CN112159822A - PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof - Google Patents

PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof Download PDF

Info

Publication number
CN112159822A
CN112159822A CN202011061777.0A CN202011061777A CN112159822A CN 112159822 A CN112159822 A CN 112159822A CN 202011061777 A CN202011061777 A CN 202011061777A CN 112159822 A CN112159822 A CN 112159822A
Authority
CN
China
Prior art keywords
sequence
transposase
dcpf1
vector
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011061777.0A
Other languages
Chinese (zh)
Inventor
宋成义
王亚丽
高波
王宵燕
陈才
关中夏
石莎莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Cell Therapy Group Co Ltd
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202011061777.0A priority Critical patent/CN112159822A/en
Publication of CN112159822A publication Critical patent/CN112159822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the technical field of gene editing, and particularly relates to a fusion protein expression vector of PS transposase and CRISPR/dCpf1 and a mediated site-specific integration method thereof.

Description

PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof
Technical Field
The invention belongs to the technical field of gene editing, and particularly relates to a fusion protein expression vector of PS transposase and CRISPR/dCpf1 and a mediated site-specific integration method thereof.
Background
The background art refers to the documents that are most closely related (e.g., usage, function, structure, etc.) to the present invention. In describing the background art, the contents (such as objects, constitutions, effects) thereof are specifically introduced, problems and disadvantages thereof are pointed out, and the reasons therefor are explained where possible.
The CRISPR/Cas9 system has attracted wide attention as a gene editing tool, and is mainly based on the modification of an acquired immune system, namely a tandem regulatory spacer repeat (CRISPR), of bacteria, and a report of the Cong et al scholars on the international top-grade journal SCIENCE in 2013. The CRISPR/Cas9 system consists of three components, a Cas9 protein, tracrRNA and crRNA. The Cas9 protein has endonuclease activity and can be combined with tracrRNA and a crRNA compound, the protein contains two unique active sites, namely RuvC positioned at the amino terminal and HNH in the middle of the protein, and the two sites play important roles in the maturation of the crRNA and the shearing process of double-stranded DNA.
To date, the CRISPR/Cas9 technology has been successfully applied to the editing of endogenous genes of bacteria, yeast, arabidopsis thaliana, corn, rice and wheat, nematodes, drosophila, zebrafish, mouse, rat, pig, cow, sheep, human and various species cell lines (including iPS cells), including the knockout of large gene fragments, the knock-in of genes, the precise modification of genes, and the CRISPR/Cas9 gene editing transgenic animals of large livestock such as pig, cow, sheep, and the like have been successfully obtained.
The Cpf1 protein is a new member discovered in CRISPR system research, compared with the CRISPR/Cas9 system, the CRISPR/Cpf1 has similar functions to the CRISPR/Cas 3526 system, but is possibly simpler and more accurate, can overcome some limitations in the application of the original CRISPR/Cas9 system, and has better application prospect in genome editing. The CRISPR/Cpf1 system differs from the CRISPR/Cas9 system mainly by (1) the native CRISPR/Cpf1 system is simpler in composition, contains only one 42nt crRNA, and in addition the Cpf1 protein is smaller than the Cas9 protein, making it easier to design and deliver into cells; (2) the CRISPR/Cpf1 system cleaves target DNA in a different manner. The blunt end | left after the CRISPR/Cas9 system cleaves the target DNA double strand is susceptible to mutation at repair, so strictly speaking, the CRISPR/Cas9 system performs disruption rather than editing on the target gene, and the CRISPR/Cpf1 system leaves the cohesive end | after cleaving the target DNA, which may contribute to precise integration of the foreign DNA fragment, thereby achieving true genome editing; (3) similar to the CRISPR/Cas9 system, recognition of the target DNA by the CRISPR/Cpf1 system is also dependent on the presence of the PAM sequence, although the Cas9 system recognizes the NGG PAM sequence at the 3 'end of the pre-spacer, while the Cpf1 system recognizes the TTN PAM sequence at the 5' end of the pre-spacer; (4) the CRISPR/Cpf1 system cleaves at a distance from the recognition site, providing researchers with more editing sites. Meanwhile, the off-target rate of the CRISPR/Cpf1 system is proved to be far lower than that of the CRISPR/Cas9 system by research. Gene-editing transgenic animals and plants (rice, mice, zebrafish) have also been obtained using CRISPR/Cpf1 technology.
The CRISPR technology has higher efficiency of site-directed mutagenesis on small gene fragments and has obvious advantages compared with other technologies, but the CRISPR technology needs to rely on an endogenous homologous recombination system for site-directed integration on large gene fragments, the efficiency is lower, in addition, the off-target effect is another main defect of the CRISPR technology, and off-target sites are easy to appear in a huge genome of an organism, so that unexpected mutagenesis is introduced.
The Transposon (Transposon) is a DNA sequence that can move or jump freely in the host genome, and the process of Transposon movement or jumping is called Transposition (Transposition). The transposon was first discovered in the 40 th 20 th century by the American scientist Barbara McClintock at the time of genetic studies in maize and was named the-Ac/Ds II element. Then, the bacteria, fungi and insects are found in various organisms. Transposons can be divided into two main groups according to different transposition mechanisms: class I transposons transpose via RNA, called RNA transposons; class II transposons transpose through DNA and are called DNA transposons. DNA transposons can in turn be divided into three major subclasses: shear-and-paste "mechanism DNA transposons, rolling circle replication mechanism DNA transposons (Helitrons), and self replication mechanism DNA transposons (Polintons shear-and-paste type transposon family are widely distributed and are classified into Tc1/Mariner, hAT, PiggyBac (PB) and other superfamilies according to transposase similarity and structural features of inverted terminal repeats.
The high-efficiency transposition characteristic of the transposon enables the transposon to show great application potential in the fields of transgenosis, gene therapy, gene function research and the like. One of the important applications of transposon technology is the efficient mediation of transgenesis in somatic and germ cells. Transposon mediated transgenic technology is widely applied to gene transfer of various cells. In addition, the transposon mediated transgenic technology greatly improves the preparation efficiency of transgenic animals based on microinjection technology, and the transgenic efficiency of model animals (mice, zebrafish, frogs and the like) mediated by transposons is usually over 30 percent, thereby greatly promoting the research progress of the model animals. At present, the application of transposon mediated transgene technology in large mammals (such as cattle, pigs, sheep, etc.) and birds is also becoming more and more extensive. In recent years, a plurality of standard preparation technical processes of transposon-mediated transgenic animals such as transgenic pigs, rabbits, rats and the like are continuously reported in the international authority technical journal Nature Protocol, which indicates that the technology is mature day by day and is an important platform for future transgenic research.
The transposon mediated transgene technology has the advantages of high integration rate, large bearing capacity, capability of simultaneously carrying a plurality of genes, single-copy integration of transgenes, stable expression of the transgenes, easy determination of integration sites and the like. The main deficiency of transposon mediated transgenic technology is that the integration site of transposition is random and may insert into the functional gene of host to affect the gene expression.
By integrating with different gene editing systems, the site-specific function of other artificial nucleases (such as CRISPR, ZNF, TALEN and the like) is utilized, and the high-efficiency transposition integration characteristic of a transposon system is fully utilized to perform the fusion of transposase and other nuclease molecules, so that the construction of a novel, high-efficiency and safe composite gene editing technology is an important research direction in the future.
Disclosure of Invention
The invention fuses Cpf1 protein in a CRISPR/Cpf1 system and PS transposase together to construct a high-efficiency gRNA-mediated fixed-point transposition of the PS transposase system. The invention aims to provide a method for high-efficiency site-directed transposition mediated by a fusion system of PS transposase and CRISPR/Cpf1, which can overcome the problems of low HDR efficiency in a CRISPR system and random integration of a transposon system and provides a high-efficiency site-directed gene transfer method.
The purpose of the invention is realized by the following technical scheme:
the invention provides a plasmid fusion transposase vector, and the nucleic acid sequence of the vector is shown as SEQ ID NO. 1.
The invention also provides an expression vector of the fusion protein of the PS transposase and the CRISPR/dCpf1, wherein the fusion expression vector contains a double-stranded circular plasmid of dCpf1-PS fusion transposase, and the plasmid sequence of the pCAG-dCpf1-PS comprises a CAG promoter, a Kozak sequence, 2 SV40 NLS sequences, a dCpf1 sequence, a linker sequence and a PS transposase sequence.
The sequence of the CAG promoter is the base of 5 th to 1654 th sites from the 5' end in SEQ ID NO. 1;
the Kozak sequence is 1773 to 1782 th bases from the 5' end in SEQ ID NO 1;
the 2 SV40 NSL sequences are respectively upstream and downstream of a dCpf1 sequence;
the SV40 NSL sequence is 2400-2420 th base and 6114-6134 th base from the 5' end in SEQ ID NO 1;
the sequence of dCpf1 is base 2427-6107 from 5' end in SEQ ID NO 1;
the linker sequence comprises 15 amino acid residues;
the linker sequence is the 6135-6179 th base from the 5' end in SEQ ID NO 1;
the PS transposase sequence is 6180-7451 th base from 5' end in SEQ ID NO 1;
the nucleic acid sequence of the fusion transposase expression vector pCAG-dCpf1-PS is shown in SEQ ID NO. 1.
The invention also provides application of the plasmid fusion transposase vector or the PS transposase and CRISPR/dCpf1 fusion protein expression vector in transposon mediated site-directed integration.
The invention also provides a method for the pCAG-dCpf1-PS to mediate site-directed integration in the genome of an organism; the method comprises the following steps:
(1) designing a gRNA sequence of a target gene;
(2) constructing cpf1 gRNA expression vector;
(3) co-transfecting an expression vector with a target gene gRNA, the pCAG-dCpf1-PS plasmid and a transposon donor plasmid to a host cell, and performing site-specific transposition on a transposon donor sequence to integrate the transposon donor sequence into the target gene;
(4) screening to obtain positive monoclonal cells inserted with a reporter gene by using a resistance screening gene, but not limited to the resistance screening gene;
(5) and (3) counting the number of positive cell clones by giemsa staining, selecting positive monoclonal cells, and carrying out fluorescent quantitative detection on the expression condition of the target gene.
Further, primer sequences used for designing a gRNA sequence targeting a target gene are as follows:
HPRT1-gRNA-F:GTAGATTGTCCCCTGTTGACTGGTCATTC;
HPRT1-gRNA-R:AATTGAATGACCAGTCAACAGGGGACA。
furthermore, a pSQT14 vector is used as a gRNA expression vector as a framework, and the pSQT14 vector contains the following sequences: AATTTCTACTAAGTGTAGAT are provided.
Further, the sequence of the pSQT14 vector is shown as SEQ ID NO. 2.
Furthermore, the sequence of the expression vector with the target gene gRNA is shown in SEQ ID NO. 3.
Compared with the prior art, the technology has the following advantages and effects:
the invention can mediate the fixed point integration of the transposon to the target gene, and the method has simple, high-efficiency and quick process and greatly reduces the low-efficiency defect of gene editing.
The invention prepares a fusion expression system of transposase and cutting defect Cas enzyme (dCpf1) by DNA recombination technology, the fusion protein expressed by the system is specifically combined with a target site under the guide of crRNA with the complex formed by transposon mediated gene fragment and crRNA, and the target site is integrated at fixed point, thereby realizing the high-efficiency fixed-point integration of gene large fragment, and simultaneously, the technology avoids the generation of off-target effect because the gene cutting function of CRISPR system is removed.
The invention fully utilizes the high-efficiency guide function of the CRISPR/Cas system and the high-efficiency integration function of the transposon system, obviously improves the specificity of gene editing and obviously reduces the off-target efficiency of the gene editing. The invention can be used as a tool for high-efficiency gene editing, can be used for preparing transgenic animal and plant products by various species, and provides a novel high-efficiency technology for the development of transgenic industry. The system can play a great application potential in the fields of transgenosis, gene therapy, gene function research and the like.
Drawings
FIG. 1: frame pSQT1601 was cut back into the electropherogram;
FIG. 2: pLB-dCpf1 plasmid restriction electrophoresis picture;
FIG. 3: pLB-PSase plasmid restriction electrophoretogram;
FIG. 4: pCAG-dCpf1-PS plasmid electrophoretogram;
FIG. 5: electrophoresis picture of pCAG-dCpf1-PS plasmid digestion product;
FIG. 6: pCAG-dCpf1-PS plasmid map;
FIG. 7: plasmid pSQT14 electrophoretogram;
FIG. 8: plasmid map of pSQT 14;
FIG. 9: the pSQT14 frame was excised back into the electropherogram;
FIG. 10: pSQT14-HPRT1-gRNA plasmid electrophoretogram;
FIG. 11: pSQT14-HPRT1-gRNA plasmid map;
FIG. 12: the activity of pCAG-dCpf1-PS on HepG2 cells is identified;
FIG. 13: pCAG-dCpf1-PS positive monoclonal cell fluorescence quantitative identification map.
Detailed Description
The present invention will be described in more detail with reference to the following examples and accompanying drawings, but the present invention is not limited thereto.
The structure diagram of the pCAG-dCpf1-PS plasmid vector described in the examples of the present invention is shown in FIG. 3.
Example one
pCAG-dCpf1-PS fusion transposase complete system vector construction.
Construction of pCAG-dCpf1-PS plasmid fusion transposase vector
(1) Linker sequence (ggatccggtggatccggtggatccggtggatccggaacctcc) was ligated to PS 5' by PCR, and dCpf1 and PSase fragments were cloned into PLB vector to construct pLB-dCpf1 and pLB-PSase vectors.
(2) ACC65I, NotI restriction endonuclease, pSQT1601 vector 2h, were double-cut at 37 ℃, and pSQT 4781bp fragment (see FIG. 1) was recovered by cutting; ACC65I, BsmBI 37 ℃ 1h, 55 ℃ 1h cutting double enzyme PLB-dCpf1, gel cutting recovery dCpf 13732 bp fragment (figure 2), BsmBI, NotI 37 ℃ 1h, 55 ℃ 1h cutting double enzyme pLB-PSase, gel cutting recovery PSase 1397bp fragment (figure 3).
(3) T7 ligase pSQT, dCpf1 and PSase, wherein the ligation system is shown in the table 1, the ligation is carried out for 1h at 25 ℃, 10 mu l of ligation product is used for transforming competent cells Top10, a single colony is picked to be cultured in a liquid medium LA, the upgraded grains are subjected to electrophoretic identification, the electrophoretogram of the plasmid is shown in a figure 4, the correct clone is named as pCAG-dCpf1-PS, and the enzyme digestion identification is carried out as shown in a figure 5. The plasmid map is shown in FIG. 6.
TABLE 1 connection System
Components Dosage of
pSQT 65ng
dCpf1 152ng
PSase 57ng
2X T7 ligase Buffer 10μl
T7 enzyme 1μl
ddH2O Make up to 20. mu.l
Total volume 20μl
Construction of pSQT14-HPRT1-gRNA expression vector
(1) The online website (https:// www.crisprscan.org /) designed gRNA sequences targeting the HPRT1 gene and primers, synthesized by the company, whose sequences are as follows:
HPRT1-gRNA-F:GTAGATTGTCCCCTGTTGACTGGTCATTC;
HPRT1-gRNA-R:AATTGAATGACCAGTCAACAGGGGACA;
the primers were diluted to 100. mu.M, the upstream and downstream primers were annealed to form a double-stranded oligo and phosphorylated using T4 PNK, and the reaction system is shown in Table 2.
TABLE 2gRNA primer annealing and phosphorylation system
Components Dosage of
HPRT1-gRNA-F 2μl
HPRT1-gRNA-R 2μl
T4 PNK enzyme 1μl
2X T7 ligase buffer (containing ATP) 5μl
Total volume 10μl
The reaction program was 37 ℃ for 30min, 95 ℃ for 5min, ramp down to 25 ℃. After the reaction was completed, the annealed product was diluted 200-fold.
(2) The pSQT14 vector is used as a gRNA expression vector as a framework, and contains a Cpf1 scaffold sequence (AATTTCTACTAAGTGTAGAT), and the electrophoretogram of the plasmid is shown in figure 7, and the plasmid map is shown in figure 8. The pSQT14 plasmid was digested with BsmBI restriction enzyme, the frame recovered by cutting the gel, and the electrophoretogram is shown in FIG. 9.
(3) Connecting the HPRT1-gRNA annealing product with a pSQT14 glue recovery framework, reacting for 30min at 25 ℃ by using T7 ligase, transforming into TOP10 cells, picking a single clone, and sequencing and identifying by a company. The correct vector was designated pSQT14-HPRT1-gRNA, and its plasmid electrophoretogram was shown in FIG. 10, and plasmid map of pSQT14-HPRT1-gRNA was shown in FIG. 11.
Example two
In this example, HPRT1 was used as the target gene, and the human hepatoma cell line HepG2 was used as a model to successfully mediate transposon site-directed integration into the target gene and interfere with gene expression.
1. HepG2 cells with good growth status were selected and inoculated into 6-well plates containing 3X105 cells per well, and after 24 hours, cell density was observed, and at 70-80% cell density, cell transfection was performed by co-transfecting pCAG-dCpf1-PS and pSQT14-HPRT1-gRNA and transposon donor plasmid PS-DPA-PGK-Neo with FugeneHD.
2. After 24h of transfection, pancreatin is used for digestion and cell collection, the cells are inoculated into a cell culture dish with the concentration of 10-10 cm, after the cells are attached to the wall stably, after 24h of transfer, a culture medium with the final concentration of 800 mu G/ml G418 is used for screening positive cell clones, and the positive cell clones can be obtained after 14 days of screening.
3. Giemsa staining identifies the number of positive cell clones, and monoclonal cells are selected for fluorescent quantitative identification, the results are shown in figures 12 and 13, the fluorescent quantitative results show that dCpf1-PS mediated site-specific integration efficiency is as high as 86.36% (19/22), and target gene expression of 19 positive clones in 22 positive cell clones is efficiently inhibited. .
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, and simplifications are intended to be included in the scope of the present invention.
Sequence listing
<110> Yangzhou university
<120> expression vector of fusion protein of PS transposase and CRISPR/dCpf1 and mediated site-directed integration method thereof
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 10591
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ggtcgacatt gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat 60
agcccatata tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg 120
cccaacgacc cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata 180
gggactttcc attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta 240
catcaagtgt atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc 300
gcctggcatt atgcccagta catgacctta tgggactttc ctacttggca gtacatctac 360
gtattagtca tcgctattac catggtcgag gtgagcccca cgttctgctt cactctcccc 420
atctcccccc cctccccacc cccaattttg tatttattta ttttttaatt attttgtgca 480
gcgatggggg cggggggggg gggggggcga ggggcggggc ggggcgaggc ggagaggtgc 540
ggcggcagcc aatcagagcg gcgcgctccg aaagtttcct tttatggcga ggcggcggcg 600
gcggcggccc tataaaaagc gaagcgcgcg gcgggcggga gtcgctgcgc gctgccttcg 660
ccccgtgccc cgctccgccg ccgcctcgcg ccgcccgccc cggctctgac tgaccgcgtt 720
actcccacag gtgagcgggc gggacggccc ttctcctccg ggctgtaatt agcgcttggt 780
ttaatgacgg cttgtttctt ttctgtggct gcgtgaaagc cttgaggggc tccgggaggg 840
ccctttgtgc ggggggagcg gctcgggggg tgcgtgcgtg tgtgtgtgcg tggggagcgc 900
cgcgtgcggc tccgcgctgc ccggcggctg tgagcgctgc gggcgcggcg cggggctttg 960
tgcgctccgc agtgtgcgcg aggggagcgc ggccgggggc ggtgccccgc ggtgcggggg 1020
gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtgggggggt gagcaggggg 1080
tgtgggcgcg tcggtcgggc tgcaaccccc cctgcacccc cctccccgag ttgctgagca 1140
cggcccggct tcgggtgcgg ggctccgtac ggggcgtggc gcggggctcg ccgtgccggg 1200
cggggggtgg cggcaggtgg gggtgccggg cggggcgggg ccgcctcggg ccggggaggg 1260
ctcgggggag gggcgcggcg gcccccggag cgccggcggc tgtcgaggcg cggcgagccg 1320
cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat 1380
ctgtgcggag ccgaaatctg ggaggcgccg ccgcaccccc tctagcgggc gcggggcgaa 1440
gcggtgcggc gccggcagga aggaaatggg cggggagggc cttcgtgcgt cgccgcgccg 1500
ccgtcccctt ctccctctcc agcctcgggg ctgtccgcgg ggggacggct gccttcgggg 1560
gggacggggc agggcggggt tcggcttctg gcgtgtgacc ggcggctcta gagcctctgc 1620
taaccatgtt catgccttct tctttttcct acagctcctg ggcaacgtgc tggttattgt 1680
gctgtctcat cattttggca aagaattctg cagtcgacgg tacctaatac gactcactat 1740
agggcttaag gcgggcccgg gatccaccgg tcgccaccat gggtgatcat tatctggata 1800
ttcggctgag gcctgatcca gagttcccac ctgcgcagct gatgtctgtc ctttttggca 1860
aacttcatca ggccctggtt gcccagggcg gagatcggat aggggtaagc tttccagacc 1920
tcgacgaaag ccggagccgc ctgggagaac gcctgcggat ccacgcttct gccgacgatc 1980
tgagagcctt gctggcaagg ccatggcttg aggggctccg ggatcacctg cagtttggcg 2040
aacccgccgt tgttccccac ccaacccctt atcggcaggt gtctagagtg caggccaaat 2100
ctaatccaga acggctgcga cggcgactca tgcggcgaca tgatcttagc gaggaagagg 2160
cccgaaaaag aatccctgat accgtggccc gcgcccttga cttgcctttt gtcacactgc 2220
ggtcccagag tacggggcag catttcagac ttttcattcg acacgggcca ctgcaagtta 2280
ccgccgaaga aggaggcttt acttgttatg gactctccaa gggaggtttc gtgccctggt 2340
ttgagggcag aggaagtctg ttaacatgcg gtgacgtcga ggagaatcct ggcccaatgc 2400
ctaagaagaa gcggaaggtg agcagcagca agctggagaa gtttacaaac tgctactccc 2460
tgtctaagac cctgaggttc aaggccatcc ctgtgggcaa gacccaggag aacatcgaca 2520
ataagcggct gctggtggag gacgagaaga gagccgagga ttataagggc gtgaagaagc 2580
tgctggatcg ctactatctg tcttttatca acgacgtgct gcacagcatc aagctgaaga 2640
atctgaacaa ttacatcagc ctgttccgga agaaaaccag aaccgagaag gagaataagg 2700
agctggagaa cctggagatc aatctgcgga aggagatcgc caaggccttc aagggcaacg 2760
agggctacaa gtccctgttt aagaaggata tcatcgagac aatcctgcca gagttcctgg 2820
acgataagga cgagatcgcc ctggtgaaca gcttcaatgg ctttaccaca gccttcaccg 2880
gcttctttga taacagagag aatatgtttt ccgaggaggc caagagcaca tccatcgcct 2940
tcaggtgtat caacgagaat ctgacccgct acatctctaa tatggacatc ttcgagaagg 3000
tggacgccat ctttgataag cacgaggtgc aggagatcaa ggagaagatc ctgaacagcg 3060
actatgatgt ggaggatttc tttgagggcg agttctttaa ctttgtgctg acacaggagg 3120
gcatcgacgt gtataacgcc atcatcggcg gcttcgtgac cgagagcggc gagaagatca 3180
agggcctgaa cgagtacatc aacctgtata atcagaaaac caagcagaag ctgcctaagt 3240
ttaagccact gtataagcag gtgctgagcg atcgggagtc tctgagcttc tacggcgagg 3300
gctatacatc cgatgaggag gtgctggagg tgtttagaaa caccctgaac aagaacagcg 3360
agatcttcag ctccatcaag aagctggaga agctgttcaa gaattttgac gagtactcta 3420
gcgccggcat ctttgtgaag aacggccccg ccatcagcac aatctccaag gatatcttcg 3480
gcgagtggaa cgtgatccgg gacaagtgga atgccgagta tgacgatatc cacctgaaga 3540
agaaggccgt ggtgaccgag aagtacgagg acgatcggag aaagtccttc aagaagatcg 3600
gctccttttc tctggagcag ctgcaggagt acgccgacgc cgatctgtct gtggtggaga 3660
agctgaagga gatcatcatc cagaaggtgg atgagatcta caaggtgtat ggctcctctg 3720
agaagctgtt cgacgccgat tttgtgctgg agaagagcct gaagaagaac gacgccgtgg 3780
tggccatcat gaaggacctg ctggattctg tgaagagctt cgagaattac atcaaggcct 3840
tctttggcga gggcaaggag acaaacaggg acgagtcctt ctatggcgat tttgtgctgg 3900
cctacgacat cctgctgaag gtggaccaca tctacgatgc catccgcaat tatgtgaccc 3960
agaagcccta ctctaaggat aagttcaagc tgtattttca gaaccctcag ttcatgggcg 4020
gctgggacaa ggataaggag acagactatc gggccaccat cctgagatac ggctccaagt 4080
actatctggc catcatggat aagaagtacg ccaagtgcct gcagaagatc gacaaggacg 4140
atgtgaacgg caattacgag aagatcaact ataagctgct gcccggccct aataagatgc 4200
tgccaaaggt gttcttttct aagaagtgga tggcctacta taaccccagc gaggacatcc 4260
agaagatcta caagaatggc acattcaaga agggcgatat gtttaacctg aatgactgtc 4320
acaagctgat cgacttcttt aaggatagca tctcccggta tccaaagtgg tccaatgcct 4380
acgatttcaa cttttctgag acagagaagt ataaggacat cgccggcttt tacagagagg 4440
tggaggagca gggctataag gtgagcttcg agtctgccag caagaaggag gtggataagc 4500
tggtggagga gggcaagctg tatatgttcc agatctataa caaggacttt tccgataagt 4560
ctcacggcac acccaatctg cacaccatgt acttcaagct gctgtttgac gagaacaatc 4620
acggacagat caggctgagc ggaggagcag agctgttcat gaggcgcgcc tccctgaaga 4680
aggaggagct ggtggtgcac ccagccaact cccctatcgc caacaagaat ccagataatc 4740
ccaagaaaac cacaaccctg tcctacgacg tgtataagga taagaggttt tctgaggacc 4800
agtacgagct gcacatccca atcgccatca ataagtgccc caagaacatc ttcaagatca 4860
atacagaggt gcgcgtgctg ctgaagcacg acgataaccc ctatgtgatc ggcatcgcga 4920
ggggcgagcg caatctgctg tatatcgtgg tggtggacgg caagggcaac atcgtggagc 4980
agtattccct gaacgagatc atcaacaact tcaacggcat caggatcaag acagattacc 5040
actctctgct ggacaagaag gagaaggaga ggttcgaggc ccgccagaac tggacctcca 5100
tcgagaatat caaggagctg aaggccggct atatctctca ggtggtgcac aagatctgcg 5160
agctggtgga gaagtacgat gccgtgatcg ccctggagga cctgaactct ggctttaaga 5220
atagccgcgt gaaggtggag aagcaggtgt atcagaagtt cgagaagatg ctgatcgata 5280
agctgaacta catggtggac aagaagtcta atccttgtgc aacaggcggc gccctgaagg 5340
gctatcagat caccaataag ttcgagagct ttaagtccat gtctacccag aacggcttca 5400
tcttttacat ccctgcctgg ctgacatcca agatcgatcc atctaccggc tttgtgaacc 5460
tgctgaaaac caagtatacc agcatcgccg attccaagaa gttcatcagc tcctttgaca 5520
ggatcatgta cgtgcccgag gaggatctgt tcgagtttgc cctggactat aagaacttct 5580
ctcgcacaga cgccgattac atcaagaagt ggaagctgta ctcctacggc aaccggatca 5640
gaatcttccg gaatcctaag aagaacaacg tgttcgactg ggaggaggtg tgcctgacca 5700
gcgcctataa ggagctgttc aacaagtacg gcatcaatta tcagcagggc gatatcagag 5760
ccctgctgtg cgagcagtcc gacaaggcct tctactctag ctttatggcc ctgatgagcc 5820
tgatgctgca gatgcggaac agcatcacag gccgcaccga cgtggatttt ctgatcagcc 5880
ctgtgaagaa ctccgacggc atcttctacg atagccggaa ctatgaggcc caggagaatg 5940
ccatcctgcc aaagaacgcc gacgccaatg gcgcctataa catcgccaga aaggtgctgt 6000
gggccatcgg ccagttcaag aaggccgagg acgagaagct ggataaggtg aagatcgcca 6060
tctctaacaa ggagtggctg gagtacgccc agaccagcgt gaagcacgga tcccccaaga 6120
agaagaggaa agtcggtgga tccggtggat ccggtggatc cggtggatcc ggaacctccg 6180
ctcctaccaa aagacacgcg tacaacgctg agtttaaact caaggcgata agccacgcac 6240
aagaacacgg caatagagca gcagcgagag aatttaatat caatgaatca atggtgagga 6300
agtggaggaa gtatgaggat gagctccgcc aagtaaagaa gacaacacag agtttccgcg 6360
ggaacaaagc gagatggcca cagttagagg acaaagttga acagtgggtt gctgaacaaa 6420
gagcagcaag cagaagtgtt agtacagtca caattcgtat gaaggcaata gcgctagctc 6480
gcgaacataa catcagtgaa ttcagaggcg gtccttcttg gtgcttccgt tttatgaaac 6540
gacgtcatct ctccatccgt acgcgcacta ctgtgtcaca acaactacca gctgattatc 6600
aggaaaagtt ggccactttc cgcacatact gcagaaacaa gataactgaa aaaaagatcc 6660
agccagagca tatcatcaat atggacgagg ttccactcac cttcgatatc cctgtaaacc 6720
gcactgtgga taaaacagga gcacgtacgg tgaatattcg caccacaggg aatgagaaaa 6780
cgtccttcac tgtagttctc gcctgccagg ctaatggcca caaacttcca cccatggtta 6840
ttttcaagag gaagaccttg ccgaaagaaa actttccagc tggcattgtc ataaaagcta 6900
actcgaaggg atggatggat gaagaaaaga tgagtgagtg gttgagagaa atttatgtga 6960
agagaccggg tggttttttt cacacagctc cgtccctatt gatctatgac tccatgcgcg 7020
cacatatcac cgagcatgtc aaaaaacaag tgaagcacac taattcagtg ctcgccgtca 7080
ttccgggtgg attaacaaaa gaactccagc cgctcgatgt tggcgtcaac agagcattca 7140
aagctcgact gcgaactgcg tgggagcagt ggatgaccga aggcgaacac acgttcacca 7200
agacggggag acagcgccgg acgacatatg ctaatatctg caagtggata gtaaatgcct 7260
gggctggtat atcagtcaca actgtggtcc gagcttttag gaaggcagga attgtcaccg 7320
aactgccaga caacagcagc gacactgact cggttaatga tgactttgat aagacggagc 7380
caggcgtttt ggatgccgca atagcccagc tgttcaattc ggacacggaa gaagaagttt 7440
tcgagggatt ttcgagcgac tacaaagacc atgacggtga ttataaagat catgacatcg 7500
attacaagga tgacgatgac aagtgaagcg gccgcactcc tcaggtgcag gctgcctatc 7560
agaaggtggt ggctggtgtg gccaatgccc tggctcacaa ataccactga gatctttttc 7620
cctctgccaa aaattatggg gacatcatga agccccttga gcatctgact tctggctaat 7680
aaaggaaatt tattttcatt gcaatagtgt gttggaattt tttgtgtctc tcactcggaa 7740
ggacatatgg gagggcaaat catttaaaac atcagaatga gtatttggtt tagagtttgg 7800
caacatatgc ccatatgctg gctgccatga acaaaggttg gctataaaga ggtcatcagt 7860
atatgaaaca gccccctgct gtccattcct tattccatag aaaagccttg acttgaggtt 7920
agattttttt tatattttgt tttgtgttat ttttttcttt aacatcccta aaattttcct 7980
tacatgtttt actagccaga tttttcctcc tctcctgact actcccagtc atagctgtcc 8040
ctcttctctt atggagatcc ctcgacctgc agcccaagct tggcgtaatc atggtcatag 8100
ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatacg agccggaagc 8160
ataaagtgta aagcctgggg tgcctaatga gtgagctaac tcacattaat tgcgttgcgc 8220
tcactgcccg ctttccagtc gggaaacctg tcgtgccagc ggatccgcat ctcaattagt 8280
cagcaaccat agtcccgccc ctaactccgc ccatcccgcc cctaactccg cccagttccg 8340
cccattctcc gccccatggc tgactaattt tttttattta tgcagaggcc gaggccgcct 8400
cggcctctga gctattccag aagtagtgag gaggcttttt tggaggccta ggcttttgca 8460
aaaagctaac ttgtttattg cagcttataa tggttacaaa taaagcaata gcatcacaaa 8520
tttcacaaat aaagcatttt tttcactgca ttctagttgt ggtttgtcca aactcatcaa 8580
tgtatcttat catgtctgga tccgctgcat taatgaatcg gccaacgcgc ggggagaggc 8640
ggtttgcgta ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt 8700
cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca 8760
ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa 8820
aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat 8880
cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc 8940
cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc 9000
gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt 9060
tcggtgtagg tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac 9120
cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg 9180
ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca 9240
gagttcttga agtggtggcc taactacggc tacactagaa gaacagtatt tggtatctgc 9300
gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa 9360
accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa 9420
ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac 9480
tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta 9540
aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt 9600
taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata 9660
gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc 9720
agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac 9780
cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag 9840
tctattaatt gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac 9900
gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc 9960
agctccggtt cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg 10020
gttagctcct tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc 10080
atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct 10140
gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc 10200
tcttgcccgg cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc 10260
atcattggaa aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc 10320
agttcgatgt aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc 10380
gtttctgggt gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca 10440
cggaaatgtt gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt 10500
tattgtctca tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt 10560
ccgcgcacat ttccccgaaa agtgccacct g 10591
<210> 2
<211> 2249
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gacgtcgcta gctgtacaaa aaagcaggct ttaaaggaac caattcagtc gactggatcc 60
ggtaccaagg tcgggcagga agagggccta tttcccatga ttccttcata tttgcatata 120
cgatacaagg ctgttagaga gataattaga attaatttga ctgtaaacac aaagatatta 180
gtacaaaata cgtgacgtag aaagtaataa tttcttgggt agtttgcagt tttaaaatta 240
tgttttaaaa tggactatca tatgcttacc gtaacttgaa agtatttcga tttcttggct 300
ttatatatct tgtggaaagg acgaaacacc gttcactgcc gtataggcag aatttctact 360
aagtgtagat tgagacgcgt ctcaaatttc tactaagtgt agatagcttg ggccgctcga 420
ggtacctctc tacatatgac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 480
aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc 540
gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc 600
ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg 660
cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt 720
cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc 780
gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc 840
cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 900
agttcttgaa gtggtggcct aactacggct acactagaag aacagtattt ggtatctgcg 960
ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 1020
ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 1080
gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact 1140
cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa 1200
attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 1260
accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt tcatccatag 1320
ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca 1380
gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc 1440
agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt 1500
ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg 1560
ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca 1620
gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc aaaaaagcgg 1680
ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca 1740
tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg 1800
tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct 1860
cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca 1920
tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ttgagatcca 1980
gttcgatgta acccactcgt gcacccaact gatcttcagc atcttttact ttcaccagcg 2040
tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata agggcgacac 2100
ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt tatcagggtt 2160
attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa ataggggttc 2220
cgcgcacatt tccccgaaaa gtgccacct 2249
<210> 3
<211> 2261
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
gacgtcgcta gctgtacaaa aaagcaggct ttaaaggaac caattcagtc gactggatcc 60
ggtaccaagg tcgggcagga agagggccta tttcccatga ttccttcata tttgcatata 120
cgatacaagg ctgttagaga gataattaga attaatttga ctgtaaacac aaagatatta 180
gtacaaaata cgtgacgtag aaagtaataa tttcttgggt agtttgcagt tttaaaatta 240
tgttttaaaa tggactatca tatgcttacc gtaacttgaa agtatttcga tttcttggct 300
ttatatatct tgtggaaagg acgaaacacc gttcactgcc gtataggcag ggtaatttct 360
actaagtgta gattgtcccc tgttgactgg tcattcaatt tctactaagt gtagatagct 420
tgggccgctc gaggtacctc tctacatatg acatgtgagc aaaaggccag caaaaggcca 480
ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgcccc cctgacgagc 540
atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta taaagatacc 600
aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg 660
gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta 720
ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg 780
ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac ccggtaagac 840
acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag 900
gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga agaacagtat 960
ttggtatctg cgctctgctg aagccagtta ccttcggaaa aagagttggt agctcttgat 1020
ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag cagattacgc 1080
gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct gacgctcagt 1140
ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct 1200
agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat gagtaaactt 1260
ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctatttc 1320
gttcatccat agttgcctga ctccccgtcg tgtagataac tacgatacgg gagggcttac 1380
catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct ccagatttat 1440
cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca actttatccg 1500
cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg ccagttaata 1560
gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg tcgtttggta 1620
tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc cccatgttgt 1680
gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag 1740
tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg ccatccgtaa 1800
gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc 1860
gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat agcagaactt 1920
taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc 1980
tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca gcatctttta 2040
ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa 2100
taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat tattgaagca 2160
tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac 2220
aaataggggt tccgcgcaca tttccccgaa aagtgccacc t 2261

Claims (10)

1. A plasmid fusion transposase vector is characterized in that the nucleic acid sequence of the vector is shown as SEQ ID NO. 1.
2. An expression vector of fusion protein of PS transposase and CRISPR/dCpf1, which is characterized in that the vector comprises a CAG promoter, a Kozak sequence, 2 SV40 NLS sequences, a dCpf1 sequence, a linker sequence and a PS transposase sequence;
the sequence of the CAG promoter is the base of 5 th to 1654 th sites from the 5' end in SEQ ID NO. 1;
the Kozak sequence is 1773 to 1782 th bases from the 5' end in SEQ ID NO 1;
the 2 SV40 NSL sequences are respectively upstream and downstream of a dCpf1 sequence;
the sequence of dCpf1 is 2427 th-6107 th base from 5' end in SEQ ID NO 1, wherein the sequence is mutant and is DNA shearing activity deletion type protein;
the linker sequence is the 6135-6179 th base from the 5' end in SEQ ID NO 1;
the PS transposase sequence is 6180-7451 th base from 5' end in SEQ ID NO. 1.
3. The PS transposase and CRISPR/dCpf1 fusion protein expression vector of claim 2, wherein the linker sequence comprises 15 amino acid residues.
4. The expression vector of the PS transposase and CRISPR/dCpf1 fusion protein as claimed in claim 2, wherein the 2 SV40 NSL sequences are 2400-2420 th base and 6114-6134 th base from 5' end in SEQ ID NO 1.
5. Use of a plasmid fusion transposase vector as claimed in claim 1 or a PS transposase and CRISPR/dCpf1 fusion protein expression vector as claimed in any one of claims 2 to 8 for transposon mediated site directed integration.
6. A method of fusion transposase mediated transposon site directed integration, comprising the steps of:
designing a gRNA sequence of a target gene;
constructing cpf1 gRNA expression vector;
co-transfecting a host cell with an expression vector carrying a target gene gRNA, the plasmid fusion transposase vector of claim 1 and a transposon donor plasmid, and performing site-specific transposition of the transposon donor sequence into the target gene;
screening by using a resistance screening gene to obtain a positive monoclonal cell inserted with a report gene;
and (3) counting the number of positive cell clones by giemsa staining, selecting positive monoclonal cells, and carrying out fluorescent quantitative detection on the expression condition of the target gene.
7. The method of claim 6 in which primer sequences for designing gRNA sequences targeting a gene of interest are as follows:
HPRT1-gRNA-F:GTAGATTGTCCCCTGTTGACTGGTCATTC;
HPRT1-gRNA-R:AATTGAATGACCAGTCAACAGGGGACA。
8. the method of fusion transposase mediated transposon site-directed integration according to claim 6, wherein the pSQT14 vector is used as a gRNA expression vector as a framework, and the pSQT14 vector contains the following sequences: AATTTCTACTAAGTGTAGAT are provided.
9. The method of claim 6 in which the pSQT14 vector has the sequence shown in SEQ ID NO. 2.
10. The method of claim 6, wherein the expression vector with the gRNA of the target gene has the sequence as shown in SEQ ID NO. 3.
CN202011061777.0A 2020-09-30 2020-09-30 PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof Pending CN112159822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011061777.0A CN112159822A (en) 2020-09-30 2020-09-30 PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011061777.0A CN112159822A (en) 2020-09-30 2020-09-30 PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof

Publications (1)

Publication Number Publication Date
CN112159822A true CN112159822A (en) 2021-01-01

Family

ID=73862348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011061777.0A Pending CN112159822A (en) 2020-09-30 2020-09-30 PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof

Country Status (1)

Country Link
CN (1) CN112159822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061314A1 (en) * 2022-09-21 2024-03-28 上海吉量医药工程有限公司 Transposon system and application thereof
CN117965579A (en) * 2024-04-02 2024-05-03 中国科学院遗传与发育生物学研究所 Wheat specific transposon H2A.1 and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646719A (en) * 2016-02-24 2016-06-08 无锡市妇幼保健院 Tool for efficient site-specific transposition of genes and application of tool
CN107012164A (en) * 2017-01-11 2017-08-04 电子科技大学 CRISPR/Cpf1 Plant Genome directed modifications functional unit, the carrier comprising the functional unit and its application
CN107488649A (en) * 2017-08-25 2017-12-19 南方医科大学 A kind of fusion protein of Cpf1 and p300 Core domains, corresponding DNA target are to activation system and application
CN107686848A (en) * 2017-09-26 2018-02-13 中山大学孙逸仙纪念医院 The stable of transposons collaboration CRISPR/Cas9 systems knocks out single plasmid vector and its application
CN108124453A (en) * 2015-03-31 2018-06-05 爱克莱根科技公司 Cas9 retrovirus integrases and Cas9 for DNA sequence dna targeting to be incorporated in cell or the genome of organism recombinate enzyme system
CN108138176A (en) * 2015-08-19 2018-06-08 阿克生物公司 Use the system acquisition nucleic acid of the nuclease guided based on nucleic acid
WO2018175872A1 (en) * 2017-03-24 2018-09-27 President And Fellows Of Harvard College Methods of genome engineering by nuclease-transposase fusion proteins
CN109136248A (en) * 2017-08-31 2019-01-04 苏州金唯智生物科技有限公司 Multiple target point editor carrier and its construction method and application
CN110257425A (en) * 2019-05-05 2019-09-20 扬州大学 A kind of PS Transposon System and its gene transfer method of mediation
CN110799205A (en) * 2017-04-21 2020-02-14 通用医疗公司 Inducible, regulatable and multiplexed human gene regulation using CRISPR-Cpf1
CN111518838A (en) * 2020-05-01 2020-08-11 山东瑞辑通慧生物技术有限公司 Primer and kit for editing single-base gene of eukaryotic cell, use method and application
CN111534543A (en) * 2020-05-07 2020-08-14 西南大学 Eukaryotic CRISPR/Cas9 knockout system, basic vector, vector and cell line

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124453A (en) * 2015-03-31 2018-06-05 爱克莱根科技公司 Cas9 retrovirus integrases and Cas9 for DNA sequence dna targeting to be incorporated in cell or the genome of organism recombinate enzyme system
CN108138176A (en) * 2015-08-19 2018-06-08 阿克生物公司 Use the system acquisition nucleic acid of the nuclease guided based on nucleic acid
CN105646719A (en) * 2016-02-24 2016-06-08 无锡市妇幼保健院 Tool for efficient site-specific transposition of genes and application of tool
CN107012164A (en) * 2017-01-11 2017-08-04 电子科技大学 CRISPR/Cpf1 Plant Genome directed modifications functional unit, the carrier comprising the functional unit and its application
WO2018175872A1 (en) * 2017-03-24 2018-09-27 President And Fellows Of Harvard College Methods of genome engineering by nuclease-transposase fusion proteins
CN110799205A (en) * 2017-04-21 2020-02-14 通用医疗公司 Inducible, regulatable and multiplexed human gene regulation using CRISPR-Cpf1
CN107488649A (en) * 2017-08-25 2017-12-19 南方医科大学 A kind of fusion protein of Cpf1 and p300 Core domains, corresponding DNA target are to activation system and application
CN109136248A (en) * 2017-08-31 2019-01-04 苏州金唯智生物科技有限公司 Multiple target point editor carrier and its construction method and application
CN107686848A (en) * 2017-09-26 2018-02-13 中山大学孙逸仙纪念医院 The stable of transposons collaboration CRISPR/Cas9 systems knocks out single plasmid vector and its application
CN110257425A (en) * 2019-05-05 2019-09-20 扬州大学 A kind of PS Transposon System and its gene transfer method of mediation
CN111518838A (en) * 2020-05-01 2020-08-11 山东瑞辑通慧生物技术有限公司 Primer and kit for editing single-base gene of eukaryotic cell, use method and application
CN111534543A (en) * 2020-05-07 2020-08-14 西南大学 Eukaryotic CRISPR/Cas9 knockout system, basic vector, vector and cell line

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
沈丹: "Tc1/Mariner转座子超家族的研究进展", 《遗传》 *
王珏等: "利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑", 《遗传》 *
龙定沛等: "家蚕基因组靶向编辑技术研究进展", 《昆虫学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061314A1 (en) * 2022-09-21 2024-03-28 上海吉量医药工程有限公司 Transposon system and application thereof
CN117965579A (en) * 2024-04-02 2024-05-03 中国科学院遗传与发育生物学研究所 Wheat specific transposon H2A.1 and application thereof
CN117965579B (en) * 2024-04-02 2024-06-07 中国科学院遗传与发育生物学研究所 Wheat specific transposon H2A.1 and application thereof

Similar Documents

Publication Publication Date Title
CA2474172C (en) A library of a collection of cells
KR20230165368A (en) Compositions and methods for modifying genomes using cpf1 or csm1
CA2474161C (en) Concatemers of differentially expressed multiple genes
CN108753823B (en) Method for realizing gene knockout by using base editing technology and application thereof
KR20180048743A (en) 2A &amp;lt; / RTI &amp;gt; peptide.
KR20230091894A (en) Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (PASTE)
US20040166580A1 (en) Vector constructs
CN113454230B (en) Method for preparing induced pluripotent stem cells through somatic reprogramming
CN111836825A (en) Optimized plant CRISPR/CPF1 system
CN112159822A (en) PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof
KR102614328B1 (en) Two-part device for T-cell receptor synthesis and stable genomic integration into TCR-presenting cells
CN110684804B (en) Lentiviral vector for delivering exogenous RNP and preparation method thereof
CN112168958B (en) SARS-CoV-2 vaccine based on slow virus shell modification and mRNA delivery and its preparation method
CN107771222B (en) Hair clip is formed in situ in the chain intrusion induced using power
KR20100028038A (en) Treatment and prevention of influenza
CN107287238B (en) Gene vector and gene therapy medicine for treating Leber congenital amaurosis 2 type disease
CN108676814A (en) A kind of fluorescent marker shuttle vector of Tiantan strain vaccinia virus and preparation method thereof
CN113151178B (en) Recombinant T cell with Rc3h1 gene and/or Zc3h12a gene knocked out and application thereof
CN115698297A (en) Preparation method of multi-module biosynthetic enzyme gene combined library
KR20230010231A (en) Vectors and methods for in vivo transduction
AU2016201212B2 (en) Plants with altered levels of vegetative starch
CN108026538B (en) Preparation method of sheath protein of porcine circovirus type 2 and pharmaceutical composition containing sheath protein
US6531289B1 (en) Regulated gene expression in yeast and method of use
CN114561427B (en) Cultivation method of transgenic zebra fish for detecting organic pollutants in water body
CN102517326B (en) Method for improving content of lysine in maize by using zein gene ribonucleic acid interference (RNAi) vector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230413

Address after: 201805 No. 1585 Garden National Road, Anting Town, Jiading District, Shanghai

Applicant after: SHANGHAI CELL THERAPY GROUP Co.,Ltd.

Address before: 225009 No. 88, South University Road, Jiangsu, Yangzhou

Applicant before: YANGZHOU University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210101