 2023-07-18 | 北京交通大学 | Monopropellant Ignition Method for Coordinated Control of Propellant Flow Rate and Microwave Power |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172224A (en) * | 2006-10-31 | 2008-05-07 | 华东理工大学 | A method of promoting chemical reactions under microwave radiation conditions |
CN102243224A (en) * | 2010-05-14 | 2011-11-16 | 上海赫特能源科技有限公司 | On-line monitor of incomplete combusting loss of machines |
CN206531677U (en) * | 2017-01-19 | 2017-09-29 | 衢州峥嵘环保科技有限公司 | One kind burning carbon soot particles sampler |
CN109085096A (en) * | 2018-08-28 | 2018-12-25 | 天津大学 | The device and method of carbon soot particles breakage properties in a kind of acquisition combustion process |
CN109579033A (en) * | 2018-12-13 | 2019-04-05 | 西安建筑科技大学 | The burner and its analoging detecting device and method of volatile organic compounds |
CN209706039U (en) * | 2019-04-04 | 2019-11-29 | 山东师范大学 | Argon Microwave Discharge Plasma Assisted Methane Air Swirl Combustion Device |
EP3540192B1 (en) * | 2018-03-16 | 2020-03-04 | Toyota Jidosha Kabushiki Kaisha | Abnormality diagnosis apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5673554A (en) * | 1995-06-05 | 1997-10-07 | Simmonds Precision Engine Systems, Inc. | Ignition methods and apparatus using microwave energy |
CN104314692B (en) * | 2014-10-28 | 2016-03-09 | 大连理工大学 | A kind of microwave surface ripple igniting combustion supporting device |
CN106762330B (en) * | 2016-12-27 | 2018-11-02 | 华中科技大学 | A kind of experimental provision of visual research microwave plasma auxiliary firing |
-
2020
- 2020-09-25 CN CN202011026931.0A patent/CN112197975B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172224A (en) * | 2006-10-31 | 2008-05-07 | 华东理工大学 | A method of promoting chemical reactions under microwave radiation conditions |
CN102243224A (en) * | 2010-05-14 | 2011-11-16 | 上海赫特能源科技有限公司 | On-line monitor of incomplete combusting loss of machines |
CN206531677U (en) * | 2017-01-19 | 2017-09-29 | 衢州峥嵘环保科技有限公司 | One kind burning carbon soot particles sampler |
EP3540192B1 (en) * | 2018-03-16 | 2020-03-04 | Toyota Jidosha Kabushiki Kaisha | Abnormality diagnosis apparatus |
CN109085096A (en) * | 2018-08-28 | 2018-12-25 | 天津大学 | The device and method of carbon soot particles breakage properties in a kind of acquisition combustion process |
CN109579033A (en) * | 2018-12-13 | 2019-04-05 | 西安建筑科技大学 | The burner and its analoging detecting device and method of volatile organic compounds |
CN209706039U (en) * | 2019-04-04 | 2019-11-29 | 山东师范大学 | Argon Microwave Discharge Plasma Assisted Methane Air Swirl Combustion Device |
Also Published As
Publication number | Publication date |
---|---|
CN112197975A (en) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112197975B (en) | Experimental device for fuel combustion and soot generation characteristics under microwave radiation | |
DeFilippo et al. | Extending the lean stability limits of gasoline using a microwave-assisted spark plug | |
Wang et al. | Experimental study of microwave resonance plasma ignition of methane–air mixture in a constant volume cylinder | |
US7770551B2 (en) | Method for igniting combustion of fuel in a combustion chamber of an engine, associated device and engine | |
CN107290133B (en) | A System for Visualizing Observation of Microwave Ignition and Combustion Process in Cavity | |
Zhang et al. | Experimental study of microwave assisted spark ignition on expanding C2H2-Air spherical flames | |
CN110030551B (en) | Argon microwave discharge plasma assisted methane air swirl combustion device and method | |
Meng et al. | Study on chemical kinetics and NO behaviors in pre-chamber jet-induced ignition mode with ammonia | |
Zhang et al. | Strengthening effect of microwave on spark ignited spherical expanding flames of methane-air mixture | |
Alrashidi et al. | A review on plasma combustion of fuel in internal combustion engines | |
JP2009036201A (en) | Uniform premix compressed self-ignition engine and engine | |
Ikeda et al. | Microwave enhanced ignition process for fuel mixture at elevated pressure of 1MPa | |
Wu et al. | Effect of microwave pulse parameters on energy coupling and enhancement of microwave assisted ignition | |
Yang et al. | Numerical investigation on turbulent flame jet characteristics of a pre-chamber fueled with CH4/O2 and CH4/NH3/O2 mixture under different initial pressures | |
Liming et al. | Research progress of microwave plasma ignition and assisted combustion | |
Li et al. | Experimental investigation of ignition mode and performance of the annular combustor | |
Tian et al. | Experimental study on the discharge characteristics of high-voltage nanosecond pulsed discharges and its effect on the ignition and combustion processes | |
Wang et al. | Experimental study of influence on microwave plasma ignition combustion performance of pulse microwave signals | |
CN106762331B (en) | A kind of microwave-assisted plug ignition method and its integrating device | |
Xiong et al. | Experimental study on multi-point ignition of NH3/air by high-frequency nanosecond dielectric barrier discharge | |
Zhang et al. | Water vapor on microwave-enhanced spark ignition of CH4-air flame: Experimental and numerical analysis | |
CN113588305A (en) | Device for microwave-assisted steady-state premixed combustion research | |
Wu et al. | Velocity match between plasma and flame in microwave-assisted spark ignition | |
Khalil et al. | Hydroxyl radical distribution in distributed reaction combustion condition | |
CN209706039U (en) | Argon Microwave Discharge Plasma Assisted Methane Air Swirl Combustion Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |