CN112187081A - 逆变器和光伏设备 - Google Patents

逆变器和光伏设备 Download PDF

Info

Publication number
CN112187081A
CN112187081A CN202011179154.3A CN202011179154A CN112187081A CN 112187081 A CN112187081 A CN 112187081A CN 202011179154 A CN202011179154 A CN 202011179154A CN 112187081 A CN112187081 A CN 112187081A
Authority
CN
China
Prior art keywords
inverter
voltage converter
phase
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011179154.3A
Other languages
English (en)
Inventor
M.坦霍伊泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN112187081A publication Critical patent/CN112187081A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

逆变器和光伏设备。该逆变器尤其是微光伏逆变器。该逆变器在输入侧具有拥有三个输出电平的直流电压转换器、以及与该直流电压转换器电连接的拥有至少三个输入电平的反相换流器。该光伏设备具有拥有这样的逆变器的微光伏逆变器。

Description

逆变器和光伏设备
技术领域
本发明涉及一种逆变器和一种光伏设备。
背景技术
在光伏设备中,典型地将微光伏逆变器(MPI)电连接到光伏模块上,所述光伏模块在运行中提供大约20V-50V的直流电压(DC)。该MPI将该直流电压转换成交变电压,使得该交流电压给电网馈送例如230V和50Hz。
公知的是,微光伏逆变器被构造为两级的。为此,微光伏逆变器的第一级是利用DC/DC转换器来形成的,该DC/DC转换器以本身公知的方式被实施成变压转换器。变压转换器的输入侧和输出侧彼此电流隔离。DC/DC转换器在其输出端处生成比在输入端处明显更高的直流电压。该直流电压典型地为高于400V。为了从大约20V的低直流电压中生成该高直流电压,需要大于20的电压变换比。这样的电压变换比只能利用变压转换器、而不能利用非绝缘转换器来有意义地实现。
作为第二级,在MPI的情况下存在DC/AC逆变器,该DC/AC逆变器常常被实施成简单全桥。该级通过相应的脉宽调制(PWM)从由DC/DC转换器提供的高直流电压中生成交变电压,所述交变电压紧接着可以通过EMI滤波器被馈送到电网中。
发明内容
因此,本发明的任务是提供一种改进的逆变器、尤其是改进的微光伏逆变器,所述逆变器能够以更低成本、更紧凑并且更有效地运行。另外,本发明的任务是提供一种改进的光伏设备。
本发明的该任务利用一种具有在权利要求1中说明的特征的逆变器以及利用一种具有在权利要求10中说明的特征的光伏设备来解决。本发明的优选改进方案在从属权利要求、下面的描述和附图中予以说明。
根据本发明的逆变器优选地是微光伏逆变器。根据本发明,该逆变器在输入侧具有拥有三个输出电平的直流电压转换器,以及与该直流电压转换器电连接的、拥有至少三个输入电平的反相换流器(Wechselrichter)。
根据本发明的逆变器有利地可以利用无变压器拓扑来构造。根据本发明的逆变器实际上优选地也被构造为无变压器的。无变压器的直流电压转换器有利地具有与变压直流转换器相比更高的效率。另外,根据本发明的逆变器也可以被低成本地制造,因为变压直流转换器通常形成昂贵部件,而该昂贵部件根据本发明可以被省去。另外,根据本发明的逆变器也可以被构造为紧凑的,因为无变压器的直流电压转换器通常可以用与变压直流电压转换器相比更小的安装空间来构造。
在根据本发明的逆变器的一个优选改进方案中,输入侧的直流电压转换器具有反相直流电压转换器以及同相直流电压转换器作为其部件。
在本发明的该改进方案中,同相直流电压转换器和反相直流电压转换器能够以所谓的“错位时钟”(交织时钟)来运行。这使得在该逆变器的DC输入端处的有效开关频率加倍。另外,DC输入端处的较小EMV滤波器就足够了(每个MPI在DC输入端处都需要EMV滤波器(在本申请中在附图中未明确示出))。此外,通过更高的开关频率,EMI滤波器的所需无源器件可以变得更小,这节省了费用和安装大小。
在根据本发明的逆变器中,优选地针对输出电压来确定反相直流电压转换器和同相直流电压转换器的大小,所述输出电压彼此相差最高百分之20、优选最高百分之3并且理想地相差最高百分之0.5。
在根据本发明的逆变器中,反相直流电压转换器和非逆变直流电压转换器的输入端适宜地是不同极性并且尤其是可以绝对值相等地被馈送,并且适宜地被相应接触。
在根据本发明的逆变器的一个优选改进方案中,同相直流电压转换器包括升压转换器,和/或反相直流电压转换器包括降压-升压转换器。
在根据本发明的逆变器中,反相换流器器适宜地具有用于三相输出电压的三个相柄(Phasenschenkel)),所述相柄分别被构造为可被馈送三个输入电平。特别优选地,在根据本发明的逆变器中,所述相柄被构造为ANPC类型或者NPC类型或3L-T类型或者具有ANPC类型或者NPC类型或3L-T类型。
在本发明的有利改进方案中,在逆变器中,反相换流器是构造类型为扩展型ANPC(“Extended active neutral point clamped”(扩展型有源中性点钳位))的反相换流器。
根据本发明的逆变器优选地具有两个中间电路电容器,所述中间电路电容器被布置和连接为将输入侧整流器的三个输出电平彼此隔离。
根据本发明的逆变器有利地可以利用分开的中间电路来制造,该中间电路具有对第一中间电路电容器、尤其是上中间电路电容器和第二中间电路电容器、尤其是下中间电路电容器的单独供电。分开的中间电路使得能够直截了当地使用三级反相换流器作为根据本发明的逆变器的部件。
有利的,可以借助于必要时在输入侧存在的直流电压转换器来容易地使所述中间电路电容器对称。
根据本发明的光伏设备具有光伏模块和与其电连接的微光伏逆变器,该微光伏逆变器利用前述逆变器来形成或者被形成为前述逆变器。
附图说明
下面根据附图中所示的实施例进一步阐述本发明。附图:
图1以框图示意性示出了根据本发明的逆变器的原理性构造;
图2以电路草图示意性示出了根据本发明的逆变器的第一实施例;
图3以电路草图示意性示出了根据本发明的具有三相反相换流器的逆变器的第二实施例;
图4示出了根据图3的逆变器的三相反相换流器的相柄;
图5示出了类似于图3的逆变器的三相反相换流器的相柄的替代于图4的实施方式;
图6示出了类似于图3的三相反相换流器的相柄的替代于图4的另一实施方式;以及
图7示出了具有根据图2的根据本发明的逆变器的根据本发明的光伏模块。
具体实施方式
图1中所示的根据本发明的逆变器10的原理性构造包括输入侧的直流电压转换器20,该直流电压转换器20通过电连接线L被馈送输入电压UDC,所述电连接线L与直流电压转换器20的输入端连接。在所示实施例中,逆变器10是针对20至50伏的输入电压UDC而被确定大小的。
该直流电压转换器在输出侧向中间电路Z输出3个电平。3个电平彼此相差高压差UDC,HV/2,其中中间电路Z在根据图1的图示中在中部具有零电势(用“0”来表征),在上部具有与零电势相比为负的电势(用“-”来表征),并且在下部具有与零电势相比为正的电势(用“+”来表征),这些电势借助于中间电路电容器C1、C2彼此隔离。因此在正电势与负电势之间存在电压UDC,HV。中间电路Z将直流电压转换器20与反相换流器30相耦合。反相换流器30被馈送三个电平“-”、“+”和“0”作为反相换流器30的输入电压,并且被构造成三级转换器(英语“Three level converter”)。反相换流器30在输出侧通过EMI滤波器EMI提供交变电压UAC,所述交变电压在所示实施例中为具有50Hz频率的230伏,并且因此可以无需进一步转换就被直接馈送到电网中。
直流电压转换器20借助于作为其部件的同相直流电压转换器40和反相直流电压转换器50来形成。在此,同相直流电压转换器40和反相直流电压转换器50一起由同一直流电压UDC来馈电。在此,直流电压UDC被直接地施加到同相直流电压转换器40上、被反向地施加到反相直流电压转换器50上并且因此极性不同地被施加。
在中间电路侧,一方面同相直流电压转换器40的输出电势中较高者和另一方面反相直流电压转换器50的输出电势中的较低者联合,并且形成中间电路Z的零电势。同相直流电压转换器40和反相直流电压转换器50的其余电势形成与零电势相比为负的电势“-”以及与零电势相比为正的电势“+”。
直流电压转换器40和反相换流器30的精确构造可在图2的第一实施例中得知:
同相直流电压转换器40被构造成升压转换器,所述升压转换器以本身公知的方式借助于电感L1、MOSFET(英语:“Metal-oxide-semiconductor field-effect-transistor”,金属氧化物半导场效应晶体管)S1以及二极管D1和电容器C1形成。
反相直流电压转换器50被构造成降压-升压转换器,所述降压-升压转换器以本身公知的方式借助于电感L2、MOSFET S2以及二极管D2和电容器C2形成。
三级转换器30被实施成扩展型ANPC构造方式(英语:“extended active neutralpoint clamped”,扩展型有源中性点钳位),其以本身公知的方式包括MOSFET S3、S4...S10以及EMI滤波器。
可替代地,三级转换器30也可以如在根据图3的根据本发明的另一转换器的另一实施例中所示那样被构造成三相三级转换器130。
在此,三相三级转换器130的相柄针对每个相P以ANPC构造方式(ANPC=英语“active neutral point clamped”,有源中性点钳位)来构造,并且如图4中所示分别包括6个MOSFET S1、...S6(在根据图3的图示中也用SU1、...SU6来表示)。
可替代地,三相三级转换器130的相柄也可以如图5中所形成的那样用针对每个相P都是NPC构造方式(NPC=英语“neutral point clamped”,中性点钳位)的相柄来构造。
在另一实施例中,三相三级转换器130的相柄也如图6中所示那样用针对每个相P都是3L-T构造方式的相柄来构造。
图7中所示的光伏设备具有光伏模块700以及微光伏逆变器10,该微光伏逆变器10如上述第一实施例中的逆变器10那样来构造。在另外的实施例中,微光伏逆变器可以如根据本发明逆变器的上述其余实施例的逆变器之一那样来构造。

Claims (10)

1.逆变器、尤其是微光伏逆变器,其在输入侧具有拥有三个输出电平(-,0,+)的直流电压转换器(20)以及与该直流电压转换器电连接的反相换流器(30),所述反相换流器拥有至少三个输入电平(-,0,+)。
2.根据前一权利要求所述的逆变器,其中输入侧的直流电压转换器(20)具有反相直流电压转换器(50)以及同相直流电压转换器(40)。
3.根据前述权利要求之一所述的逆变器,其中所述反相直流电压转换器(50)和所述同相直流电压转换器(40)是针对输出电压而被确定大小的,所述输出电压彼此相差最高百分之20、优选最高百分之3并且理想地相差最高百分之0.5。
4.根据前述权利要求之一所述的逆变器,其中所述反相直流电压转换器(50)和所述同相直流电压转换器(40)的输入端是极性不同的并且尤其是绝对值相同地被馈电。
5.根据前述权利要求之一所述的逆变器,其中所述同相直流电压转换器(40)包括升压转换器,和/或所述反相直流电压转换器(50)包括降压-升压转换器。
6.根据前述权利要求之一所述的逆变器,其中所述反相换流器(130)具有用于三相输出电压的相柄,所述相柄分别被构造为能够被馈送三个输入电平(-,0,+)。
7.根据前述权利要求之一所述的逆变器,其中所述相柄被构造为ANPC类型或者NPC类型或3L-T类型或者具有ANPC类型或者NPC类型或3L-T类型。
8.根据前述权利要求之一所述的逆变器,其中所述反相换流器是扩展型ANPC类型。
9.根据前述权利要求之一所述的逆变器,其具有两个中间电路电容器(C1,C2),所述中间电路电容器(C1,C2)将整流器的三个输出电平彼此隔离。
10.光伏设备,其具有微光伏逆变器,所述微光伏逆变器用根据前述权利要求之一所述的逆变器(10)形成。
CN202011179154.3A 2016-08-31 2017-08-31 逆变器和光伏设备 Pending CN112187081A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016216375.2 2016-08-31
DE102016216375 2016-08-31
CN201710770908.4A CN107800316A (zh) 2016-08-31 2017-08-31 逆变器和光伏设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710770908.4A Division CN107800316A (zh) 2016-08-31 2017-08-31 逆变器和光伏设备

Publications (1)

Publication Number Publication Date
CN112187081A true CN112187081A (zh) 2021-01-05

Family

ID=61167197

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710770908.4A Pending CN107800316A (zh) 2016-08-31 2017-08-31 逆变器和光伏设备
CN202011179154.3A Pending CN112187081A (zh) 2016-08-31 2017-08-31 逆变器和光伏设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710770908.4A Pending CN107800316A (zh) 2016-08-31 2017-08-31 逆变器和光伏设备

Country Status (3)

Country Link
US (1) US11309805B2 (zh)
CN (2) CN107800316A (zh)
DE (1) DE102017215133A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084798B1 (fr) * 2018-08-03 2020-10-30 Schneider Electric Ind Sas Convertisseur de puissance multiniveaux
US11581821B2 (en) * 2019-06-06 2023-02-14 Schneider Electric It Corporation Multi-level inverter topologies for medium- and high-voltage applications
US20230344336A1 (en) * 2019-10-07 2023-10-26 Em Coretech Inc. Current compensation system for photovoltaic generator, quality measurement device, measurement method thereof, and recording medium thereof
CN114172373A (zh) * 2021-12-10 2022-03-11 阳光电源股份有限公司 一种光伏变换系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055316A (zh) * 2009-11-02 2011-05-11 Abb研究有限公司 非隔离直流-直流转换器组件
CN103248209A (zh) * 2012-02-03 2013-08-14 Abb研究有限公司 转换器组件和包括转换器组件的电站
CN105322796A (zh) * 2014-07-28 2016-02-10 艾默生网络能源有限公司 一种多态三电平升压电路
CN106300980A (zh) * 2016-08-08 2017-01-04 上海大学 一种输入并联输出串联的Sepic‑Cuk型组合式直流变换器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012164B4 (de) 2005-12-23 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schaltungsanordnung zur Erzeugung einer Wechselspannung oder eines Wechselstroms
ES2397691T3 (es) * 2008-12-18 2013-03-08 Abb Research Ltd. Dispositivo convertidor y procedimiento para controlar un dispositivo convertidor
DE102012107122A1 (de) 2011-08-08 2013-02-14 Sma Solar Technology Ag Wechselrichterschaltung
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
ES2718807T3 (es) * 2012-06-07 2019-07-04 Abb Research Ltd Procedimiento de amortiguación de secuencia cero y equilibrado de tensión en un convertidor de tres niveles con condensadores de enlace de CC divididos y filtro LCL virtualmente conectado a tierra
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
WO2014194933A1 (en) * 2013-06-04 2014-12-11 Huawei Technologies Co., Ltd. Five-level pv inverter based on a multi-state switching cell
DE102014203157A1 (de) 2014-02-21 2015-08-27 Airbus Operations Gmbh Bipolares Hochspannungsnetz und Verfahren zum Betreiben eines bipolaren Hochspannungsnetzes
CN106664009A (zh) * 2014-08-08 2017-05-10 奥的斯电梯公司 多电平驱动的中性点调节器硬件
US9935464B2 (en) * 2014-12-03 2018-04-03 Sunfield Semiconductor, Inc. Smart junction box for photovoltaic solar power modules with novel power supply circuits and related method of operation
US10191531B2 (en) * 2015-12-29 2019-01-29 General Electric Company Hybrid converter system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055316A (zh) * 2009-11-02 2011-05-11 Abb研究有限公司 非隔离直流-直流转换器组件
CN103248209A (zh) * 2012-02-03 2013-08-14 Abb研究有限公司 转换器组件和包括转换器组件的电站
CN105322796A (zh) * 2014-07-28 2016-02-10 艾默生网络能源有限公司 一种多态三电平升压电路
CN106300980A (zh) * 2016-08-08 2017-01-04 上海大学 一种输入并联输出串联的Sepic‑Cuk型组合式直流变换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱景伟 主编: "交流电机变频调速原理", 31 March 2014, 大连海事大学出版社, pages: 48 - 49 *
洪峰: "双降压式半桥逆变器及输出并联型组合变换器研究", 中国博士学位论文全文数据库 工程科技II辑, 15 May 2009 (2009-05-15), pages 042 - 29 *

Also Published As

Publication number Publication date
US11309805B2 (en) 2022-04-19
US20180062538A1 (en) 2018-03-01
CN107800316A (zh) 2018-03-13
DE102017215133A1 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
US8958219B2 (en) Non-isolated inverter and related control manner thereof and application using the same
KR101218953B1 (ko) 계통 연계 인버터
US20090244936A1 (en) Three-phase inverter
US8681522B2 (en) Method for operating an electronically controlled inverter with switches that alternate between being elements of a boost-buck converter and an inverting Cuk converter
EP2525482A1 (en) Grid-tie inverter
CN112187081A (zh) 逆变器和光伏设备
RU2645726C2 (ru) Преобразователь переменного напряжения в переменное
SE0101273L (sv) Strömriktare
US11569746B2 (en) DC coupled electrical converter
WO2017157271A1 (en) Multilevel inverters
RU2015102584A (ru) Преобразователь и способ его эксплуатации для преобразования напряжений
US9876427B2 (en) DC/DC power conversion device with first and second loads
US7859867B2 (en) Method and inverter for converting a DC voltage into a 3-phase AC output
JP2012191761A (ja) 交流−直流変換回路
JP2017011805A (ja) 9レベル電力変換装置
JP6341051B2 (ja) 5レベル電力変換装置
US20140028096A1 (en) Rectifier circuit and electronic device using same
KR100916902B1 (ko) 무변압기형 부스터 컨버터
US10158284B2 (en) PFC with stacked half-bridges on DC side of rectifier
JP2021035223A (ja) 力率改善回路
KR101123123B1 (ko) 전하펌프 멀티레벨 인버터
US20170272000A1 (en) DC-to-AC Power Converter
RU175601U1 (ru) Двунаправленный импульсный преобразователь напряжений
JP5879705B2 (ja) 電力変換装置
KR20090071997A (ko) 직렬형 dc/dc 컨버팅 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination