CN112180475A - 一种可调控多功能宽带太赫兹波偏振转换超材料 - Google Patents
一种可调控多功能宽带太赫兹波偏振转换超材料 Download PDFInfo
- Publication number
- CN112180475A CN112180475A CN202011143188.7A CN202011143188A CN112180475A CN 112180475 A CN112180475 A CN 112180475A CN 202011143188 A CN202011143188 A CN 202011143188A CN 112180475 A CN112180475 A CN 112180475A
- Authority
- CN
- China
- Prior art keywords
- graphene
- gold
- polarization conversion
- metamaterial
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种可调控多功能宽带太赫兹波偏振转换超材料,包括金和石墨烯,所述金和石墨烯组成一个方形环,单元结构的侧视结构材料,从下到上分别为金、Neltec NY9208、In:In2O3、二氧化硅和金‑石墨烯方形环,其中石墨烯浸在导电离子胶中,离子胶和In:In2O3分别作为电极与外部电压相连,该可调控的多功能宽带偏振转换超材料,其工作波段和偏振转换功能可通过外部电压调控。
Description
技术领域
本发明涉及太赫兹器件技术领域,具体为一种可调控多功能宽带太赫兹波偏振转换超材料。
背景技术
超材料是一种由周期性微纳结构组成的人工材料,其新奇的物理性质引起了国内外众多科研人员的兴趣。精确设计的超材料可以弥补自然界材料的电磁缺陷,其应用范围不仅局限于光学领域,也延伸到通信、能源、生命医学等领域。超材料的结构单元与电磁波发生相互作用的过程中,可以实现对入射电磁波强度、相位、偏振方向等光学特性的调控。
太赫兹波是频率在0.1THz到10THz范围的电磁波,在通信、雷达、电子对抗、电磁武器、天文学等方面拥有广泛的应用前景。随着上世纪八十年代宽带稳定脉冲太赫兹光源的获得,太赫兹技术得以迅速发展,并在国际范围内掀起一股太赫兹研究热潮。太赫兹技术的研究包括太赫兹波的激发、调控及探测等,这些都对太赫兹波的应用至关重要。
太赫兹波作为一种电磁波,其调控及探测包括对强度、相位及偏振方向等的调制和检测。其中,偏振方向作为电磁波特有的一种物理性质,包括线偏振和圆偏振两种状态。最初,利用双折射晶体或手性晶体来调控偏振方向是一种比较常见的技术手段,但是这种方式依赖自然材料的发掘,通常其工作带宽较窄,体积较大,而且加工难度大,转换效率有限。自然材料所存在的这些固有缺陷可以通过精心设计的超材料来弥补。改变微纳结构的参数,可以精确地控制超材料的工作频率和带宽,其偏振转换效率也远远高于传统方法。因此,超材料偏振转换器在太赫兹技术方面具有更大的应用前景。目前,已经有基于超材料的偏振转换器件实现了线偏振到线偏振、线偏振到圆偏振,以及圆偏振到圆偏振的太赫兹偏振转换器件。基于应用方面的考虑,太赫兹偏振转换器的发展趋势包括宽带、可主动调控、多功能转换等方面,如何将这些性能集成到一个偏振转换器中,是研究的重点之一。针对这些问题,本技术方案提出了一种基于石墨烯的太赫兹偏振转换器,可以实现可调控的多功能宽带偏振转换。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种可调控多功能宽带太赫兹波偏振转换超材料,解决了现有技术中存在的太赫兹波段偏振转换器无法主动调控、工作带宽窄及功能单一的问题。
(二)技术方案
为达到以上目的,本发明采取的技术方案是:一种可调控多功能宽带太赫兹波偏振转换超材料,包括金和石墨烯,所述金和石墨烯组成一个方形环,单元结构的侧视结构材料,从下到上分别为金、Neltec NY9208、In:In2O3、二氧化硅和金-石墨烯方形环,其中石墨烯浸在导电离子胶中,离子胶和In:In2O3分别作为电极与外部电压相连。
一种可调控多功能宽带太赫兹波偏振转换超材料,其制造工艺如下:
S1、首先,利用电子束蒸发技术在Neltec NY9208衬底背面沉积金膜,分别利用原子层沉积技术和电子束蒸发技术将In:In2O3和二氧化硅薄膜依次沉积到Neltec NY9208的正面;
S2、然后,将利用化学气相沉积技术生长的单层石墨烯转移到二氧化硅层上,将聚甲基丙烯酸甲酯作为电子束抗蚀剂旋涂在石墨烯上,使用电子束刻蚀技术将其图形化为石墨烯结构所对应的图形,使用氧等离子体腐蚀暴露区域,并将聚甲基丙烯酸甲酯用丙酮溶解,可得到石墨烯结构,互补的金属结构可以通过标准的光刻流程来实现;
S3、最后,离子胶可以旋涂到结构上,并将离子胶层与In:In2O3层分别与电源正负极相连。
(三)有益效果
本发明的有益效果在于:
1、该可调控多功能宽带太赫兹波偏振转换超材料,其工作波段和偏振转换功能可通过外部电压调控。
2、该可调控多功能宽带太赫兹波偏振转换超材料,是一种宽带偏振转换器。
3、该可调控多功能宽带太赫兹波偏振转换超材料,是一种多功能偏振转换器,可以实现四分之一波片和半波片之间的切换。
附图说明
图1为本发明俯视结构示意图;
图2为本发明侧视结构示意图;
图3为本发明在OFF状态下,椭圆度随频率的变化图;
图4为本发明在ON状态下,线偏振转换率随频率的变化图;
图5为本发明在OFF状态下,1.5THz时椭圆度随入射光偏振角的变化图。
图中:1金、2石墨烯。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-5所示,本发明提供一种技术方案:一种可调控多功能宽带太赫兹波偏振转换超材料,包括金1和石墨烯2,所述金1和石墨烯2组成一个方形环,图1中黑色部分代表石墨烯结构,白色部分代表金结构,其结构参数分别为p=82μm,g=26μm,l=46μm,w=5μm,s=10μm,单元结构的侧视结构,如图2所示,从下到上分别为金、Neltec NY9208、In:In2O3、二氧化硅和金-石墨烯方形环,其中石墨烯浸在导电离子胶中(虚线部分),离子胶和In:In2O3分别作为电极与外部电压相连,其中图2标示的厚度分别为h=0.28μm,h1=0.8μm,h2=33μm,d1=0.1μm,d2=0.02μm。
当电压为0时,石墨烯费米能为0,器件处于OFF状态,此时可以在1.12-1.72THz实现x线偏振光入射到右旋圆偏振光反射的转换,y线偏振光入射到左旋圆偏振光反射的转换,相当于四分之一波片,x偏振光入射时,反射光的椭圆度如图3所示。
当电压为4.5V时,石墨烯费米能为1eV,器件处于ON状态,此时可以在1.38-1.85THz实现x线偏振光入射到y线偏振光反射的转换,相当于半波片,x偏振光入射时,反射光的线偏振转换率如图4所示。
因此,在共同带宽1.38-1.72THz范围,改变电压从0到4.5V,可实现四分之一波片和半波片之间的切换。
该器件对入射光的偏振角有较高的容差,如图5所示,偏振角在±12.5°的范围内变化时,均能实现较好的圆偏振转换。
实施例1:定义金-石墨烯方形环中石墨烯的占空比为α=g/(l+g),当0.2<α<0.5,可以实现较好的偏振转换,最优的占空比为α=0.36。
实施例2:Neltec NY9208的厚度h2满足30μm<h2<36μm时,可以实现宽带偏振转换,最优值为h2=33μm。
本发明的操作步骤为:
S1、首先,利用电子束蒸发技术在Neltec NY9208衬底背面沉积金膜,分别利用原子层沉积技术和电子束蒸发技术将In:In2O3和二氧化硅薄膜依次沉积到Neltec NY9208的正面;
S2、然后,将利用化学气相沉积技术生长的单层石墨烯转移到二氧化硅层上,将聚甲基丙烯酸甲酯作为电子束抗蚀剂旋涂在石墨烯上,使用电子束刻蚀技术将其图形化为石墨烯结构所对应的图形,使用氧等离子体腐蚀暴露区域,并将聚甲基丙烯酸甲酯用丙酮溶解,可得到石墨烯结构,互补的金属结构可以通过标准的光刻流程来实现;
S3、最后,离子胶可以旋涂到结构上,并将离子胶层与In:In2O3层分别与电源正负极相连。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种可调控多功能宽带太赫兹波偏振转换超材料,包括金(1)和石墨烯(2),其特征在于:所述金(1)和石墨烯(2)组成一个方形环,单元结构的侧视结构材料,从下到上分别为金、Neltec NY9208、In:In2O3、二氧化硅和金-石墨烯方形环,其中石墨烯浸在导电离子胶中,离子胶和In:In2O3分别作为电极与外部电压相连。
2.一种可调控多功能宽带太赫兹波偏振转换超材料,其制造工艺如下:
S1、首先,利用电子束蒸发技术在Neltec NY9208衬底背面沉积金膜,分别利用原子层沉积技术和电子束蒸发技术将In:In2O3和二氧化硅薄膜依次沉积到Neltec NY9208的正面;
S2、然后,将利用化学气相沉积技术生长的单层石墨烯转移到二氧化硅层上,将聚甲基丙烯酸甲酯作为电子束抗蚀剂旋涂在石墨烯上,使用电子束刻蚀技术将其图形化为石墨烯结构所对应的图形,使用氧等离子体腐蚀暴露区域,并将聚甲基丙烯酸甲酯用丙酮溶解,可得到石墨烯结构,互补的金属结构可以通过标准的光刻流程来实现;
S3、最后,离子胶可以旋涂到结构上,并将离子胶层与In:In2O3层分别与电源正负极相连。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011143188.7A CN112180475B (zh) | 2020-10-23 | 2020-10-23 | 一种可调控多功能宽带太赫兹波偏振转换超材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011143188.7A CN112180475B (zh) | 2020-10-23 | 2020-10-23 | 一种可调控多功能宽带太赫兹波偏振转换超材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112180475A true CN112180475A (zh) | 2021-01-05 |
CN112180475B CN112180475B (zh) | 2022-05-20 |
Family
ID=73922159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011143188.7A Active CN112180475B (zh) | 2020-10-23 | 2020-10-23 | 一种可调控多功能宽带太赫兹波偏振转换超材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112180475B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206386A (zh) * | 2021-04-09 | 2021-08-03 | 华中科技大学 | 毫米波智能超表面单元及毫米波智能超表面 |
CN115249896A (zh) * | 2021-12-30 | 2022-10-28 | 青岛大学 | 一种可调控多频太赫兹完美吸收器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108390156A (zh) * | 2018-01-11 | 2018-08-10 | 北京邮电大学 | 基于超材料的太赫兹可调极化波不敏感电磁诱导透明器件 |
CN208690497U (zh) * | 2018-08-16 | 2019-04-02 | 南京邮电大学 | 一种石墨烯宽带可调控圆极化超表面 |
CN110473957A (zh) * | 2019-09-04 | 2019-11-19 | 哈尔滨理工大学 | 一种基于选择性静电掺杂石墨烯的可动态调控太赫兹环偶极子超材料器件及其制备方法 |
CN111352175A (zh) * | 2020-03-10 | 2020-06-30 | 山东大学 | 基于anapole模式的可动态调控的石墨烯超材料太赫兹器件及其制备方法与应用 |
CN210984967U (zh) * | 2019-12-17 | 2020-07-10 | 杭州电子科技大学富阳电子信息研究院有限公司 | 基于石墨烯的可调谐太赫兹超表面及电路 |
-
2020
- 2020-10-23 CN CN202011143188.7A patent/CN112180475B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108390156A (zh) * | 2018-01-11 | 2018-08-10 | 北京邮电大学 | 基于超材料的太赫兹可调极化波不敏感电磁诱导透明器件 |
CN208690497U (zh) * | 2018-08-16 | 2019-04-02 | 南京邮电大学 | 一种石墨烯宽带可调控圆极化超表面 |
CN110473957A (zh) * | 2019-09-04 | 2019-11-19 | 哈尔滨理工大学 | 一种基于选择性静电掺杂石墨烯的可动态调控太赫兹环偶极子超材料器件及其制备方法 |
CN210984967U (zh) * | 2019-12-17 | 2020-07-10 | 杭州电子科技大学富阳电子信息研究院有限公司 | 基于石墨烯的可调谐太赫兹超表面及电路 |
CN111352175A (zh) * | 2020-03-10 | 2020-06-30 | 山东大学 | 基于anapole模式的可动态调控的石墨烯超材料太赫兹器件及其制备方法与应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206386A (zh) * | 2021-04-09 | 2021-08-03 | 华中科技大学 | 毫米波智能超表面单元及毫米波智能超表面 |
CN115249896A (zh) * | 2021-12-30 | 2022-10-28 | 青岛大学 | 一种可调控多频太赫兹完美吸收器 |
Also Published As
Publication number | Publication date |
---|---|
CN112180475B (zh) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110441842B (zh) | 一种基于vo2及石墨烯混合超材料的多功能器件 | |
CN112180475B (zh) | 一种可调控多功能宽带太赫兹波偏振转换超材料 | |
Liu et al. | Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency | |
Zhang et al. | Active terahertz device based on optically controlled organometal halide perovskite | |
CN104851929A (zh) | 基于石墨烯表面等离激元的光电材料可调吸收增强层 | |
CN108983344B (zh) | 一种宽频可调谐太赫兹偏振功能转换器 | |
CN112162421A (zh) | 一种基于多层石墨烯-介质复合超表面的反射式宽带可调偏振转换器 | |
CN108183340A (zh) | 基于石墨烯双圆环的宽带电可调吸波器 | |
Li et al. | A multifunctional polarization converter base on the solid-state plasma metasurface | |
CN211123332U (zh) | 一种基于石墨烯的宽带可调太赫兹吸波器 | |
CN109870824A (zh) | 一种高效的太赫兹超材料线偏振转换器 | |
Kim et al. | Origin of the anisotropic-strain-driven photoresponse enhancement in inorganic halide-based self-powered flexible photodetectors | |
Shuihab et al. | Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si | |
CN113204131A (zh) | 基于石墨烯-金属裂环谐振器涡旋聚焦的方法 | |
CN113219576A (zh) | 基于石墨烯-金属裂环谐振器近场成像的方法 | |
CN113300118A (zh) | 一种实现电磁诱导透明和完美吸收的双功能器件 | |
Zhang et al. | Bi-functional metasurface for broadband absorption and broadband cross-polarization conversion based on vanadium dioxide | |
Wen et al. | A review of the preparation, properties and applications of VO2 thin films with the reversible phase transition | |
CN114914700B (zh) | 一种基于二氧化钒的动态多功能太赫兹反射阵及制备方法 | |
CN114944438B (zh) | 一种光电器件 | |
CN214153215U (zh) | 基于石墨烯相位梯度超表面的全极化反射型平面超透镜 | |
CN112652720B (zh) | 一种基于二维光子晶体结构的钙钛矿太阳能电池 | |
CN110867717B (zh) | 一种基于拓扑绝缘体的偏振可调谐太赫兹波发射装置 | |
Chi et al. | Modulator design for thz communication based on vanadium dioxide metasurface | |
Zong et al. | Actively tunable THz absorber for switchable operations between different absorption behaviors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 266071 Shandong city of Qingdao province Ningxia City Road No. 308 Applicant after: QINGDAO University Address before: 266071 Qingdao University, 308 Ningxia road, Laoshan District, Qingdao City, Shandong Province Applicant before: QINGDAO University |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |