CN112174436A - Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor - Google Patents

Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor Download PDF

Info

Publication number
CN112174436A
CN112174436A CN202011059538.1A CN202011059538A CN112174436A CN 112174436 A CN112174436 A CN 112174436A CN 202011059538 A CN202011059538 A CN 202011059538A CN 112174436 A CN112174436 A CN 112174436A
Authority
CN
China
Prior art keywords
bacteria
granular sludge
aerobic granular
membrane bioreactor
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011059538.1A
Other languages
Chinese (zh)
Inventor
张冰
黄冬梅
时文歆
申渝
高旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Nanxiangtai Environmental Protection Technology Research Institute Co ltd
Chongqing University
Chongqing Technology and Business University
Original Assignee
Chongqing Nanxiangtai Environmental Protection Technology Research Institute Co ltd
Chongqing University
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Nanxiangtai Environmental Protection Technology Research Institute Co ltd, Chongqing University, Chongqing Technology and Business University filed Critical Chongqing Nanxiangtai Environmental Protection Technology Research Institute Co ltd
Priority to CN202011059538.1A priority Critical patent/CN112174436A/en
Publication of CN112174436A publication Critical patent/CN112174436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

The invention relates to the technical field of sewage treatment, and discloses a method for stably operating a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, which comprises the following steps of S1: inoculating mature bacteria-algae symbiotic aerobic granular sludge into the membrane bioreactor to complete the construction of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor; s2: injecting sewage into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 3-20 min; s3: aerating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, and driving a membrane component in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor to rotate in the aeration process; s4: after 297-315 min, stopping aeration, settling sludge mixed liquid in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 5-15 min, and filtering sewage treated by the bacteria-algae symbiotic aerobic granular sludge through a membrane component for 10-55 min; s5: S2-S4 were repeated. The invention can reduce membrane pollution of the membrane component and prolong the service life of the membrane component, so that the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor can stably run for a long time.

Description

Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor
Technical Field
The invention relates to the technical field of sewage treatment, in particular to a method for stably operating a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor.
Background
The membrane bioreactor is a sewage treatment technology combining a biological treatment unit and a membrane separation technology, has the technical advantages of high-efficiency interception of biomass, realization of high-efficiency treatment of wastewater, small floor area, low residual sludge yield and the like. In order to further improve the sewage treatment effect of the membrane bioreactor, the aerobic granular sludge is inoculated into the membrane bioreactor to construct an aerobic granular sludge membrane bioreactor, so that the sewage treatment effect of the membrane bioreactor can be improved.
However, aerobic granular sludge membrane bioreactor systems often face the problem that the stable operation of the process is difficult due to the easy instability of the aerobic granular sludge structure and the increase of irreversible membrane resistance, and the problem becomes a technical bottleneck which prevents the large-scale application of the process.
Research personnel found in the research on the formation and stability of the aerobic granular sludge symbiotic with bacteria and algae and the components and contents of EPS and SMP in the sludge supernatant that the light/dark period, the illumination intensity and the aeration intensity are respectively 12h/12h and 178 mu mol/m2The mycoalgae symbiotic aerobic granular sludge can be spontaneously formed under the conditions of s and 4L/min, and the mature mycoalgae symbiotic aerobic granular sludge has larger grain diameter and good sedimentation performance; compared with aerobic granular sludge, the absolute value of the total interface free energy of the bacteria-algae symbiotic aerobic granular sludge is higher than 28.09%, and the repulsion potential barrier of the bacteria-algae symbiotic aerobic granular sludge is smaller, so that the bacteria-algae synergism effectively changes the thermodynamic characteristics of the granular sludge, the hydrophobicity is enhanced, the combination is tighter, and the system is more stable; and the number of the first and second electrodes,the pollutant removal effect of the bacteria-algae symbiotic aerobic granular sludge is also obviously improved, which shows that the bacteria-algae symbiotic aerobic granular sludge can improve the sewage treatment efficiency. In addition, the concentration of EPS and SMP (including Protein (PN) and Polysaccharide (PS)) in the supernatant of the bacteria-algae symbiotic aerobic granular sludge is lower than that of the aerobic granular sludge, so that the bacteria-algae symbiotic aerobic granular sludge is inoculated into the membrane bioreactor to construct the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, the respective advantages of the bacteria-algae symbiotic aerobic granular sludge and the aerobic granular sludge can be fully exerted, the pollutant removal efficiency is improved, and irreversible membrane pollution is slowed down. However, no systematic study on the stable operation of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor is carried out at present.
Disclosure of Invention
The invention aims to provide a method for stably operating a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, so as to reduce membrane pollution of a membrane component and prolong the service life of the membrane component.
In order to achieve the purpose, the invention provides the following technical scheme: a method for stably operating a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, which uses a membrane bioreactor and comprises the following steps: s1: inoculating mature bacteria-algae symbiotic aerobic granular sludge into the membrane bioreactor to complete the construction of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor; s2: injecting sewage into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 3-20 min; s3: aerating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, and driving a membrane component in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor to rotate in the aeration process; s4: after 297-315 min, stopping aeration, settling sludge mixed liquid in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 5-15 min, and filtering sewage treated by the bacteria-algae symbiotic aerobic granular sludge through a membrane component for 10-55 min; s5: S2-S4 were repeated.
The principle and the beneficial effects of the invention are as follows: (1) the concentration of EPS and SMP (PN and PS) in the supernatant of the aerobic granular sludge symbiotic with bacteria and algae is lower than that of the aerobic granular sludge, and the EPS and SMP are main pollutants for the membrane module, so that when the aerobic granular sludge of bacteria and algae is inoculated into the membrane bioreactor to treat sewage, the EPS and SMP attached to the membrane module are reduced, membrane pollution can be reduced, and the service life of the membrane module is prolonged.
(2) When the aerobic granular sludge membrane bioreactor symbiotic with bacteria and algae performs aeration, the membrane component is rotated to enable the membrane component to generate centrifugal acting force, when pollutants are close to the membrane component, the centrifugal acting force can drive nearby mixed liquid to generate acting force, the acting force can reduce the amount of the pollutants close to the membrane component, the probability that the pollutants are attached to the membrane component is further reduced, the transmembrane pressure difference of the membrane component can be reduced, the operation period of the reactor is further prolonged, and long-term stable operation is realized.
Further, after the membrane bioreactor for the aerobic particle sludge symbiotic with the bacteria and algae runs for 1-2 days, conveying 1/3-1/4 sewage in the membrane bioreactor for the aerobic particle sludge symbiotic with the bacteria and algae to a sedimentation tank for sedimentation for 5-20 min, and injecting the sewage in the sedimentation tank into the membrane bioreactor for the aerobic particle sludge symbiotic with the bacteria and algae.
Has the advantages that: in the long-term sewage treatment process of the bacteria-algae symbiotic aerobic granular sludge membrane reactor, the content of pollutants in the sludge mixed liquor in the bacteria-algae symbiotic aerobic granular sludge membrane reactor is increased accumulatively, and the sewage in the reactor is conveyed to a sedimentation tank for sedimentation, so that the content of pollutants in the sludge mixed liquor can be reduced, and the membrane pollution is reduced.
Further, adding a flocculating agent into the sedimentation tank in the sedimentation process of the sewage in the sedimentation tank.
Has the advantages that: the flocculant is used for settling the sewage in the sedimentation tank, so that the content of EPS and SMP can be reduced. The membrane pollution can be reduced by refluxing the settled sewage to the reactor.
Further, the membrane bioreactor comprises a body and a plurality of membrane modules arranged in the body, each membrane module comprises a support rotationally connected with the body and a filtering membrane fixed on the support, and the body is provided with a driving mechanism for driving the support to rotate; the lower part of the membrane component is provided with an aeration box, the top wall of the aeration box is provided with a plurality of air holes, the bottom of the aeration box is communicated with an air pipe, and the air pipe is communicated with an air pump.
Has the advantages that: the driving mechanism drives the support to rotate, the support drives the filtering membrane to rotate, and when the filtering membrane rotates, the generated centrifugal acting force can reduce the attachment of pollutants, so that the probability of blocking the membrane module is reduced, namely the transmembrane pressure difference of the membrane module is reduced.
Further, the driving mechanism comprises a driven gear coaxially and fixedly connected with the bracket and a main gear driven by a motor, and the main gear is meshed with the driven gear.
Has the advantages that: the motor drives the main gear, the main gear drives the driven gear, the driven gear drives the bracket, the bracket drives the filtering membrane to rotate, and the centrifugal acting force generated when the filtering membrane rotates can reduce the probability of pollutants attached to the membrane module.
Further, actuating mechanism is including being located the flabellum of aeration tank, and flabellum and the coaxial fixed connection of support, flabellum are located the top of trachea and aeration tank intercommunication department.
Has the advantages that: when the air pump sends gas into the aeration tank, the gas can drive the fan blades to rotate, and the fan blades can drive the support to rotate when rotating, so that the filtering membrane is driven to rotate. Gas gets into the aeration tank and discharges from the gas pocket again, and the aeration tank has formed certain resistance to gas, and after gas got into sewage, the shearing force of sewage reduced, so can reduce the shearing action to the aerobic granule mud of bacterial algae intergrowth, reduce the probability that the aerobic granule mud of bacterial algae intergrowth disintegrates.
Further, the support includes seat and lower, from gear and the coaxial fixed connection of seat, is provided with outrigger and inner frame between seat and the lower, seat and outrigger sliding connection, outrigger and lower fixed connection, and the seat is fixed with the inner frame, and filtration membrane is fixed on the inner frame.
Has the advantages that: the filtering membrane is supported by the inner frame, so that the strength of the filtering membrane can be increased. When the upper seat rotates, the outer frame and the filtering membrane move relatively, the outer frame can scrape pollutants on the filtering membrane to a certain extent, transmembrane pressure difference of the filtering membrane is reduced, and thus the service life of the membrane module can be prolonged.
Furthermore, a shifting sheet is fixed on the outer frame.
Has the advantages that: the outrigger rotates with filtration membrane relatively, and simultaneously, plectrum and filtration membrane also rotate relatively, rotate the in-process at filtration membrane, and filtration membrane can make the plectrum produce certain vibration, and the plectrum of vibration can hinder the pollutant towards filtration membrane motion, and then reduces the adnexed pollutant on the filtration membrane, reduces filtration membrane's transmembrane pressure difference, so can prolong the life of membrane module.
Further, the pick is made of an elastic material.
Has the advantages that: the elastic material can generate certain deformation, and the shifting piece generates vibration through the deformation.
Furthermore, a plurality of bulges are integrally formed on the shifting sheet.
Has the advantages that: the contact area of the plectrum and the filtering membrane can be increased through the protrusions, when the plectrum vibrates, pollutants on the membrane module can be vibrated down to a certain extent through the protrusions, attachments on the filtering membrane are reduced, transmembrane pressure difference of the filtering membrane is reduced, and therefore the service life of the membrane module can be prolonged.
Drawings
FIG. 1 is a schematic view of a membrane bioreactor according to one embodiment of the present invention;
FIG. 2 is a front view of a body according to a second embodiment of the present invention;
FIG. 3 is a top view of the body according to the second embodiment of the present invention;
FIG. 4 is a schematic structural diagram of a membrane module according to a second embodiment of the present invention;
FIG. 5 is an enlarged view of portion A of FIG. 4;
FIG. 6 is a partial cross-sectional view of a membrane module according to a third embodiment of the present invention.
Detailed Description
The following is further detailed by way of specific embodiments:
reference numerals in the drawings of the specification include: the device comprises a body 1, a sewage port 11, an aeration tank 12, an air hole 13, a bracket 14, a filter membrane 15, a support plate 16, fan blades 17, a peristaltic pump 2, a main water pipe 3, an auxiliary water pipe 31, a membrane module 4, a lower seat 41, an upper seat 42, a driven gear 43, a main gear 44, a motor 45, an outer frame 46, a shifting sheet 47, an inner frame 48, a bulge 49, an air pump 5, a main air pipe 51, an auxiliary air pipe 52, a culture area 6 and a settling area 61.
The first embodiment is as follows:
a stable operation method of a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor uses a membrane bioreactor which is basically shown in figure 1, the membrane bioreactor comprises a body and a culture area 6 for culturing bacteria-algae symbiotic aerobic granular sludge, and a precipitation area 61 is arranged between the culture area 6 and the body. The light source for culturing the bacteria-algae symbiotic aerobic granular sludge is from sunlight. The body is internally provided with a membrane component, a main water pipe 3 is arranged in the membrane component, and the main water pipe 3 is communicated with a peristaltic pump 2. The bottom of the body and the culture area 6 is provided with an aeration box and further comprises an air pump 5, and the air pump 5 is communicated with a main air pipe communicated with the aeration box.
The method comprises the following steps:
s1: inoculating mature bacteria-algae symbiotic aerobic granular sludge into the culture zone 6 to complete the construction of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor;
s2: injecting sewage into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 3-20 min;
s3: gas is introduced into the aeration tank through the gas pump 5 to aerate the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, and a membrane component in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor is driven to rotate in the aeration process;
s4: 297-315 min later, stopping aeration, settling the sewage in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 5-15 min, and filtering the sewage treated by the bacteria-algae symbiotic aerobic granular sludge through a membrane module by a peristaltic pump for 10-55 min;
s5: S2-S4 were repeated.
Verification was performed as follows:
1. preparing an aerobic granular membrane bioreactor (ABGMBR) and an Aerobic Granular Sludge Membrane Bioreactor (AGSMBR) in the scheme;
2. a bacterin-algae symbiotic aerobic granular membrane bioreactor treats sewage according to the steps of S1-S5 in the embodiment, an aerobic granular sludge membrane reactor treats sewage under the optimal condition, and after the aerobic granular sludge membrane reactor runs for 100 days, the content of EPS (extracellular polymer) and SMP (soluble microbial product) on a membrane component are measured, wherein the EPS and SMP comprise Protein (PN) and Polysaccharide (PS).
3. In the control group, the bacteria-algae symbiotic aerobic particle membrane bioreactor treats sewage according to the embodiments S1-S5, and the membrane component does not rotate. The results are shown in Table 1:
TABLE 1
Unit: mg m-2
Polysaccharide (PN) Protein (PN)
SMP EPS SMP EPS
AGSMBR 1412.25 1326.38 3530.62 5360.21
ABGMBR 1042.97 1099.45 2550.79 3535.9
Control group 812.32 723.15 2025.89 3210.44
As shown in the table 1, the contents of EPS, PN and PS on the ABGMRB membrane module are lower than AGSMBR, and the EPS and SMP are the main reasons for irreversible membrane pollution of the membrane module, so the method can obviously reduce the influence on the membrane module, namely compared with the existing AGSMBR, the method can effectively reduce the pollution of the membrane module.
The contents of EPS, PN and PS on the ABGMRB membrane component are higher than those of a control group, and according to the method, the contents of EPS and SMP on the membrane component can be effectively reduced, namely, the pollution time of the membrane component is further reduced, and the service life of the membrane component is prolonged.
Example two:
the difference between the second embodiment and the first embodiment is that the membrane bioreactor shown in the attached drawings 2 and 3 comprises a rack and a body 1 arranged on the rack, and a sewage port 11 is arranged on the body 1.
A plurality of membrane modules 4 are arranged in the body 1, each membrane module 4 comprises a support 14 and a filtering membrane 15 arranged on the support 14, and a supporting plate 16 fixedly connected with the body 1 through bolts is rotatably connected to the upper portion of each filtering membrane 15 so as to stably support the filtering membranes. An auxiliary water pipe 31 is arranged in each filtering membrane 15, a peristaltic pump 2 is fixed on the rack, the peristaltic pump 2 is communicated with a main water pipe 3 fixed on the rack through bolts, and the main water pipe 3 is communicated with the auxiliary water pipe 31. An aeration tank 12 fixed on the body 1 by bolts is arranged below the membrane modules 4, and the top wall of the aeration tank 12 is provided with air holes 13. The aeration boxes 12 are communicated with an auxiliary air pipe 52, an air pump 5 is fixed on the machine frame through bolts, and the air pump 5 is communicated with a main air pipe 51 communicated with the auxiliary air pipe 52.
Referring to fig. 4 and 5, the bracket 14 includes an upper seat 42 and a lower seat 41, an outer frame 46 and an inner frame 48 are disposed between the upper seat 42 and the lower seat 41, the outer frame 46 is bolted to the lower seat 41, the upper seat 42 is rotatably connected to the outer frame 46, the inner frame 48 is bolted to the upper seat 42, and the filter membrane 15 is screwed to the inner frame 48. A plurality of shifting sheets 47 made of elastic materials are fixed on the outer frame 46 along the length direction of the outer frame by screws, and a plurality of bulges 49 are integrally formed on one side of the shifting sheets 47, which is close to the filtering membrane 15.
The upper seat 42 is fixedly connected with a driven gear 43 through a coaxial bolt, the body 1 is fixedly connected with a motor 45 through a bolt, an output shaft of the motor 45 is fixedly connected with a main gear 44 through a coaxial bolt, and the main gear 44 is meshed with the driven gear 43.
The method comprises the following steps:
s1: inoculating mature bacteria-algae symbiotic aerobic granular sludge into the membrane bioreactor to complete the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor.
S2: injecting sewage into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, and stopping injecting the sewage when the sewage amount reaches 1/3-3/4 of the volume of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor;
s3: and starting the air pump 5, inputting air into the main air pipe 51 and the auxiliary air pipe 52 by the air pump 5, and introducing the air into the water through the aeration tank 12 and the air holes 13 to aerate the sewage. In the process, the air holes 13 disperse the air to prevent the air from being excessively concentrated, so that the acting force of the air on water can be reduced, the shearing force formed by the water is reduced, and the influence of the shearing force of the water on the aerobic granular sludge symbiotic with the bacteria and algae is further reduced. Meanwhile, the motor 45 is started, the motor 45 drives the main gear 44 to rotate, the main gear 44 drives the auxiliary gear 43 to rotate, the auxiliary gear 43 drives the upper seat 42 to rotate on the outer frame 46, and the inner frame 48 and the filtering membrane 15 rotate along with the upper seat 42. In the rotating process of the filtering membrane 15, the filtering membrane 15 rotates relative to the outer frame 46 and the poking piece 47, the poking piece 47 is poked by the filtering membrane 15, so that the poking piece 47 vibrates, the vibrating poking piece 47 can block pollutants from being close to the filtering membrane 15, the pollutants (EPS and SMP) on the filtering membrane 15 are reduced, the transmembrane pressure difference of the filtering membrane 15 is reduced, and the service life of the filtering membrane 15 is prolonged. Simultaneously, because filtration membrane 15 rotates, filtration membrane 15 can produce certain centrifugal action force, and under the effect of centrifugal force, the pollutant of attached to on filtration membrane 15 can be thrown away, further reduces the pollutant on filtration membrane 15, so further reduces filtration membrane 15's transmembrane pressure difference, prolongs filtration membrane 15's life to make the aerobic granule mud membrane bioreactor of bacterial and algae intergrowth steady operation.
S4: and 297 min to 315min later, stopping aeration, settling the sewage in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 5min to 15min, and filtering the sewage treated by the bacteria-algae symbiotic aerobic granular sludge through the membrane component 4 by the peristaltic pump 2 for 10 min to 55 min.
S5: and repeating S2-S4, after the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor runs for 1-2 days, conveying 1/3-1/4 sewage in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor into a sedimentation tank, settling for 5-20 min, adding a flocculating agent into the sedimentation tank in the process of settling the sewage in the sedimentation tank, and injecting the sewage in the sedimentation tank into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, so that the content of pollutants in the sewage is further reduced. After the pollutants (such as particulate matters and suspended matters) in the sewage are reduced, the pollutants which can be attached to the membrane module 4 can be further reduced.
Example three:
the third embodiment is different from the first embodiment in that, as shown in fig. 6, the membrane module 4 includes a support 14 and a filter membrane 15, the filter membrane 15 is fixed to the support 14 by screws, the bottom of the support 14 extends into the aeration tank 12, and the support 14 is rotatably connected to the aeration tank 12. The bottom of the bracket 14 is fixed with a fan blade 17 positioned in the aeration tank 12 by a bolt, and the fan blade 17 is positioned at the communication part of the aeration tank 12 and the auxiliary air pipe 52. Of course, the aeration tank 12 in the culture section 6 is also rotatably connected with the fan 17.
When S3 is carried out, gas enters the aeration box 12, the gas can push the fan blades 17 to rotate, the fan blades 17 can drive the support 14 to rotate, the support 14 can drive the filtering membrane 15 to rotate, when the filtering membrane 15 rotates, pollutants attached to the filtering membrane 15 can be thrown away under the action of centrifugal force, so that the pollutants attached to the filtering membrane 15 are reduced, the transmembrane pressure difference of the membrane module 4 can be reduced, and the service life of the membrane module 4 is prolonged.
Gaseous entering aeration tank 12 in, also can drive flabellum 17 and rotate, flabellum 17 forms the resistance to gas, because gaseous discharge from aeration tank 12's gas pocket 13 behind flabellum 17 again, aeration tank 12 has hindered gaseous flow, gaseous back in entering into sewage, make the effort of water motion reduce, and then the shearing force of water reduces, influence (reduction because of the disintegration of water shearing force leads to the symbiotic aerobic granule mud of fungus algae) of shearing force to the symbiotic aerobic granule mud of fungus algae, so can improve the throughput of fungus algae symbiotic aerobic granule mud membrane bioreactor to sewage, and the life of extension membrane module 4, make fungus algae aerobic granule mud membrane bioreactor can long-time steady operation.
The above is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, it is possible to make several variations and modifications without departing from the concept of the present invention, and these should be considered as the protection scope of the present invention, which will not affect the effect of the implementation of the present invention and the utility of the patent. The techniques, shapes, and structural parts, which are omitted from the description of the present invention, are all known techniques.

Claims (10)

1. A method for stably operating a bacteria-algae symbiotic aerobic granular sludge membrane bioreactor is characterized by comprising the following steps: use of a membrane bioreactor comprising the steps of:
s1: inoculating mature bacteria-algae symbiotic aerobic granular sludge into the membrane bioreactor to complete the construction of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor;
s2: injecting sewage into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 3-20 min;
s3: aerating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor, and driving a membrane component in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor to rotate in the aeration process;
s4: 297-315 min later, stopping aeration, settling the sewage in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor for 5-15 min, and filtering the sewage treated by the bacteria-algae symbiotic aerobic granular sludge through a membrane component for 10-55 min;
s5: S2-S4 were repeated.
2. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 1, which is characterized in that: and after the operation of the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor is carried out for 1-2 days, conveying 1/3-1/4 sewage in the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor into a sedimentation tank for sedimentation for 5-20 min, and injecting the sewage in the sedimentation tank into the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor.
3. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 2, which is characterized in that: and adding a flocculating agent into the sedimentation tank in the sedimentation process of the sewage in the sedimentation tank.
4. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 1, which is characterized in that: the membrane bioreactor comprises a body and a plurality of membrane modules arranged in the body, wherein each membrane module comprises a support connected with the body in a rotating mode and a filtering membrane fixed on the support, a driving mechanism used for driving the support to rotate is arranged on the body, aeration boxes are arranged below the membrane modules, a plurality of air holes are formed in the top walls of the aeration boxes, the bottoms of the aeration boxes are communicated with air pipes, and the air pipes are communicated with air pumps.
5. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 4, which is characterized in that: the driving mechanism comprises a driven gear coaxially and fixedly connected with the bracket and a main gear driven by a motor, and the main gear is meshed with the driven gear.
6. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 4, which is characterized in that: the driving mechanism comprises fan blades positioned in the aeration box, the fan blades are fixedly connected with the support in a coaxial mode, and the fan blades are positioned above the communicated position of the air pipe and the aeration box.
7. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 5, which is characterized in that: the support includes seat and lower, from gear and the coaxial fixed connection of seat, is provided with outrigger and inner frame between seat and the lower, seat and outrigger sliding connection, outrigger and lower fixed connection, and the seat is fixed with the inner frame on, and filtration membrane is fixed on the inner frame.
8. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 1, which is characterized in that: the outer frame is fixed with a shifting sheet.
9. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 8, which is characterized in that: the shifting piece is made of elastic material.
10. The method for stably operating the bacteria-algae symbiotic aerobic granular sludge membrane bioreactor according to claim 9, which is characterized in that: the shifting piece is integrally formed with a plurality of bulges.
CN202011059538.1A 2020-09-30 2020-09-30 Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor Pending CN112174436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011059538.1A CN112174436A (en) 2020-09-30 2020-09-30 Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011059538.1A CN112174436A (en) 2020-09-30 2020-09-30 Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor

Publications (1)

Publication Number Publication Date
CN112174436A true CN112174436A (en) 2021-01-05

Family

ID=73947182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011059538.1A Pending CN112174436A (en) 2020-09-30 2020-09-30 Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor

Country Status (1)

Country Link
CN (1) CN112174436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2974999A1 (en) * 2022-11-15 2024-07-02 Univ Granada Aerobic granular bioreactor (Machine-translation by Google Translate, not legally binding)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170671A (en) * 1999-12-15 2001-06-26 Research Institute Of Innovative Technology For The Earth Biological treatment method and device for waste water
CN102674538A (en) * 2012-04-25 2012-09-19 王艳辉 Device and method for quickly granulating aerobic activated sludge in membrane bioreactor
CN103496784A (en) * 2013-10-21 2014-01-08 东华大学 Self-forming dynamic membrane bioreactor using aerobic granule sludge
US20140144839A1 (en) * 2012-11-28 2014-05-29 Korea Institute Of Science And Technology Apparatus and method for cultivating microalgae using effluent from sludge treatment
CN105692885A (en) * 2016-04-22 2016-06-22 陈建发 High pollution resistance membrane bioreactor and sewage treatment method
CN107129040A (en) * 2016-02-29 2017-09-05 鞍钢股份有限公司 Method and device for prolonging service life of membrane of sequencing batch membrane bioreactor
TWM573343U (en) * 2018-06-08 2019-01-21 逢甲實業有限公司 Underwater aeration device
CN209554899U (en) * 2018-12-20 2019-10-29 江苏港峰环境科技有限公司 A kind of black and odorous water aeration treatment apparatus
CN110697884A (en) * 2019-09-18 2020-01-17 山东大学 Method for culturing bacteria-algae symbiotic granular sludge at low temperature
CN111704317A (en) * 2020-06-28 2020-09-25 重庆工商大学 Method for slowing down membrane pollution of aerobic granular sludge membrane bioreactor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170671A (en) * 1999-12-15 2001-06-26 Research Institute Of Innovative Technology For The Earth Biological treatment method and device for waste water
CN102674538A (en) * 2012-04-25 2012-09-19 王艳辉 Device and method for quickly granulating aerobic activated sludge in membrane bioreactor
US20140144839A1 (en) * 2012-11-28 2014-05-29 Korea Institute Of Science And Technology Apparatus and method for cultivating microalgae using effluent from sludge treatment
CN103496784A (en) * 2013-10-21 2014-01-08 东华大学 Self-forming dynamic membrane bioreactor using aerobic granule sludge
CN107129040A (en) * 2016-02-29 2017-09-05 鞍钢股份有限公司 Method and device for prolonging service life of membrane of sequencing batch membrane bioreactor
CN105692885A (en) * 2016-04-22 2016-06-22 陈建发 High pollution resistance membrane bioreactor and sewage treatment method
TWM573343U (en) * 2018-06-08 2019-01-21 逢甲實業有限公司 Underwater aeration device
CN209554899U (en) * 2018-12-20 2019-10-29 江苏港峰环境科技有限公司 A kind of black and odorous water aeration treatment apparatus
CN110697884A (en) * 2019-09-18 2020-01-17 山东大学 Method for culturing bacteria-algae symbiotic granular sludge at low temperature
CN111704317A (en) * 2020-06-28 2020-09-25 重庆工商大学 Method for slowing down membrane pollution of aerobic granular sludge membrane bioreactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄冬梅等: "好氧颗粒污泥膜生物反应器的研究进展", 《膜科学与技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2974999A1 (en) * 2022-11-15 2024-07-02 Univ Granada Aerobic granular bioreactor (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
CN201343478Y (en) UASB-MBR integrated system for treating dyeing wastewater
CN1931749A (en) Paper-making effluent purifying treatment process
CN102553450B (en) Method for preventing split membrane bio-reactor (MBR) flat membrane pollution
CN102745804B (en) Membrane biological treatment method for enhanced nitrogen removal
CN101898850B (en) Continuous-flow aerobic granular sludge membrane bioreactor used for treating berberine pharmaceutical wastewater
CN103359885A (en) Double-membrane wastewater biological treatment system
CN205442786U (en) Anaerobism - little oxygen membrane bioreactor
CN1208262C (en) High concentration oxganic effluent treatment composite process and its equipment
CN112174436A (en) Method for stably operating bacteria-algae symbiotic aerobic granular sludge membrane bioreactor
CN103641268B (en) Two-stage biological reactor for treatment percolate instrument and supplies
CN101549930B (en) System and method for processing high-concentration printing and dyeing wastewater
CN104445841A (en) Treatment device and treatment process for surfactant waste water
CN201087154Y (en) Redoubled combined anaerobic hydrolysis reactor used for waste water disposal
CN203269735U (en) Equipment for treating rubbish leachate by utilizing two-stage bioreactors
CN210340470U (en) Novel biological aerated filter
CN212799980U (en) Efficient and rapid purification device for dredging tail water
CN212050714U (en) Improved biological contact oxidation device for sewage treatment
CN210438571U (en) Distributed sewage treatment system
CN204999766U (en) MBR integration equipment
CN2578324Y (en) Anaerobic membrane biological reactor
CN210481140U (en) Integrated sewage treatment system for sewage station
CN201809253U (en) Internal-external membrane filtration and separation sewage treatment device
CN216550036U (en) Microbial purification sewage treatment pond
CN214880940U (en) Wastewater treatment system for sterilizing and disinfecting by using aerobic tank
CN221626075U (en) Acceleration harmless three-grid glass fiber reinforced plastic septic tank

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210105

RJ01 Rejection of invention patent application after publication